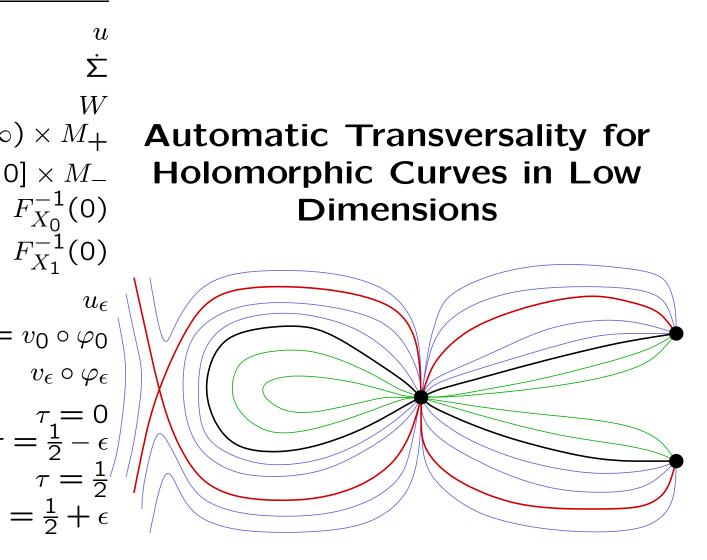
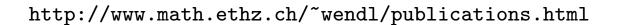
cements



Chris Wendl

ETH Zürich



Outline

- I. Motivation: transversality problems
- II. Foliations and miracles of analysis
- III. Automatic transversality
- IV. Orbifolds of holomorphic curves

I. Motivation: transversality problems

Enumerative invariants in an ideal world (a recipe): M = manifold, X = auxiliary data on M, \Rightarrow equation (PDE): $|F_X(u) = 0|$ eplacements Define "invariant" $I(M, X) := \#F_X^{-1}(0)$, for generic X, then prove... "Theorem": I(M, X) doesn't depend on X. $[0, \infty) \times M_{\perp}$ $-\infty, 0]$ *** Proof"**: For generic homotopies $\{X_t\}_{t \in [0,1]}$, $\mathcal{M}_{[0,1]} := \{(t,u) \mid t \in [0,1], F_{X_t}(u) = 0\}$ is a compact smooth manifold with boundary. u_{ϵ} $u_0 = v_0 \circ \varphi_0$ $F_{X_1}^{-1}(0)$ $v_\epsilon \circ \varphi_\epsilon$ $\tau = 0 F_{X_0}^{-1}(0) \bullet$ $\tau = \frac{1}{2} - \epsilon$ $\tau = \frac{1}{2} \bullet$ $\tau = \frac{1}{2} + \epsilon$

For example: *J*-holomorphic curves

 $(W, \omega) =$ symplectic manifold J = compatible almost complex structure $(\Sigma, j) =$ Riemann surface

 $\mathcal{M} := \{ u : \Sigma \to W \mid Tu \circ j = J \circ Tu \} / \text{reparam}.$

Analysis:
$$\mathcal{M} \cong \bar{\partial}_J^{-1}(0)/\text{symmetries}$$
, where

 $\bar{\partial}_J : \mathcal{B} \to \mathcal{E} : (j, u) \mapsto Tu + J \circ Tu \circ j$

is a smooth Fredholm section of a Banach space bundle.

We say
$$u : (\Sigma, j) \to (W, J)$$
 in \mathcal{M} is regular if
 $D\overline{\partial}_J(j, u) : T_{(j,u)}\mathcal{B} \to \mathcal{E}_{(j,u)}$

is surjective.

Then, implicit function theorem \Rightarrow near u, $\bar{\partial}_J^{-1}(0)$ is a smooth manifold of dimension = Fredholm index of $D\bar{\partial}_J(j,u)$.

$$ind(u) := "dim \mathcal{M} near u"$$

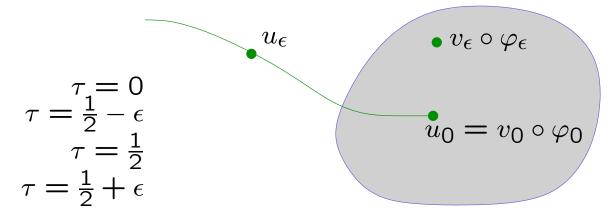
An almost wonderful fact:

Theorem: For generic J, every simple curve $u \in \mathcal{M}$ is regular.

"Simple" = "not multiply covered":

 $u \neq v \circ \varphi,$

 $\begin{array}{c} & \overbrace{\mathcal{M} \text{ is not generally smooth:}} \\ [0,\infty) & \overbrace{\text{regularity fails at multiple covers.}} \\ -\infty,0] \times M_{-} \\ & F \overbrace{X_{0}}^{\text{Flow}} \text{(b)} \text{bad is this?} \\ & F \overbrace{X_{0}}^{-1}(0) \\ & \text{E.g. sometimes "dim } \partial \mathcal{M} > \dim \mathcal{M}": \end{array}$



Possible transversality solutions:

1. Abstract perturbations: $\bar{\partial}_{I}(u) = \varepsilon$ eplacement destroys nice geometric properties, \overline{e} .g. positivity of intersections) <u>ن</u> 2._WHope for a miracle $[0,\infty) \times M_{\perp}$ i.e. exploit geometrically nice properties) $-\infty, 0] imes M_{-}$ F_X^{-1} (m) pactification: $F_{\chi_1} \xrightarrow{\mathcal{M}} \mathcal{M} := \{ \text{nodal } J - \text{holomorphic buildings} \}$ u_{ϵ} $u_0 = v_0 \circ \varphi_0$ $v_\epsilon \circ \varphi_\epsilon$ $\tau = 0$ $\tau = \frac{1}{2} - \epsilon$ $\tau = \frac{1}{2}$ $\tau = \frac{1}{2} + \epsilon$

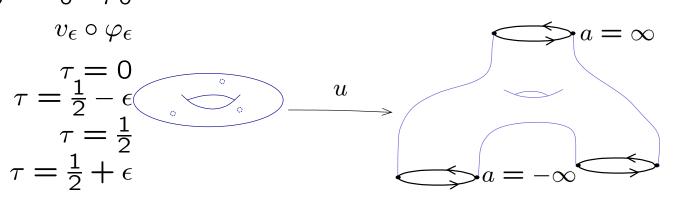
Goal: show that if $u \in \mathcal{M}$ is "nice", so is its connected component $\overline{\mathcal{M}}_u \subset \overline{\mathcal{M}}$

"Nice curves live in nice moduli spaces."

II. Foliations and miracles of analysis

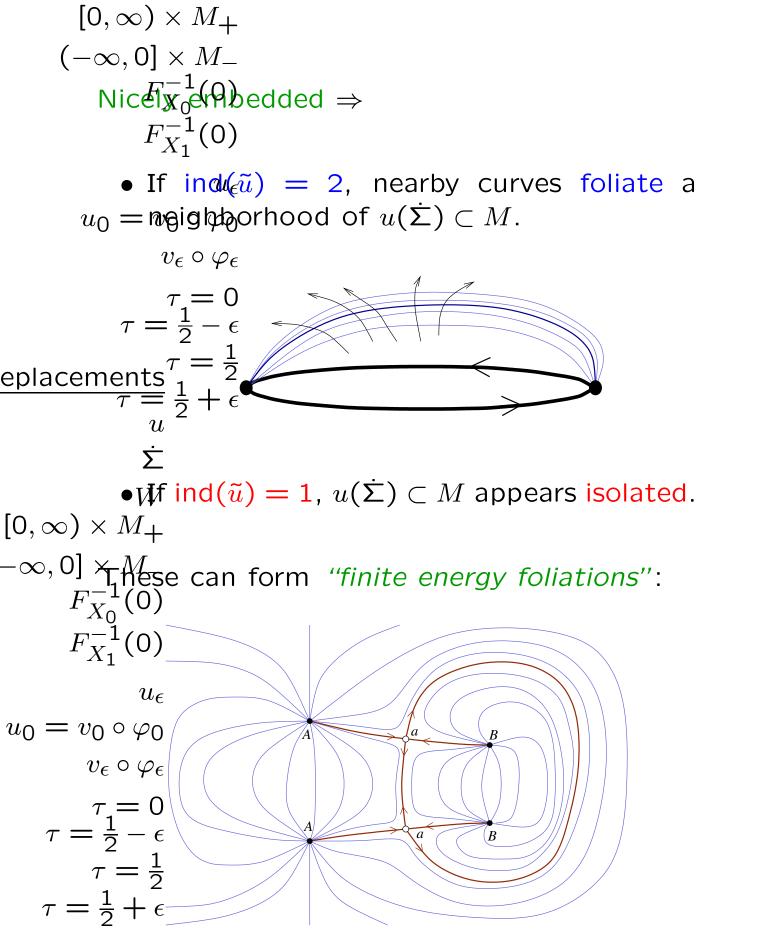
IIa. Symplectizations

 $\begin{array}{ll} \underline{\text{lacements}},\lambda) = \text{contact 3-manifold} \\ \hline X_{\hat{u}} = \text{Reeb vector field on } M \\ \bigcirc \\ & & & \\ &$



We say $\tilde{u} = (a, u)$ is **nicely embedded** if $u : \dot{\Sigma} \to M$ is an embedding.

7



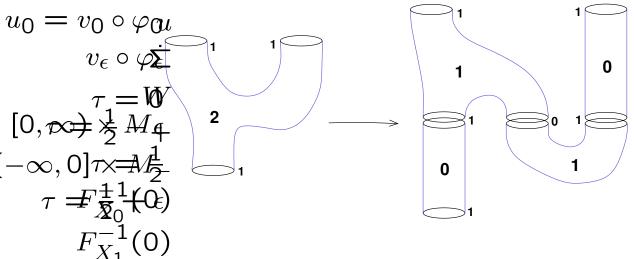
eplacements

Theorem (arXiv:math/0703509)

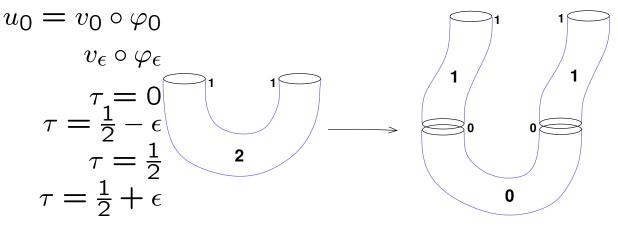
If $\tilde{u}_{\underline{i}}^{u}$ is nicely embedded, then all buildings in $\overline{\mathcal{M}}_{\widetilde{u}}^{\Sigma}$ consist of nicely embedded curves and trivial cylinders over orbits. $[0,\infty) \times M_+$

$-\infty, 0$] **Corollary**: for generic \tilde{J} , all curves appearing $F_{\chi} \vec{h} (\overline{M}_{\tilde{u}})$ are regular

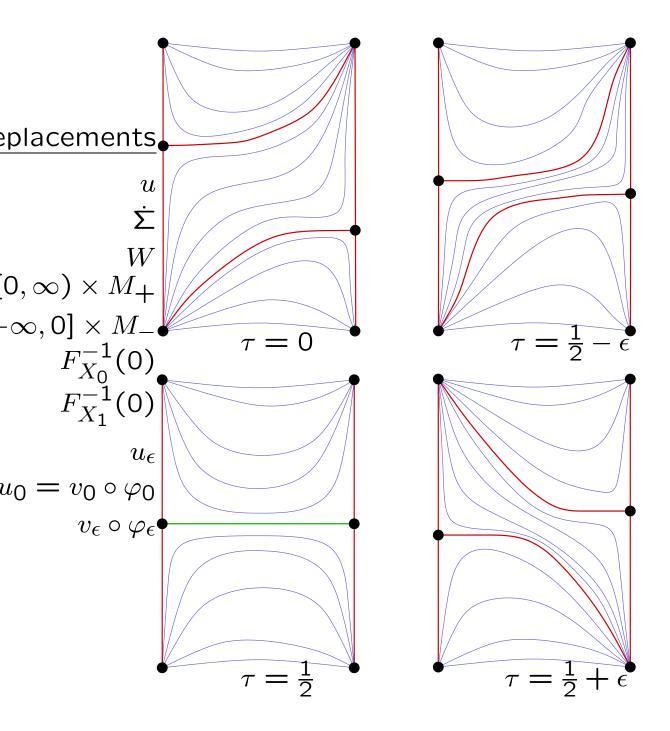
is a compact manifold with boundary. replacemen;



An example with non-generic J: u_{ϵ}



Application: homotopies of finite energy foliations



replacements he closed case

$$(W, J_{\Sigma}) = \text{closed almost complex 4-manifold,}$$

$$(\Sigma, j_{W}) = \text{closed Riemann surface}$$

$$[0, \infty) \times M_{+}$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \times (\Sigma, j) \rightarrow (W, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \times (\Sigma, j) \rightarrow$$

$$(0)^{u} \times (\Sigma,$$

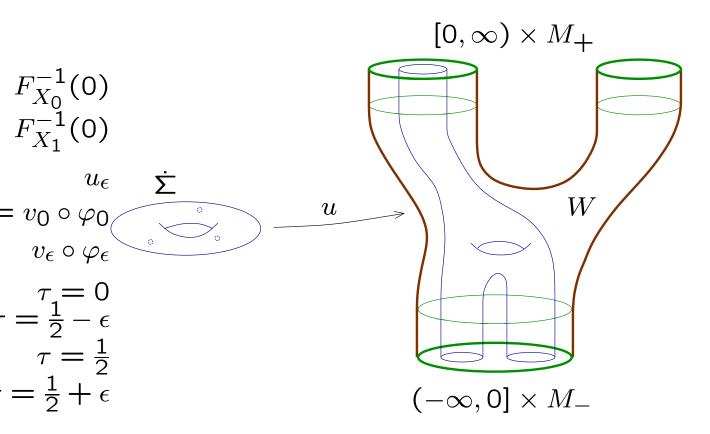
Theorem (\Leftarrow adjunction formula): u nicely embedded and J generic \Rightarrow non-embedded curves in $\overline{\mathcal{M}}_u$ are nodal, with two embedded, transverse index 0 curves.

Corollary: regularity for generic J

 \Rightarrow (by gluing) $\overline{\mathcal{M}}_u$ is a closed manifold.

cements IIc. The general (cobordism) case

(W, J) = 4-manifold with cylindrical ends $(\dot{\Sigma}, j) =$ punctured Riemann surface



Conjecture: *u* nicely embedded \Rightarrow $\overline{\mathcal{M}}_u$ is a smooth object (in some sense)

Partial result (arXiv:0802.3842): u nicely embedded and J generic \Rightarrow \mathcal{M}_u is a smooth **orbifold**, with isolated singularities that consist of **unbranched** multiple covers over embedded index 0 curves. This partially implies the previous two results (multiple covers cannot arise):

- 1. Symplectization: \mathbb{R} -invariance \Rightarrow \nexists embedded index 0 curves
- 2. *Closed:* nicely embedded curves have genus 0, $\not\exists$ unbranched covers $\varphi : S^2 \to S^2$

In general, multiple covers can appear, but only the harmless type! (We will show: *unbranched* \Rightarrow *regular*)

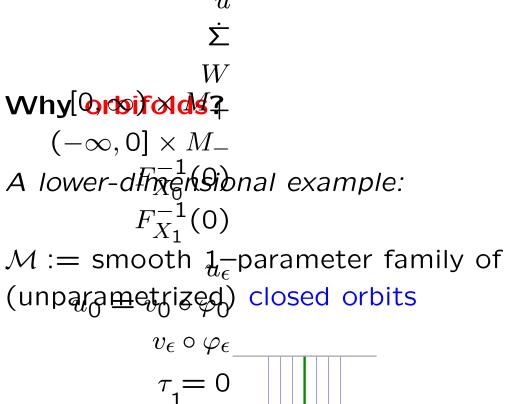
Example:

$$W := (S^2 \times S^2) \setminus \{(0,0), (1,1), (\infty,\infty)\}$$

(three negative S³-ends)
$$\dot{\Sigma} := S^2 \setminus \{0, 1, -1, \infty\}$$

For $\zeta \in \mathbb{C}$ approaching 0, consider

$$u_{\zeta}: \dot{\Sigma} \to W: z \mapsto \left(z^3 \frac{z+\zeta}{\zeta z+1}, z^2\right).$$



 $\tau = 0$ $\tau = \frac{1}{2} - \epsilon$ $\tau = \frac{1}{2}$ $\tau = \frac{1}{2} + \epsilon$

Regularity \Rightarrow

{parametrized orbits} \cong smooth surface (*Möbius strip*)

 $\Rightarrow \mathcal{M} \cong \text{surface}/S^1.$

Middle orbit has stabilizer \mathbb{Z}_2 under S^1 -action, $\Rightarrow \mathcal{M} \cong$ open subset of \mathbb{R}/\mathbb{Z}_2 .

symmetry ⇔ orbifold singularities

For holomorphic curves:

 $\mathcal{M} \cong \bar{\partial}_J^{-1}(0) / \text{symmetries}$ $u \text{ regular} \Rightarrow \bar{\partial}_J^{-1}(0) \text{ is a manifold near } u.$

Stabilizer of u is

$$\operatorname{Aut}(u) := \{ \varphi : (\Sigma, j) \xrightarrow{\sim} (\Sigma, j) \mid u = u \circ \varphi \}.$$

This can be nontrivial if u is multiply covered.

 \therefore Regularity \Rightarrow

$$\mathsf{nbhd}(u) \subset \mathcal{M}$$
 \cong open subset $\subset \mathbb{R}^{\mathsf{ind}(u)} / \mathsf{Aut}(u).$

Task: prove regularity for all curves in \mathcal{M}_u , *including the multiple covers*.

III. Automatic transversality

In dimension four, the following holds for closed curves and all (not just generic) J:

Theorem (Hofer-Lizan-Sikorav): If $u : \Sigma \to W^4$ is immersed and $c_1(u^*TW) > 0$, then u is regular.

Claim: this applies to nicely embedded curves.

Define the *normal Chern number*:

$$c_N(u) := c_1(u^*TW) - \chi(\Sigma)$$

Then adjunction $\Rightarrow u \bullet u = 2\delta(u) + c_N(u)$, \Rightarrow nicely embedded curves have $c_N(u) = 0$.

$$c_1(u^*TW) > 0 \iff ind(u) > c_N(u)$$

:. When $u_j \rightarrow u = v \circ \varphi$, regularity follows if *u* is immersed. Indeed, we will show: (1) *v* is embedded,

(2) φ is unbranched.

Generalizing Hofer-Lizan-Sikorav:

IIIa: Punctured curves

The following argument generalizes nicely. For simplicity, assume Teichmüller space is trivial.

If u is immersed, $u^*TW = T\Sigma \oplus N_u$, \Rightarrow

$$D\bar{\partial}_J(u) = \begin{pmatrix} D_u^T & \cdot \\ 0 & D_u^N \end{pmatrix}$$

 $D_u^T \cong$ natural CR-operator on $T\Sigma$, onto.

: Sufficient to prove D_u^N is onto. By Riemann-Roch,

> $c_1(N_u) < 0 \Rightarrow D_u^N$ is injective ind $(D_u^N) > c_1(N_u) \Rightarrow D_u^N$ is surjective.

Key point: can generalize $c_N(u)$ for punctured curves so that it counts zeros of sections in ker D_u^N if u is immersed.

IIIb: Non-immersed curves

Ivashkovich-Shevchishin observed:

 \mathbb{C} -linear part of $D\overline{\partial}_J(u) \Rightarrow$ holomorphic structure on u^*TW such that

$$du \in \Gamma(\operatorname{Hom}_{\mathbb{C}}(T\Sigma, u^*TW))$$

is a holomorphic section. Therefore:

(1) Critical points have positive orders.(2) There is still a splitting

$$u^*TW = T_u \oplus N_u$$

such that $T_u = \operatorname{im}(du)$ on $\Sigma \setminus \operatorname{Crit}(u)$.

Counting Crit(u) algebraically,

$$c_1(T_u) = \chi(\Sigma) + \# \operatorname{Crit}(u)$$

$$c_1(N_u) = c_N(u) - \# \operatorname{Crit}(u).$$

Lemma: D_u^T is again surjective, with index increased by 2 [# Crit(u)]. This implies:

$$\operatorname{coker} D\bar{\partial}_J(u) \cong \operatorname{coker} D_u^N$$

 D_u^N is surjective if $\operatorname{ind}(D_u^N) > c_1(N_u)$, \iff $\operatorname{ind}(u) - 2 [\# \operatorname{Crit}(u)] > c_N(u) - \# \operatorname{Crit}(u)$.

Also valid for punctured curves, implying:

Theorem (generalized automatic \pitchfork): If $u : \dot{\Sigma} \to W^4$ satisfies

$$\operatorname{ind}(u) > c_N(u) + \#\operatorname{Crit}(u),$$

then u is regular.

Remark 1: This is most useful for genus 0 curves, because by the index formula,

$$2c_N(u) = ind(u) - 2 + 2g + \#\Gamma_0,$$

where $\Gamma_0 := \{z \in \Gamma \mid \mu_{CZ}(z) \text{ is even}\}.$

Remark 2: It's a nice result, but we won't use it directly. It will be more useful to note that even when *u* isn't regular,

dim ker $D\overline{\partial}_J(u) = \dim \ker D_u^N + 2[\# \operatorname{Crit}(u)].$

IV. Orbifolds of holomorphic curves

For simplicity, consider the *closed case*: $u_j : \Sigma \to W$ embedded, with $u_j \bullet u_j = 0$,

 $u_j \to u = v \circ \varphi$

a branched cover of degree $k \ge 2$, with $v : \Sigma' \to W$ simple.

It remains to prove two claims:

Claim 1: For generic J, v is embedded.

$$0 = u \bullet u = k^2 (v \bullet v)$$

 $\Rightarrow 0 = 2\delta(v) + c_N(v)$. Then since

$$2c_N(v) = ind(v) - 2 + 2g' \ge -2$$

for generic J, $c_N(v) \ge -1 \Rightarrow \delta(v) = 0$.

This generalizes to the punctured case using the intersection theory of R. Siefring. Notably: $u \bullet u \ge k^2(v \bullet v)$ in general. **Claim 2**: $Crit(\varphi) = \emptyset$.

Suppose not. Then $\# \operatorname{Crit}(u) = \# \operatorname{Crit}(\varphi) \Rightarrow$

$$c_1(N_u) = c_N(u) - \#\operatorname{Crit}(u) < 0,$$

thus D_u^N is injective, and

dim ker $D\bar{\partial}_J(u) = 2 [\# \operatorname{Crit}(\varphi)].$

But the space

 $\{u' = v \circ \varphi' \mid \varphi' = a \text{ branched cover near } \varphi\}$ is in \mathcal{M}_u and has exactly this dimension!

: Implicit function theorem \Rightarrow All $u' \in \mathcal{M}_u$ near u are branched covers.

Contradiction!