Holomorphic Foliations and Low-Dimensional Symplectic Field Theory

Chris Wendl

MIT

http://math.mit.edu/~wendlc/publications.html

Outline

- I. Floer-type theories and holomorphic curves
- II. Good holomorphic curves
- III. Finite energy foliations
- IV. Compactness for good holomorphic curves
- V. Foliations, concordance and SFT

I. Floer-type theories and holomorphic curves

Why Floer homology works:

Families of flow lines are compact up to breaking, that is:

 ∂ {flow lines} = {broken flow lines}

 \implies can define invariant homology algebras by counting isolated flow lines.

Holomorphic curves as flow lines

 $(M, \lambda) = \text{contact manifold}, \xi = \ker \lambda$ $X_{\lambda} = \text{Reeb vector field}$

 $\tilde{J} = \mathbb{R}$ -invariant almost complex str. on $\mathbb{R} \times M$

 $\dot{\Sigma} = \Sigma \setminus \Gamma,$ punctured Riemann surface

We consider \tilde{J} -holomorphic maps

 $u:\dot{\Sigma}\to\mathbb{R}\times M$

as flow lines between sets of closed Reeb orbits.

Also makes sense in symplectic cobordisms (W, ω, J) .

Symplectic Field Theory

Count isolated (index 1) holomorphic curves in $\mathbb{R} \times M$ and isolated (index 0) curves in related symplectic cobordisms \Rightarrow invariants of (M, ξ) .

Compactness theorem (BEHWZ):

Sequences of holomorphic curves in symplectic cobordisms converge to holomorphic buildings with nodes and multiple levels.

Trouble: transversality failes due to multiple covers. Need abstract perturbations.

Embedded Contact Homology

If dim M = 3, restrict attention to a certain class of embedded holomorphic curves in $\mathbb{R} \times M$.

Compactness theorem (M. Hutchings): Sequences of admissible embedded index 2

curves in $\mathbb{R} \times M$ converge to broken curves with two admissible embedded index 1 levels plus index 0 covers of trivial cylinders.

Trouble: still multiple covers.

II. Good Holomorphic Curves

Question:

Is there any such theory that counts only curves $u : \dot{\Sigma} \to \mathbb{R} \times M$ with embedded projections $\pi \circ u$ to M?

Observe: these curves are transverse to X_{λ} , and belong to families of nonintersecting curves.

Related question: when can we guarantee that two nearby curves u and v don't intersect in $\mathbb{R} \times M$?

What about the projections $\pi \circ u$ and $\pi \circ v$ in *M*?

Intersection theory with punctures (R. Siefring '05)

Consider $u : \dot{\Sigma} \to W$ (symp. cobordism).

Adjunction formula:

$$u \cdot u = 2\delta(u) + c_N(u) + \operatorname{cov}_{\infty}(u),$$

where

- $u \cdot u$ and $\delta(u)$ include "asymptotic intersections"
- $c_N(u) := c_1^{\tau}(u^*TW) \chi(\dot{\Sigma}) + \dots$ the normal first Chern number of u
- Γ_0 := punctures with even CZ-index
- $\operatorname{cov}_{\infty}(u) \ge 0$, depends only on orbits.

Index formula \Rightarrow

$$2c_N(u) = \operatorname{ind}(u) + 2g - 2 + \#\Gamma_0.$$

Implicit function theorem

For $u : \dot{\Sigma} \to W$ with ind(u) = 2, call u **good** if $\delta(u) = 0$, g = 0, all orbits are elliptic and the asymptotic approach to each orbit is simply covered. Then for all compatible J (no genericity required!),

- $u(\dot{\Sigma})$ and its neighbors form a local 2dimensional foliation of W
- In \mathbb{R} -invariant case, $\pi \circ u : \dot{\Sigma} \to M$ is embedded, and with its neighbors forms a local 1-dimensional foliation of M, $\pitchfork X_{\lambda}$

For ind(u) = 1, call u **good** if same as above except one orbit is hyperbolic.

Then in \mathbb{R} -invariant case, $\pi \circ u : \dot{\Sigma} \to M$ is embedded and isolated.

These foliations often extend globally...

III. Finite Energy Foliations

Definition. A *stable finite energy foliation* of M is a collection of good holomorphic curves which foliate $\mathbb{R} \times M$ and project to a foliation of M, outside some finite set of nondegenerate orbits.

Index 0 \Rightarrow trivial cylinder Index 1 \Rightarrow rigid surface Index 2 \Rightarrow 1-parameter family of leaves in M

Hofer, Wysocki, Zehnder '03: Foliations exist for generic contact forms on the tight three-sphere.

 \Rightarrow 2 or infinitely many periodic orbits!

W. '05: Foliations on all overtwisted (M, ξ) can be produced from open books on S^3 by transverse surgery.

Abbas '04: Giroux's open book decompositions in the *planar* case can be made \tilde{J} -holomorphic.

Corollary (Abbas, Cieliebak, Hofer '04). *Weinstein conjecture for planar contact structures.*

Rallying cry:

"If holomorphic curves are everywhere, it's hard to kill them."

IV. Compactness for Good Holomorphic Curves

Conjecture:

Sequences of good index 2 curves in $\mathbb{R} \times M$ converge to broken holomorphic curves with two good index 1 levels (and no other levels).

More generally, good curves in symplectic cobordisms may produce nodal and/or multiply covered limits... but with severe restrictions.

Partial compactness results

Theorem 1. Suppose $u_j : \dot{\Sigma} \to W$ are good index 2 curves and converge to a multiple cover $u = v \circ \varphi$. Then u is immersed, and vis embedded with index 0.

Moreover, all curves near u are embedded, and fit together with v in a foliation.

Idea of proof:

- Intersection theory $\Rightarrow v$ embedded index 0.
- Immersed \Rightarrow regular: Linearized CR-operator L_u acts on sections of νu . $c_N(u) = 0$ \Rightarrow dim ker $L_u \leq 2$.
- Not immersed ⇒ contradiction: If φ has C > 0 critical points, similar arguments show dim ker L_u ≤ 2C. ⇒ all u' near u are of form v ∘ φ'.

Observe: no trouble with transversality!

Corollary: no multiple covers in \mathbb{R} -invariant case, or when W is closed.

Theorem 2: Suppose W is closed and contains an immersed symplectic sphere $u : S^2 \rightarrow W$ with transverse self-intersections and

 $u \cdot u - 2\delta(u) \ge 2\#$ (noninjective points).

Then W admits a symplectic Lefschetz pencil with u as a fiber.

Idea of proof:

Choose J so that u is J-holomorphic, and fix marked point constaints so that ind(u) = 2. Compactification includes only good curves.

V. Foliations, Concordance and SFT

Given a finite energy foliation \mathcal{F} of (M, λ) , define a contact homology algebra $HC_*(\mathcal{F})$ generated by orbits in \mathcal{F} , with

$$\partial \alpha = \sum_{\beta} \# \Big(\mathcal{M}(\alpha; \beta_1, \dots, \beta_k) / \mathbb{R} \Big) \beta_1 \dots \beta_k.$$

 $\mathcal{M}(\alpha; \beta_1, \dots, \beta_k) := \text{moduli space of rigid leaves}$ in \mathcal{F} with one positive puncture at α and negative punctures at β_1, \dots, β_k .

This should be functorial under concordance $\mathcal{F}_+ \to \mathcal{F}_-$: a symplectic cobordism $(\mathbb{R} \times M, \hat{J})$ with holomorphic foliation \mathcal{F} that approaches \mathcal{F}_{\pm} near $\{\pm \infty\} \times M$.

Question: given (M,ξ) , what is the set of foliations up to equivalence by concordance?

Example: two (conjecturally) non-equivalent foliations on an overtwisted $S^1 \times S^2$

Morse-Bott foliations and perturbations

 $HC_*(\mathcal{F}_2) = HC_*(\mathcal{F}_3)$

Conjecture. All nondegenerate perturbations of a given Morse-Bott foliation are concordant.

Example: a stupid Morse-Bott foliation.

For (S^3, λ_0) , every Hopf circle is an orbit, so take $\mathcal{F} = \{\mathbb{R} \times P\}_{P = \text{Hopf}}$. This is the *only* stable foliation of (S^3, λ_0) .

Conjecture. This is the only stable foliation of (S^3, ξ_0) up to concordance.

