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I. Motivation: transversality problems

Enumerative invariants in an ideal world
(a recipe):

M = manifold, X = auxiliary data on M,

= equation (PDE): |Fx(u) =0

Define “invariant” I(M,X) = #F)}l(O),
for generic X, then prove. ..

“Theorem”: I(M,X) doesn't depend on X.

“Proof”: For generic homotopies { Xt}4¢10 17

Mg 17 :={(t,u) | t € [0,1], Fx,(u) = 0}
IS a compact smooth manifold with boundary.
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For example: J—holomorphic curves

(W,w) = symplectic manifold
J = compatible almost complex structure
(X, j) = Riemann surface

M ={u:X —>W | Tuoj=JoTu}/reparam.

Analysis: |IM £ 5}1(0)/symmetries , where

07:B—=&:(,u)—Tu+JoTuoj

iIs a smooth Fredholm section of a Banach

space bundle.

We say v : (X,5) — (W,J) in M is regular if
DO u) : T(ju)B = Eju)

IS surjective.
Then, implicit function theorem =

near wu, 5}1(0) is @ smooth manifold of
dimension = Fredholm index of D8;(j,u).

ind(u) := “dim M near u"




An almost wonderful fact:

Theorem: For generic J, every simple curve
u € M is regular.

“Simple” = “not multiply covered’ :

U F= v o,

where ¢ : (Z,5) — (X',5") branched cover,
deg(yp) > 2.

M is not generally smooth:
regularity fails at multiple covers.

How bad is this?

E.g. sometimes “dim oM > dim M :




Possible transversality solutions:

1. Abstract perturbations: 9;(u) = ¢
(destroys nice geometric properties,
e.g. positivity of intersections)

2. Hope for a miracle
(i.e. exploit geometrically nice properties)

Compactification:
M C M := {nodal J-holomorphic buildings}

Goal: show that if u € M is “nice”, so is its
connected component M, C M

“Nice curves live in nice moduli spaces.”
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II. Foliations and miracles of analysis
IIa. Symplectizations

(M, ) = contact 3—manifold
Xy = Reeb vector field on M

On W : =R x M, choose an R—invariant
almost complex structure J

Consider punctured J—holomorphic curves
t=(a,u): > —-RxM

asymptotic to closed Reeb orbits.

"

We say @ = (a,u) is nicely embedded if
w: > — M is an embedding.



Nicely embedded =

e If ind(z) = 2, nearby curves foliate a
neighborhood of w(X) C M.

o Ifind() = 1, u(>X) C M appears isolated.

These can form ‘finite enerqgy foliations”:




Theorem (arXivimath/0703509)

If w is nicely embedded, then all buildings in
ﬂﬁ consist of nicely embedded curves and
trivial cylinders over orbits.

Corollary: for generic J, all curves appearing

in Mgy are regular

= My is a compact manifold with boundary.
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Application:
homotopies of finite energy foliations
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IIb. The closed case

(W, J) = closed almost complex 4—manifold,
(X, j) = closed Riemann surface

u:(X,7) — (W,J) nicely embedded «—
embedded, ind(u) =2 and ueu =0

(Can also generalize for immersed curves with
fixed double points.)

Theorem (< adjunction formula):

u nicely embedded and J generic =
non-embedded curves in M, are nodal, with
two embedded, transverse index O curves.

Corollary: regularity for generic J

= (by gluing) M, is a closed manifold.
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IIc. The general (cobordism) case

(W, J) = 4—manifold with cylindrical ends
(3, j) = punctured Riemann surface

[O, OO) X M_|_

o= o——

(—oc0,0] x M_

Conjecture: u nicely embedded =
M, is a smooth object (in some sense)

Partial result (arXiv:0802.3842):
u nicely embedded and J generic =
M, is a smooth orbifold, with isolated singu-
larities that consist of unbranched multiple
covers over embedded index O curves.
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This partially implies the previous two results
(multiple covers cannot arise):

1. Symplectization: R—invariance =
A embedded index O curves

2. Closed: nicely embedded curves have genus O,
A unbranched covers ¢ : §2 — §2

In general, multiple covers can appear, but
only the harmless typel!

(We will show: unbranched = regular)

Example:

W = (5% x 52)\ {(0,0), (1,1), (c0,00)}
(three negative S3—ends)

> = 52\{0,1,—1,00}

For ¢ € C approaching 0, consider

Y > Wz 3Z+C 22
we 2417 )
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Why orbifolds?
A lower-dimensional example:

M = smooth l1—parameter family of
(unparametrized) closed orbits

Regularity =
{parametrized orbits} = smooth surface
(Mobius strip)

= M = surface/S?.

Middle orbit has stabilizer Z, under Sl—action,
= M = open subset of R/Z>.

symmetry < orbifold singularities
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For holomorphic curves:
M 2 §71(0) /symmetries

u regular = 5}1(0) is a manifold near u.

Stabilizer of u is

Aut(u) :={p: (X,5)=(,5) | u=uop}.

This can be nontrivial if w is multiply covered.

.. Regularity =

nbhd(u) C M

Y

open subset C Ri”d(“)/ Aut(u).

Task: prove regularity for all curves in My,
including the multiple covers.
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III. Automatic transversality

In dimension four, the following holds for
closed curves and all (not just generic) J:

Theorem (Hofer-Lizan-Sikorav):
If u: X — W% is immersed and ¢y (u*TW) >
O, then w is regular.

Claim: this applies to nicely embedded curves.

Define the normal Chern number:

cn(u) 1= 1 (u'TW) — x(X)

Then adjunction = veu = 26(u) + cy(u),
= nicely embedded curves have cy(u) = 0.

c1(u*TW) > 0 < ind(u) > cy(u)

. When Uj — U = VO, regularity follows if
uw 1S iImmersed. Indeed, we will show:

(1) v is embedded,

(2) ¢ is unbranched.

16



Generalizing Hofer-Lizan-Sikorav:
ITIIa: Punctured curves

The following argument generalizes nicely.
For simplicity, assume Teichmuller space is
trivial.

If w is immersed, u*TW = T> & Ny, =
_ B Dg :

D! 2 natural CR-operator on T, onto.

. Sufficient to prove DY is onto.
By Riemann-Roch,

c1(Ny) < 0= DY is injective
ind(DY) > ¢1(Ny) = D, is surjective.

Key point: can generalize c¢y(u) for punc-
tured curves so that it counts zeros of sec-
tions in ker DYV if u is immersed.
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IIIb: Non-immersed curves
Ivashkovich-Shevchishin observed:

C—linear part of D9;(u) =
holomorphic structure on «*TW such that

du € T(Homg (TS, w*TW))

iIs a holomorphic section. Therefore:

(1) Critical points have positive orders.
(2) There is still a splitting

wWTW =T, & Ny
such that Ty, = im(du) on X\ Crit(u).

Counting Crit(u) algebraically,
c1(Tu) = x(X) + # Crit(u)
c1(Ny) = ey (u) — # Crit(u).

Lemma: D! is again surjective, with index
increased by 2 [# Crit(u)]. This implies:

coker D3 (u) = coker DY
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DN is surjective if ind(DY) > ¢1(IVy), <=
ind(u) — 2 [# Crit(u)] > ey (u) — # Crit(u).

Also valid for punctured curves, implying:

Theorem (generalized automatic mM):
If w3 — W% satisfies

ind(u) > cy(u) + # Crit(u),

then wu is regular.

Remark 1: This is most useful for genus O
curves, because by the index formula,

2cy(u) = ind(u) — 2+ 29 + #T o,
where Mg :={z €Tl | ucz(z) is even}.

Remark 2: It’'s a nice result, but we won’'t
use it directly. It will be more useful to note
that even when u isn’t reqgular,

dim ker D3 ;(u) = dim ker DY + 2[# Crit(u)].
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IV. Orbifolds of holomorphic curves

For simplicity, consider the closed case:
(O > — W embedded, with u;j e uU; = 0,

Uj = U=VOP
a branched cover of degree k > 2, with v :
> — W simple.

It remains to prove two claims:

Claim 1: For generic J, v is embedded.
O=ueu=k’(vev)
= 0 =25(v) + cy(v). Then since
2ceny(v) =ind(v) —24+2¢ > -2

for generic J, ey(v) > —1 = §(v) = 0.

T his generalizes to the punctured case using
the intersection theory of R. Siefring.
Notably: |uewu > k(v ew)| in general.
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Claim 2: Crit(y) = 0.

Suppose not. Then # Crit(u) = # Crit(y) =

c1(Ny) = eny(u) — # Crit(u) < 0,

thus D[V is injective, and

dim ker D9 ;(u) = 2 [# Crit()].
But the space

{u' =voy' | ¢ = a branched cover near ¢}

is in My, and has exactly this dimension!

. Implicit function theorem =
All v/ € My near u are branched covers.

Contradiction!
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