Holomorphic Foliations in Contact 3-Manifolds

Chris Wendl

MIT and Universität München

www-math.mit.edu/~wendlc/publications.html

Outline

- I. Background: contact geometry, holomorphic curves, Weinstein conjecture
- II. The foliation program
- III. Existence in the overtwisted case
- IV. Outlook

I. Background

- M = closed oriented 3-manifold
- $\lambda = \text{positive contact form}, \ \lambda \wedge d\lambda > 0$
- $\xi = \ker \lambda = \text{contact structure}$
- X_{λ} = Reeb vector field, defined by

$$d\lambda(X_{\lambda},\cdot) = 0, \quad \lambda(X_{\lambda}) = 1$$

Thus $TM = \mathbb{R}X_{\lambda} \oplus \xi$.

Conjecture (Weinstein). For all (M, λ) , the vector field X_{λ} has a periodic orbit.

Symplectizations and holomorphic curves

 $\mathbb{R} \times M$ = the symplectization of M

$$T(\mathbb{R} \times M) = (\mathbb{R} \oplus \mathbb{R}X_{\lambda}) \oplus \xi$$

The splitting yields a natural class of \mathbb{R} -invariant almost complex structures

$$\tilde{J} = i \oplus J : T(\mathbb{R} \times M) \to T(\mathbb{R} \times M).$$

We consider \tilde{J} -holomorphic maps

$$\widetilde{u} = (a, u) : (\dot{\Sigma}, j) \to (\mathbb{R} \times M, \widetilde{J})$$

 $0 < E(\widetilde{u}) < \infty$

where $(\dot{\Sigma}, j)$ is a punctured Riemann surface.

These are *finite energy surfaces*.

Asymptotics

 Simple example: Given a periodic orbit P ⊂ M, ℝ × P is an
Orbit cylinder. (*J*-holomorphic)

All finite energy surfaces ũ = (a, u) are asymptotically cylindrical at the punctures:
a → ±∞ and u → a periodic orbit.

: Existence of a holomorphic curve \Rightarrow Weinstein conjecture! (Hofer '93) But let's not stop there...

Theorem (Hofer, Wysocki, Zehnder '03). For the standard contact structure on S^3 , generic contact forms admit either **2 or infinitely many** periodic orbits.

Idea of Proof:

"Holomorphic curves are everywhere!"

(And they're transverse to X_{λ} .)

II. The Foliation Program

Thinking locally, consider

 $\tilde{u} = (a, u) : (\mathbb{C}, i) \to (\mathbb{R} \times M, \tilde{J})$

embedded with Conley-Zehnder index 3.

Fredholm theory + intersection theory \Rightarrow

- $u: \mathbb{C} \to M$ is embedded, $u \pitchfork X_{\lambda}$
- $\tilde{u}(\mathbb{C}) \subset$ a local 2-dimensional foliation of $\mathbb{R} \times M$
- $u(\mathbb{C}) \subset$ a local 1-dimensional foliation of M, all leaves transverse to X_{λ}

Question: can we do this globally?

Definition. A <u>finite energy foliation</u> of M is a collection of embedded finite energy surfaces $\{\tilde{u}_{\alpha} = (a_{\alpha}, u_{\alpha}) : \dot{\Sigma}_{\alpha} \to \mathbb{R} \times M\}_{\alpha \in I}$ such that

- 1. $\tilde{u}_{\alpha}(\dot{\Sigma}_{\alpha})$ foliate $\mathbb{R} \times M$
- 2. If (a, u) is a leaf, then so is (a + c, u) for every constant $c \in \mathbb{R}$

Consequences: (due to intersection theory)

- 1. If $\mathcal{P} \subset M$ is the union of all asymptotic orbits for leaves in the foliation, then every orbit cylinder $\mathbb{R} \times P$ for $P \subset \mathcal{P}$ is a leaf.
- 2. The maps $u_{\alpha} : \dot{\Sigma}_{\alpha} \to M$ are embedded and foliate $M \setminus \mathcal{P}$.

Foliations of interest here are

- **spherical**: each leaf has genus 0
- stable: each leaf has a surjective linearization with "the right Fredholm index"
- Index $0 \Rightarrow$ orbit cylinder
- Index 1 \Rightarrow rigid surface
- Index 2 \Rightarrow 1-parameter family of leaves in M

Some existence results

Theorem (Hofer, Wysocki, Zehnder '03). Foliations exist for generic contact forms on the tight three-sphere.

Corollary. 2 or ∞ .

Theorem (Abbas '04). *Giroux's open book decompositions in the* planar *case can be deformed into spherical finite energy foliations.*

Corollary (Abbas, Cieliebak, Hofer '04). Weinstein conjecture for planar contact structures.

Theorem (W. '05). All overtwisted contact manifolds admit foliations.

Rallying cry:

"If holomorphic curves are everywhere, it's hard to kill them."

Floer-type invariants

Observation: Index 2 families in a stable foliation degenerate into broken index 1 leaves.

Given a foliation \mathcal{F} of (M, λ) , consider the contact homology algebra $HC_*(\mathcal{F})$ based on counting index 1 leaves with one positive puncture.

One could similarly define $H_*^{\mathsf{RSFT}}(\mathcal{F})$, $ECH_*(\mathcal{F})$ etc. . .

These should be invariants of... what?

Suppose:

- λ_+ , λ_- are contact forms on (M,ξ)
- \tilde{J}_{\pm} are \mathbb{R} -invariant almost complex structures on $\mathbb{R} \times M$ corresponding to λ_{\pm}
- \mathcal{F}_{\pm} are finite energy foliations on $(\mathbb{R} \times M, \tilde{J}_{\pm})$

Choose \widehat{J} on $\mathbb{R} \times M$ to interpolate between \widetilde{J}_+ near $\{+\infty\} \times M$ and \widetilde{J}_- near $\{-\infty\} \times M$.

(Tentative) Definition. A <u>directed concordance</u> $\mathcal{F}_+ \to \mathcal{F}_-$ is a foliation $\widehat{\mathcal{F}}$ of $\mathbb{R} \times M$ by $\widehat{J}_$ holomorphic cuves that converges to the $\mathbb{R}_$ invariant foliations \mathcal{F}_{\pm} near $\{\pm \infty\} \times M$.

A <u>concordance</u> between \mathcal{F}_+ and \mathcal{F}_- is a pair of directed concordances $\mathcal{F}_+ \to \mathcal{F}_-$ and $\mathcal{F}_- \to \mathcal{F}_+$ which are "inverses". **Conjecture.** Concordance defines an equivalence relation for foliations on (M, ξ) .

Conjecture. Floer-type algebras such as $HC_*(\mathcal{F})$ are concordance invariants.

Question: given (M, ξ) , what is the set of foliations up to concordance?

How is this related to the topology of M or contact topology of (M, ξ) ?

 $HC_*(\mathcal{F}_1) = 0$

 $HC_*(\mathcal{F}_2) \neq 0$

Conjecture. There is no concordance between \mathcal{F}_1 and \mathcal{F}_2 .

This should be related to the fact that $\pi_1(S^1 \times S^2) \neq 0.$

III. Existence in the overtwisted case (or, *how to actually prove some things...*)

Warmup: a simple compactness argument

Suppose (S^3, λ_0) admits a holomorphic open book decomposition $\mathcal{F}_0 = \{\tilde{u}_\tau : \mathbb{C} \to \mathbb{R} \times S^3\}_{\tau \in S^1}$, asymptotic to $P_\infty \subset S^3$.

Choose a homotopy $\{\lambda_r\}_{r\in[0,1]}$ such that X_{λ_r} remains transverse to \mathcal{F}_0 .

Suppose IFT \Rightarrow a smooth family of foliations \mathcal{F}_r for $r \in [0, 1)$. Then this extends to r = 1. Linking prevents bubbling off!

Such phenomena are uniquely 3-dimensional: *compactness arises from topological constraints.*

Idea:

- 1. (S^3, ξ_0) has a stable holomorphic open book decomposition asymptotic to a Hopf circle.
- Modify this under surgery and Lutz twists along a transverse link.
 Bennequin ('83) ⇒ we can also assume *link* ↑ *foliation*.

Martinet + Lutz ('71) + Eliashberg ('89) \Rightarrow this gives every overtwisted contact structure on every closed 3-manifold. How can a foliation survive surgery?

A Mixed Boundary Value Problem:

 $L \subset M$ a torus tangent to X_{λ}

Given a function $G: L \to \mathbb{R}$ and $\sigma \in \mathbb{R}$, let

$$\tilde{L}^{\sigma} = \{ (G(x) + \sigma, x) \in \mathbb{R} \times L \} \subset \mathbb{R} \times M$$

This is a family of totally real submanifolds.

Fix G and consider embedded holomorphic punctured disks

$$\tilde{v} = (b, v) : \mathbb{D} \setminus \{0\} \to \mathbb{R} \times M$$

with finite energy and $\tilde{v}(\partial \mathbb{D}) \subset \tilde{L}^{\sigma}$ for arbitrary $\sigma \in \mathbb{R}$.

Can generalize to arbitrary surfaces $\widehat{\Sigma}$ with boundary and interior punctures.

Cutting out disks

$$\tilde{u}: \dot{\Sigma} \to \mathbb{R} \times M$$

yields

$$\widetilde{v}: \widehat{\Sigma} = \dot{\Sigma} \setminus \{ \mathsf{disks} \} \to \mathbb{R} \times M$$

with same Fredholm index:

 $\operatorname{Ind}(\tilde{v}) = \operatorname{Ind}(\tilde{u})$

Twisting

Our new foliation \mathcal{F} lives outside L, so it survives (discontinuous!) changes inside L.

Now choose a homotopy $\{\lambda_r\}_{r\in[0,1]}$ near L so that orbits on L become meridians.

Two things are needed to finish the proof:

1. a compactness result: for \tilde{v}_r as $r \to r_\infty < 1$

2. a noncompactness result: for \tilde{v}_r as $r \to 1$: boundary \to punctures.

Both follow from topological constraints. \Box

IV. Outlook

Nondegenerate perturbations

 $HC_*(\mathcal{F}_2) = HC_*(\mathcal{F}_3)$

Conjecture. Every foliation of stable Morse-Bott type can be perturbed to a stable foliation for a C^{∞} -close nondegenerate contact form.

All such perturbed foliations are concordant.

Example: a stupid, yet strangely illuminating Morse-Bott foliation.

For (S^3, λ_0) , every Hopf circle is an orbit, so take $\mathcal{F} = \{\mathbb{R} \times P\}_{P=\text{Hopf}}$. This is the *only* stable foliation of (S^3, λ_0) .

Conjecture. All stable foliations of the tight 3-sphere are concordant.

This should follow from the above remarks and...

Conjecture (Hofer, Fish, Siefring, W.). If (M, λ) admits a holomorphic foliation, then so does $(M, f\lambda)$ for generic functions f, and the two are concordant.

This is hard, but might follow from a homotopy argument.

Foliations for tight contact structures?

Hofer's idea:

given (M, λ) , take an overtwisted (S^3, λ_{ot}) , find a foliation on $(M \# S^3, \lambda \# \lambda_{ot})$ and stretch.

This should prove the Weinstein conjecture in dimension 3.

But it won't be that simple...

Foliations can't always exist

(S,g) = a closed surface with curvature -1 $(S^{1}TS, \lambda) =$ the unit tangent bundle with its natural contact form. Then

Reeb flow on $S^1TS \cong$ geodesic flow on SConley-Zehnder index = Morse index

So $\mu_{CZ}(P) = 0$ for all orbits $P \subset S^1TS$.

In this situation, generic curves $\tilde{u} : \dot{\Sigma} \to \mathbb{R} \times S^1 TS$ of index $Ind(\tilde{u}) = B$ should intersect their neighbors B times.

Question: what is a *singular finite energy foliation*, and do they always exist?