Dynamics, Holomorphic Curves and Foliations:

Using a PDE to solve an ODE problem

Chris Wendl, MIT

http://math.mit.edu/~wendlc/publications.html

Outline

- 1. Hamiltonian dynamics. . . contact geometry
- 2. Pseudoholomorphic curves
- 3. Symplectizations and finite energy curves
- 4. Holomorphic foliations

References:

- Hofer, H. Holomorphic curves and real threedimensional dynamics. Geom. Funct. Anal. 2000, Special Volume, Part II, 674–704.
- Wendl, C. Finite energy foliations on overtwisted contact manifolds.
 Preprint SG/0611516.

PART 1: Hamiltonian Dynamics... Contact Geometry

 $x = (q_1, p_1, q_2, p_2) \in \mathbb{R}^4$

Hamiltonian function $H : \mathbb{R}^4 \to \mathbb{R}$

Equations of motion:

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \qquad \dot{p}_j = -\frac{\partial H}{\partial q_j}$$

In terms of a Hamiltonian vector field:

$$X_H : \mathbb{R}^4 \to \mathbb{R}^4, \qquad \dot{x} = X_H(x)$$

Hamiltonian flow: $\varphi_H^t : \mathbb{R}^4 \to \mathbb{R}^4$

Fact: φ_H^t preserves level sets $H^{-1}(c)$

Flow on Level Sets

For generic c, $M := H^{-1}(c)$ is a three-dimensional manifold.

Natural question: Does X_H have any periodic orbits on M? (If so, how many?)

Theorem (P. Rabinowitz, 1978). : If M is a compact star-shaped hypersurface, then it has a periodic orbit.

Contact Manifolds

M = an oriented 3-dimensional manifold

A contact structure ξ on M is a choice of oriented 2-planes $\xi_x \subset T_x M$ at every point $x \in$ M, such that ξ is totally nonintegrable.

 $(M,\xi) \cong (M',\xi')$ means there is a diffeomorphism $\psi: M \to M'$ such that $d\psi(\xi) = \xi'$.

Then ψ is a **contactomorphism**.

Reeb Dynamics

Given (M, ξ) , a **Reeb vector field** X is a vector field positively transverse to ξ such that the flow preserves ξ .

Example: $M = H^{-1}(c) \subset \mathbb{R}^4$ a star-shaped energy surface, then M has a natural contact structure and X_H is a Reeb vector field.

Conjecture (A. Weinstein '78). Every Reeb vector field X on a compact contact manifold (M,ξ) admits a periodic orbit.

Some Weinstein Conjecture History

- C. Viterbo '87: true for all contact hypersurfaces in \mathbb{R}^4
- **H. Hofer '93**: true for all contact structures on S^3 , or any M with $\pi_2(M) \neq 0$, or any M if ξ is overtwisted
- C. Taubes '06: true for all contact 3manifolds

But how many?

• H. Hofer, K. Wysocki, E. Zehnder '03: Generic compact star-shaped energy surfaces in *R*⁴ admit either 2 or infinitely many periodic orbits!

Question: does any similar "2 or ∞ " result hold for generic contact 3-manifolds?

PART 2: Pseudoholomorphic Curves

Suppose $u : \mathbb{C} \to \mathbb{C}$ is smooth.

Identify
$$\mathbb{C} = \mathbb{R}^2$$
, so $i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

 $du(z): T_{z}\mathbb{R}^{2} \rightarrow T_{u(z)}\mathbb{R}^{2}$ is a 2-by-2 matrix

Then u is analytic (holomorphic) iff

$$du(z) \circ i = i \circ du(z)$$

for all z.

We define holomorphic maps $u:\mathbb{C}^n\to\mathbb{C}^m$ the same way using

$$i = \begin{pmatrix} 0 & -1 & & & \\ 1 & 0 & & & \\ & 0 & -1 & & \\ & 1 & 0 & & \\ & & \ddots & & \\ & & & 0 & -1 \\ & & & & 1 & 0 \end{pmatrix}$$

W = an even-dimensional manifold

An almost complex structure J is a smooth family of linear maps $J(x) : T_xW \to T_xW$ with $J(x)^2 = -\text{Id}.$

A map $u: (W, J) \rightarrow (W', J')$ is called pseudoholomorphic if

 $du(x) \circ J(x) = J'(u(x)) \circ du(x)$

for all $x \in W$.

If dim $\Sigma = 2$, (Σ, j) is a Riemann Surface, and $u : (\Sigma, j) \rightarrow (W, J)$ is a pseudoholomorphic (or *J*-holomorphic) curve.

M. Gromov '85: These are useful in symplectic geometry.

This isn't complex analysis anymore...

In local coordinates (s,t) on Σ , $du \circ j = J \circ du$ becomes

$$\partial_s u + J(u)\partial_t u = 0,$$

a nonlinear first-order elliptic PDE.

Douglis, Nirenberg '55: The linearized operator $\bar{\partial} = \partial_s + i\partial_t : W^{1,p} \to L^p$ satisfies

 $\|v\|_{W^{1,p}} \le C \|\bar{\partial}v\|_{L^p}$

for all $v \in C_0^{\infty}(\mathbb{C}, \mathbb{C}^n)$.

Consequences: under certain assumptions, solution spaces are

- compact (bubbling off analysis)
- finite dimensional manifolds (Fredholm theory)

Local Structure of Solution Spaces

Suppose u_0 is a *J*-holomorphic curve.

Choose Banach spaces (or Banach manifolds) X and Y and a smooth map $F : X \to Y$ so that

• $u_0 \in X$

• a map u near u_0 is J-holomorphic iff F(u) = 0

The linearization $DF(u_0)$: $X \to Y$ is defined by

$$F(u_0 + h) = F(u_0) + DF(u_0)h + o(||h||)$$

Suppose $DF(u_0)$ is surjective and has kernel of dimension $N < \infty$. Then the implicit function theorem $\Rightarrow F^{-1}(0)$ is a smooth *N*-dimensional manifold.

N = the Fredholm index of $DF(u_0)$.

PART 3: Symplectizations and Finite Energy Curves

Choose 3-dimensional (M,ξ) , with Reeb X

Let $W = \mathbb{R} \times M$, the symplectization of M

 $T(\mathbb{R} \times M) = (\mathbb{R} \oplus \mathbb{R}X) \oplus \xi$

Define $J : \mathbb{R} \to \mathbb{R}X$, $\xi \to \xi$.

If γ is a closed Reeb orbit, $\mathbb{R} \times \gamma \subset \mathbb{R} \times M$ is a *J*-holomorphic cylinder! (orbit cylinder)

Cylinder \cong 2-punctured sphere: $\mathbb{R} \times S^1 \cong \mathbb{C} \setminus \{0\} \cong S^2 \setminus \{0, \infty\}$

Consider J-holomorphic curves

$$\tilde{u} = (a, u) : \dot{\Sigma} \to \mathbb{R} \times M$$

where $\dot{\Sigma}$ is a closed Riemann surface with finitely many punctures.

All such maps with finite energy are asymptotically cylindrical at the punctures.

Existence of $\tilde{u} \Rightarrow$ Weinstein!

Bonus: if $u : \dot{\Sigma} \to M$ is embedded, it's transverse to X.

 $\tilde{u} = (a, u) : \mathbb{C} = S^2 \setminus \{\infty\} \to \mathbb{R} \times M$

Implicit function theorem

 \Rightarrow smooth 2-parameter family in $\mathbb{R} \times M$

 \Rightarrow projects to 1-parameter family $\pitchfork X$ in M.

PART 4: Holomorphic Foliations

Fredholm theory \Rightarrow holomorphic curves appear in families

Compactness \Rightarrow families don't go on forever

Open book decomposition of S^3 (i.e. $\mathbb{R}^3 \cup \{\infty\}$):

Return map is area-preserving.

Consequence: 2 or ∞ .

Theorem (Hofer, Wysocki, Zehnder '03). *Generic* star-shaped energy surfaces in \mathbb{R}^4 admit finite energy foliations.

index 0: orbit cylinders

index 1: rigid surfaces

index 2: 1-parameter families in M

Theorem (W. '05). Every overtwisted contact manifold has a Reeb vector field that admits a finite energy foliation.

Construct by Dehn surgery on S^3 :

Conjecture. This is true for generic Reeb vector fields on overtwisted contact manifolds.

Rallying cry:

"If holomorphic curves are everywhere, it's hard to kill them."

Homotopy of foliations: $S^1 \times S^2$

These are homotopic to each other. But (conjecturally) not to this one:

