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I. Motivation: transversality problems

Enumerative invariants in an ideal world

(a recipe):

M = manifold, X = auxiliary data on M ,

⇒ equation (PDE): FX(u) = 0

Define “invariant” I(M, X) := #F−1
X (0),

for generic X, then prove. . .

“Theorem”: I(M, X) doesn’t depend on X.

“Proof”: For generic homotopies {Xt}t∈[0,1],

M[0,1] := {(t, u) | t ∈ [0,1], FXt
(u) = 0}

is a compact smooth manifold with boundary.

0 1
t
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For example: J–holomorphic curves

(W, ω) = symplectic manifold

J = compatible almost complex structure

(Σ, j) = Riemann surface

M := {u : Σ → W | Tu◦ j = J ◦Tu}/reparam.

Analysis: M ∼= ∂̄−1
J (0)/symmetries , where

∂̄J : B → E : (j, u) 7→ Tu + J ◦ Tu ◦ j

is a smooth Fredholm section of a Banach

space bundle.

We say u : (Σ, j) → (W, J) in M is regular if

D∂̄J(j, u) : T(j,u)B → E(j,u)

is surjective.

Then, implicit function theorem ⇒

near u, ∂̄−1
J (0) is a smooth manifold of

dimension = Fredholm index of D∂̄J(j, u).

ind(u) := “dimM near u”
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An almost wonderful fact:

Theorem: For generic J, every simple curve

u ∈ M is regular.

“Simple” = “not multiply covered”:

u 6= v ◦ ϕ,

where ϕ : (Σ, j) → (Σ′, j′) branched cover,

deg(ϕ) ≥ 2.

M is not generally smooth:

regularity fails at multiple covers.

How bad is this?

E.g. sometimes “dim ∂M > dimM”:

PSfrag replacements

u

Σ̇

W
[0,∞) × M+

(−∞,0] × M−

F−1
X0

(0)

F−1
X1

(0)

uε

u0 = v0 ◦ ϕ0

vε ◦ ϕε

τ = 0
τ = 1

2 − ε

τ = 1
2

τ = 1
2 + ε

5



Possible transversality solutions:

1. Abstract perturbations: ∂̄J(u) = ε
(destroys nice geometric properties,

e.g. positivity of intersections)

2. Hope for a miracle

(i.e. exploit geometrically nice properties)

Compactification:

M ⊂ M := {nodal J–holomorphic buildings}

PSfrag replacements

u

Σ̇

W
[0,∞) × M+

(−∞,0] × M−

F−1
X0

(0)

F−1
X1

(0)

uε

u0 = v0 ◦ ϕ0

vε ◦ ϕε

τ = 0
τ = 1

2 − ε

τ = 1
2

τ = 1
2 + ε

Goal: show that if u ∈ M is “nice”, so is its

connected component Mu ⊂ M

“Nice curves live in nice moduli spaces.”
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II. Foliations and miracles of analysis

IIa. Symplectizations

(M, λ) = contact 3–manifold

Xλ = Reeb vector field on M

On W := R × M , choose an R–invariant

almost complex structure J̃

Consider punctured J̃–holomorphic curves

ũ = (a, u) : Σ̇ → R × M

asymptotic to closed Reeb orbits.
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We say ũ = (a, u) is nicely embedded if

u : Σ̇ → M is an embedding.
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Nicely embedded ⇒

• If ind(ũ) = 2, nearby curves foliate a

neighborhood of u(Σ̇) ⊂ M .
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• If ind(ũ) = 1, u(Σ̇) ⊂ M appears isolated.

These can form “finite energy foliations”:

a
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Theorem (arXiv:math/0703509)

If ũ is nicely embedded, then all buildings in

Mũ consist of nicely embedded curves and

trivial cylinders over orbits.

Corollary: for generic J̃, all curves appearing

in Mũ are regular

⇒ Mũ is a compact manifold with boundary.
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An example with non-generic J:
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Application:

homotopies of finite energy foliations
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IIb. The closed case

(W, J) = closed almost complex 4–manifold,

(Σ, j) = closed Riemann surface

u : (Σ, j) → (W, J) nicely embedded ⇐⇒
embedded, ind(u) = 2 and u • u = 0

(Can also generalize for immersed curves with

fixed double points.)
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Theorem (⇐ adjunction formula):

u nicely embedded and J generic ⇒
non-embedded curves in Mu are nodal, with

two embedded, transverse index 0 curves.

Corollary: regularity for generic J

⇒ (by gluing) Mu is a closed manifold.
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IIc. The general (cobordism) case

(W, J) = 4–manifold with cylindrical ends

(Σ̇, j) = punctured Riemann surface
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Conjecture: u nicely embedded ⇒
Mu is a smooth object (in some sense)

Partial result (arXiv:0802.3842):

u nicely embedded and J generic ⇒
Mu is a smooth orbifold, with isolated singu-

larities that consist of unbranched multiple

covers over embedded index 0 curves.
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This partially implies the previous two results

(multiple covers cannot arise):

1. Symplectization: R–invariance ⇒

6 ∃ embedded index 0 curves

2. Closed: nicely embedded curves have genus 0,

6 ∃ unbranched covers ϕ : S2 → S2

In general, multiple covers can appear, but

only the harmless type!

(We will show: unbranched ⇒ regular)

Example:

W := (S2 × S2) \ {(0,0), (1,1), (∞,∞)}

(three negative S3–ends)

Σ̇ := S2 \ {0,1,−1,∞}

For ζ ∈ C approaching 0, consider

uζ : Σ̇ → W : z 7→

(
z3 z + ζ

ζz + 1
, z2

)
.
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Why orbifolds?

A lower-dimensional example:

M := smooth 1–parameter family of

(unparametrized) closed orbits
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Regularity ⇒

{parametrized orbits} ∼= smooth surface

(Möbius strip)

⇒ M ∼= surface/S1.

Middle orbit has stabilizer Z2 under S1–action,

⇒ M ∼= open subset of R/Z2.

symmetry ⇔ orbifold singularities
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For holomorphic curves:

M ∼= ∂̄−1
J (0)/symmetries

u regular ⇒ ∂̄−1
J (0) is a manifold near u.

Stabilizer of u is

Aut(u) := {ϕ : (Σ, j)→̃(Σ, j) | u = u ◦ ϕ}.

This can be nontrivial if u is multiply covered.

∴ Regularity ⇒

nbhd(u) ⊂ M
∼=

open subset ⊂ R
ind(u)/Aut(u).

Task: prove regularity for all curves in Mu,

including the multiple covers.
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III. Automatic transversality

In dimension four, the following holds for

closed curves and all (not just generic) J:

Theorem (Hofer-Lizan-Sikorav):

If u : Σ → W4 is immersed and c1(u
∗TW ) >

0, then u is regular.

Claim: this applies to nicely embedded curves.

Define the normal Chern number :

cN(u) := c1(u
∗TW ) − χ(Σ)

Then adjunction ⇒ u • u = 2δ(u) + cN(u),

⇒ nicely embedded curves have cN(u) = 0.

c1(u
∗TW ) > 0 ⇐⇒ ind(u) > cN(u)

∴ When uj → u = v ◦ ϕ, regularity follows if

u is immersed. Indeed, we will show:

(1) v is embedded,

(2) ϕ is unbranched.
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Generalizing Hofer-Lizan-Sikorav:

IIIa: Punctured curves

The following argument generalizes nicely.

For simplicity, assume Teichmüller space is

trivial.

If u is immersed, u∗TW = TΣ ⊕ Nu, ⇒

D∂̄J(u) =

(
DT

u ·
0 DN

u

)

DT
u

∼= natural CR-operator on TΣ, onto.

∴ Sufficient to prove DN
u is onto.

By Riemann-Roch,

c1(Nu) < 0 ⇒ DN
u is injective

ind(DN
u ) > c1(Nu) ⇒ DN

u is surjective.

Key point: can generalize cN(u) for punc-

tured curves so that it counts zeros of sec-

tions in ker DN
u if u is immersed.
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IIIb: Non-immersed curves

Ivashkovich-Shevchishin observed:

C–linear part of D∂̄J(u) ⇒

holomorphic structure on u∗TW such that

du ∈ Γ(HomC(TΣ, u∗TW ))

is a holomorphic section. Therefore:

(1) Critical points have positive orders.

(2) There is still a splitting

u∗TW = Tu ⊕ Nu

such that Tu = im(du) on Σ \ Crit(u).

Counting Crit(u) algebraically,

c1(Tu) = χ(Σ) + #Crit(u)

c1(Nu) = cN(u) − #Crit(u).

Lemma: DT
u is again surjective, with index

increased by 2 [#Crit(u)]. This implies:

coker D∂̄J(u) ∼= coker DN
u
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DN
u is surjective if ind(DN

u ) > c1(Nu), ⇐⇒

ind(u) − 2 [#Crit(u)] > cN(u) − #Crit(u).

Also valid for punctured curves, implying:

Theorem (generalized automatic t):

If u : Σ̇ → W4 satisfies

ind(u) > cN(u) + #Crit(u),

then u is regular.

Remark 1: This is most useful for genus 0

curves, because by the index formula,

2cN(u) = ind(u) − 2 + 2g + #Γ0,

where Γ0 := {z ∈ Γ | µCZ(z) is even}.

Remark 2: It’s a nice result, but we won’t

use it directly. It will be more useful to note

that even when u isn’t regular,

dimker D∂̄J(u) = dimker DN
u + 2[#Crit(u)].
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IV. Orbifolds of holomorphic curves

For simplicity, consider the closed case:

uj : Σ → W embedded, with uj • uj = 0,

uj → u = v ◦ ϕ

a branched cover of degree k ≥ 2, with v :

Σ′ → W simple.

It remains to prove two claims:

Claim 1: For generic J, v is embedded.

0 = u • u = k2(v • v)

⇒ 0 = 2δ(v) + cN(v). Then since

2cN(v) = ind(v) − 2 + 2g′ ≥ −2

for generic J, cN(v) ≥ −1 ⇒ δ(v) = 0.

This generalizes to the punctured case using

the intersection theory of R. Siefring.

Notably: u • u ≥ k2(v • v) in general.
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Claim 2: Crit(ϕ) = ∅.

Suppose not. Then #Crit(u) = #Crit(ϕ) ⇒

c1(Nu) = cN(u) − #Crit(u) < 0,

thus DN
u is injective, and

dimker D∂̄J(u) = 2 [#Crit(ϕ)].

But the space

{u′ = v ◦ ϕ′ | ϕ′ = a branched cover near ϕ}

is in Mu and has exactly this dimension!

∴ Implicit function theorem ⇒

All u′ ∈ Mu near u are branched covers.

Contradiction!
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