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ALGEBRAIC TORSION IN CONTACT MANIFOLDSJANKO LATSCHEV AND CHRIS WENDL(WITH AN APPENDIX BY MICHAEL HUTCHINGS)Abstrat. We extrat an invariant taking values in N [ f1g, whih we all theorder of algebrai torsion, from the Sympleti Field Theory of a losed ontatmanifold, and show that its �niteness gives obstrutions to the existene of sym-pleti �llings and exat sympleti obordisms. A ontat manifold has algebraitorsion of order 0 if and only if it is algebraially overtwisted (i.e. has trivial ontathomology), and any ontat 3-manifold with positive Giroux torsion has algebraitorsion of order 1 (though the onverse is not true). We also onstrut examplesfor eah k 2 N of ontat 3-manifolds that have algebrai torsion of order k butnot k � 1, and derive onsequenes for ontat surgeries on suh manifolds.The appendix by Mihael Huthings gives an alternative proof of our obordismobstrutions in dimension three using a re�nement of the ontat invariant in Em-bedded Contat Homology. 1. Introdution1.1. Main results. Sympleti �eld theory (SFT) is a very general theory of holo-morphi urves in sympleti manifolds whih was outlined by Eliashberg, Giventaland Hofer [EGH00℄, and whose analytial foundations are urrently under develop-ment by Hofer, Wysoki and Zehnder, f. [Hof℄. It ontains as speial ases severaltheories that have been shown to have powerful onsequenes in ontat topology|notably ontat homology and Gromov-Witten theory|but the more elaborate stru-ture of \full" SFT has yet to �nd appliation, as it is usually far too ompliated toompute. Our goal here is to introdue a numerial invariant, whih we all alge-brai torsion, that is extrated from the full SFT algebra and whose �niteness givesobstrutions to the existene of sympleti �llings and exat sympleti obordisms.Algebrai torsion is de�ned in all dimensions, and we illustrate its e�etiveness byproving expliit nonexistene results for exat sympleti obordisms whose ends areertain presribed non�llable ontat 3-manifolds, see Corollary 1 below. To the bestof our knowledge, results of this type are new and seem to be beyond the presentreah of more topologially oriented methods suh as Heegaard Floer homology.From the point of view taken in this paper, whih is adapted from [CL09℄ anddesribed in more detail in x2, the SFT of a ontat manifold (M; �) is the homologyHSFT� (M; �) of a Z2-graded BV1-algebra (A[[~℄℄;DSFT), where A has generators q2010 Mathematis Subjet Classi�ation. Primary 53D42; Seondary 57R17, 53D35, 32Q65.1

2 JANKO LATSCHEV AND CHRIS WENDLfor eah good losed Reeb orbit  with respet to some nondegenerate ontat formfor �, ~ is an even variable, and the operatorDSFT : A[[~℄℄!A[[~℄℄is de�ned by ounting rigid solutions to a suitable abstrat perturbation of a J-holomorphi urve equation in the sympletization of (M; �). The domains for thesesolutions are puntured losed Riemann surfaes, and near the puntures the solutionshave so-alled positive or negative ylindrial ends. It follows from the exatness ofthe sympleti form in the sympletization that all suh urves must have at least onepositive end. Algebraially, this translates into the fat that the ground ring R[[~℄℄ ofA onsists of losed elements with respet to DSFT. This motivates the following:De�nition 1.1. Let (M; �) be a losed manifold of dimension 2n� 1 with a positive,o-oriented ontat struture. For any integer k � 0, we say that (M; �) has algebraitorsion of order k (or simply algebrai k-torsion) if [~k℄ = 0 in HSFT� (M; �).Note that although the version of SFT desribed in [EGH00℄ has oeÆients in thegroup ring of H2(M), the homology HSFT� (M; �) above is de�ned without group ringoeÆients|one an always do this at the ost of reduing the usual Z-grading toa Z2-grading (see x2 for details). We will introdue group ring oeÆients later toobtain a more re�ned invariant, f. De�nition 1.8.In order to state our �rst main result, we need a few standard onepts. Reallthat a strong sympleti �lling of a ontat manifold (M; �) is a ompat sympletimanifold (W;!) with �W = M for whih there exists a vetor �eld Y , de�ned nearthe boundary and pointing transversely outward there, with LY ! = ! (i.e. Y is aLiouville vetor �eld) and suh that �Y !jM is a ontat form for � giving the orreto-orientation. More generally, a sympleti obordism with positive end (M+; �+)and negative end (M�; ��) is a ompat sympleti manifold (W;!) with boundaryM+ t (�M�) and a vetor �eld as above with �� = ker (�Y !jM�), with the di�erenethat Y is required to point outward only alongM+ and inward alongM�. Note thatsine LY ! = d(�Y !) = !, the sympleti form is always exat near the boundary ofa sympleti obordism, though it need not be exat globally. The ow of Y an beused to identify a neighborhood of �W with([0; �)�M�; d(es(�Y !)jM�)) t ((��; 0℄�M+; d(es(�Y !)jM+));and so any sympleti obordism in the above sense an be ompleted by gluing apositive half of the sympletization of (M+; �+) and a negative half of the symple-tization of (M�; ��) to the respetive boundaries. Holomorphi urves in ompletedsympleti obordisms are the main objet of study in SFT, with the sympletizationR �M being an important speial ase of a ompleted sympleti obordism.A sympleti obordism (W;!) is alled exat if the vetor �eld Y as desribedabove extends globally over W ; equivalently, this means ! = d� for a 1-form � on Wwhose restritions toM� de�ne ontat forms for ��. From the above de�nition of al-gebrai torsion and the general formalism of SFT, we draw the following onsequene,whih is our �rst main result and is proven in x2.
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ALGEBRAIC TORSION IN CONTACT MANIFOLDS 3Theorem 1. If (M; �) has algebrai torsion then it is not strongly �llable. Moreover,suppose there is an exat sympleti obordism having ontat manifolds (M+; �+) and(M�; ��) as positive and negative ends respetively: then if (M+; �+) has algebraik-torsion, so does (M�; ��).Remark 1.2. It is time for a more or less standard dislaimer: All the theorems regard-ing SFT that we shall state in this introdution depend on the analytial foundationsof SFT, whih remains a large projet in progress by Hofer, Wysoki and Zehnder (seee.g. [Hof℄). In partiular, the main tehnial diÆulty whih is the subjet of theirwork is to establish a suÆiently well behaved abstrat perturbation sheme so thatHSFT� (M; �) is well de�ned and the natural maps indued by ounting solutions to aperturbed holomorphi urve equation in sympleti obordisms exist. We shall takeit for granted throughout the following that suh a perturbation sheme exists andhas the properties that its arhitets laim (f. Remark 3.7)|the further details ofthis sheme will be irrelevant to our arguments. Note however that our main applia-tions, Corollaries 1 and 3, an also be proved using the Embedded Contat Homologytehniques desribed in the appendix (f. Theorem 7), and thus do not depend onany unpublished work in progress.Remark 1.3. Algebrai torsion has some obvious appliations beyond those that wewill onsider in this paper, e.g. it is immediate from the formalism of SFT disussed inx2 that any ontat manifold with algebrai torsion satis�es the Weinstein onjeture.The simplest example of algebrai torsion is the ase k = 0: we will show in x2(Proposition 2.9) that this is equivalent to (M; �) having trivial ontat homology,in whih ase it is alled algebraially overtwisted, f. [BN10℄. This is the ase, forinstane, whenever (M; �) is an overtwisted ontat 3-manifold, and in higher dimen-sions it has been shown to hold whenever (M; �) ontains a plastikstufe [BN℄, or when(M; �) is a onneted sum with a ertain exoti ontat sphere [BvK10℄.In dimension three, there are also many known examples of ontat manifolds thatare tight but not �llable. An important lass of examples is the following: (M; �) issaid to have Giroux torsion if it admits a ontat embedding of (T 2� [0; 1℄; �T ) where�T = ker [os(2�t) d� + sin(2�t) d�℄in oordinates (�; �; t) 2 T 2� [0; 1℄ = S1�S1� [0; 1℄. It was shown by D. Gay [Gay06℄that ontat 3-manifolds with Giroux torsion are never strongly �llable, and a om-putation of the twisted Ozsv�ath-Szab�o ontat invariant due to Ghiggini and Honda[GH℄ shows that Giroux torsion is also an obstrution to weak �llings whenever thesubmanifold T 2 � [0; 1℄ � M separates M . There are obvious examples of manifoldswith these properties that are also tight. On T 3 = S1 � S1 � S1 for example withoordinates (�; �; t), the ontat formos(2�Nt) d� + sin(2�Nt) d�has Giroux torsion for any integer N � 2, but it also has no ontratible Reeb orbits,whih implies that its ontat homology annot vanish. The original motivation for

4 JANKO LATSCHEV AND CHRIS WENDLthis projet was to �nd an algebrai interpretation of Giroux torsion that impliesnon�llability. The solution to this problem is the following result, whih is impliedby the more general Theorem 6 below:Theorem 2. If (M; �) is a ontat 3-manifold with Giroux torsion, then it has alge-brai 1-torsion.While it is possible that \overtwisted" and \algebraially overtwisted" ould beequivalent notions in dimension three, it turns out that the onverse of Theorem 2 isnot true. We will show this using a speial lass of ontat manifolds onstruted asfollows: assume �+ and �� are ompat (not neessarily onneted) oriented surfaeswith nonempty di�eomorphi boundaries, and denote by� = �+ [ ��the losed oriented surfae obtained by gluing them along some orientation reversingdi�eomorphism ��+ ! ���. We shall assume � to be onneted. The ommonboundary of �� forms a multiurve � � �. Then by a onstrution originally dueto Lutz [Lut77℄, the produt S1 � � admits a unique (up to isotopy) S1-invariantontat struture �� for whih the loops S1�fzg are positively/negatively transversefor z in the interior of ��, and Legendrian for z 2 �. (We will give a more expliitonstrution of this ontat struture in x4.) By an argument due to Giroux (see[Mas℄), (S1��; ��) has no Giroux torsion whenever it has the following two properties:� No onneted omponent of � is ontratible in �,� No two onneted omponents of � are isotopi in �.It is easy to �nd examples (see Figure 1) for whih both these onditions are satis�ed,as well as the assumption in the following result:Theorem 3. If either of �+ or �� is disonneted, then the S1-invariant ontatmanifold (S1 � �; ��) desribed above has algebrai 1-torsion. In partiular, thereexist ontat 3-manifolds that have algebrai 1-torsion but no Giroux torsion.Remark 1.4. Theorem 1 implies that the examples in Theorem 3 are not strongly �ll-able. The latter has been established previously via vanishing results for the Ozsv�ath-Szab�o ontat invariant in sutured Floer homology, see [HKM,Mas,Mat℄.Examples showing that algebrai torsion is interesting for all orders an be on-struted in almost the same way. In the onstrution of S1-invariant ontat manifolds(S1 � �; ��) above, assume that �� are both onneted with k � 1 boundary om-ponents, and that �� has genus 0 and �+ has genus g0 > 0. The surfae � obtainedby gluing will have genus g = g0 + k � 1. We denote the resulting ontat manifoldby (Vg; �k) := (S1 � �; ��). We then obtain:Theorem 4. (Vg; �k) has algebrai torsion of order k � 1, but not k � 2.The proof that (Vg; �k) has algebrai torsion of order k � 1 will be a onsequeneof Theorem 6 below, whih relates algebrai torsion in dimension 3 to the geometri
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��
�+�S1�(W; d�)(V4; �3)(V2; �2)Figure 1. A surfae � = �+ [� �� suh that (S1 � �; ��) hasalgebrai 1-torsion but no Giroux torsion.notion of planar torsion reently introdued by the seond author [Wena℄. This isdisussed in detail in x3. The proof that there is no algebrai torsion of lower orderoupies a large part of x4. It is based on a ombination of algebrai properties of SFTand a onstrution of ertain expliit ontat forms for the ontat strutures �k, forwhih the Reeb dynamis and the holomorphi urves an be understood suÆientlywell.Combining Theorems 1 and 4 yields the following onsequene.Corollary 1. Suppose g � k � 2. Then for any exat sympleti obordism withnegative end (Vg; �k), the positive end does not have algebrai (k � 2)-torsion.In partiular, there exists no exat sympleti obordism with positive end (Vg+; �k+)and negative end (Vg�; �k�) if k+ < k� (Figure 2).Remark 1.5. The inlusion of the word \exat" in the above orollary is ruial, as areent onstrution due to the seond author [Wenb℄ shows that non-exat sympletiobordisms exist between any two ontat 3-manifolds with planar torsion.Remark 1.6. Sometimes exat obordisms are known to exist when the negative endhas a smaller order of algebrai torsion than the positive end, e.g. Etnyre and Honda[EH02℄ have shown that any positive end is allowed if the negative end is overtwisted(meaning 0-torsion, in the present ontext). Similarly, Jeremy Van Horn-Morris hasexplained to us that a Stein obordism with negative end (Vg; �k) and positive end(Vg+1; �k+1) does always exist; f. Remark 4.18 in x4 for an outline of the onstrution.Together with Corollary 1, this gives in�nite sequenes of ontat 3-manifolds suhthat eah is exatly obordant to its suessor, but not vie versa.Remark 1.7. The ase k+ = 1 of Corollary 1 an be dedued already from the argu-ment used by Hofer [Hof93℄ to prove the Weinstein onjeture for overtwisted ontatstrutures. Indeed, (Vg+; �k+) is always overtwisted if k+ = 1, and transplantingHofer's argument from the sympletization to an exat sympleti obordism showsthat (Vg�; �k�) must then have a ontratible Reeb orbit for all nondegenerate ontat
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Figure 2. An example of an exat sympleti obordism that annotexist aording to Corollary 1.forms, whih is easily shown to be false if k� � 2. In this sense, the obstrutions om-ing from algebrai torsion may be seen as a \higher order" generalization of Hofer'sargument, whih inidentally was the starting point for the developement of SFT.To obtain a more sensitive invariant, we now introdue a more general notion ofalgebrai torsion using SFT with group ring oeÆients. Namely, for any linear sub-spae R � H2(M ;R), one an de�ne the algebra of SFT with oeÆients in the groupring R[H2(M ;R)=R℄, whih means keeping trak of the lasses in H2(M ;R)=R rep-resented by the holomorphi urves that are ounted. We shall denote the SFT withorresponding oeÆients by HSFT� (M; �;R). The most important speial ases areR = H2(M ;R) and R = f0g, alled the untwisted and fully twisted ases respetively,and R = ker
 with 
 a losed 2-form on M . We shall abbreviate the untwisted aseby HSFT� (M; �) = HSFT� (M; �;H2(M ;R)), and often write the ase R = ker
 asHSFT� (M; �;
) := HSFT� (M; �; ker 
):De�nition 1.8. If (M; �) is a losed ontat manifold, for any integer k � 0 and losed2-form 
 on M we say that (M; �) has 
-twisted algebrai k-torsion if [~k℄ = 0 inHSFT� (M; �;
). If this is true for all 
, or equivalently, if [~k℄ = 0 in HSFT� (M; �; f0g),then we say that (M; �) has fully twisted algebrai k-torsion.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 7To see the signi�ane of algebrai torsion with more general oeÆients, we on-sider a more general notion of sympleti �llings, for whih the sympleti form neednot be exat near the boundary.De�nition 1.9. Suppose (W;!) is a ompat sympleti manifold with boundary�W = M , and � is a positive (with respet to the boundary orientation) o-orientedontat struture on M . We all (W;!) a stable sympleti �lling of (M; �) if thefollowing onditions are satis�ed:(1) !j� is nondegenerate and the indued orientation on � is ompatible with itso-orientation(2) � admits a nondegenerate ontat form � suh that the Reeb vetor �eld X�generates the harateristi line �eld on �W(3) � admits a omplex bundle struture J whih is tamed by1 both d�j� and !j�Note that a strong �lling with Liouville vetor �eld Y is also a stable �lling wheneverthe ontat form �Y !jM is nondegenerate, whih an always be assumed after a smallperturbation. In general, the boundary of a stable �lling is a stable hypersurfaeas de�ned in [HZ94℄, meaning it belongs to a 1-parameter family of hypersurfaes in(W;!) whose Hamiltonian dynamis are all onjugate. In partiular, the pair (�; !jM)de�nes a stable Hamiltonian struture on M (f. [CV℄).Theorem 5. If (M; �) is a losed ontat manifold with 
-twisted algebrai torsionfor some losed 2-form 
 on M , then it does not admit any stable �lling (W;!) forwhih !jM is ohomologous to 
. In partiular, if (M; �) has fully twisted algebraitorsion, then it is not stably �llable.Reall that for dimM = 3, (W;!) with �W = M is said to be a weak sympleti�lling of (M; �) if !j� > 0. Thus a stable �lling is also a weak �lling. What's farless obvious is that the onverse is true up to deformation: by [NW11, Theorem 2.8℄,every weak �lling an be deformed near its boundary to a stable �lling of the sameontat manifold, hene weak and stable �llability are ompletely equivalent notionsin dimension three. Theorem 5 thus implies:Corollary 2. Contat 3-manifolds with fully twisted algebrai torsion are not weakly�llable.Figure 3 in x 3 below shows some examples to whih this result applies, inludingone that has no Giroux torsion; see also Theorem 6 below, and [NW11℄.In higher dimensions, it is not hard to �nd examples of stable �llings for whih thesympleti form is not exat near the boundary, though it's less obvious whether thereare also examples whih are not strongly �llable. Suh examples are found in the workin progress by Massot, Niederkr�uger and the seond author [MNW℄, whih de�nes asuitable generalization of weak �llings to arbitrary dimensions: in a nutshell, (W;!)1The ompatness results in [BEH+03℄ are stated for ompatible J , but they hold without hangefor tamed J as well.

8 JANKO LATSCHEV AND CHRIS WENDLwith �W = M is a weak �lling of (M; �) if ! tames an almost omplex struture Jthat preserves � and is also tamed by the natural onformal sympleti strutureon �. Under this de�nition, one an use an existene result of Cieliebak-Volkov [CV℄to show that weak and stable �llability are equivalent, see [MNW℄ for details. ThusSFT also gives obstrutions to weak �lling in all dimensions, where the distintionbetween \strong" and \weak" is deteted algebraially via the hoie of oeÆients.As already mentioned, the seond author [Wena℄ reently introdued a new lassof �lling obstrutions in dimension three alled planar torsion, whih also has a non-negative integer-valued order. A ontat 3-manifold is then overtwisted if and onlyif it has planar 0-torsion, and Giroux torsion implies planar 1-torsion. We will reallthe de�nition of planar torsion and 
-separating planar torsion in x3, and prove thefollowing generalization of Theorem 2.Theorem 6. Suppose (M; �) is a losed ontat 3-manifold, 
 is a losed 2-formon M and k � 0 is an integer.(1) If (M; �) has planar k-torsion then it also has algebrai k-torsion.(2) If (M; �) has 
-separating planar k-torsion then it also has 
-twisted algebraik-torsion.Remark 1.10. Together with Theorem 1 and Corollary 2, this yields new proofs thatontat 3-manifolds with planar torsion are not strongly �llable, and also not weakly�llable if the planar torsion is fully separating. These two results were �rst provedin [Wena℄ and [NW11℄ respetively. The former also proves a vanishing result for theECH ontat invariant whih is losely analogous to Theorem 6 and has thus far beeninaessible from the diretion of Heegaard Floer homology. Our argument in fatimplies a re�nement of this vanishing result in terms of the relative �ltration on ECHintrodued in the appendix; see Theorem 7 below.We an now state a more geometri analogue of Corollary 1. The notion of planartorsion gives rise to a ontat invariant PT(M; �) 2 N [ f0;1g, the minimal orderof planar torsion, de�ned byPT(M; �) := sup�k � 0 �� (M; �) has no planar `-torsion for any ` < k	 :This number is in�nite whenever (M; �) is strongly �llable, and is positive if andonly if (M; �) is tight. Reall that ontat onneted sums and (�1)-surgeries alwaysyield Stein obordisms between ontat 3-manifolds (see e.g. [Gei08℄). The followingan then be thought of as demonstrating a higher order variant of the well knownonjeture that suh surgeries always preserve tightness.Corollary 3. For any g � k � 1, PT(Vg; �k) = k � 1. Moreover, suppose (M; �) isany ontat 3-manifold that an be obtained from (Vg; �k) by a sequene of� ontat onneted sums with itself or exatly �llable ontat manifolds, and/or� ontat (�1)-surgeries.Then PT(M; �) � k � 1.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 9At present, we do not know any example for whih the minimal order of algebraitorsion is stritly smaller than the minimal order of planar torsion, but Theorem 3seems to suggest that suh examples are likely to exist.Here is a summary of the remainder of the paper. In x2 we review the algebraiformalism of SFT as a BV1-algebra, in partiular proving Theorems 1 and 5. In x3we review the de�nition of planar torsion and prove Theorem 6, as an easy appliationof some results on holomorphi urves from [Wena℄. The S1-invariant examples (S1��; ��) are then treated at length in x4, leading to the proofs of Theorems 3 and 4.We lose with a brief disussion of open questions and related issues in x5.In Mihael Huthings's appendix to this paper, it is shown that the appliationsto 3-dimensional ontat topology desribed above an also be proved using methodsfrom Embedded Contat Homology. Indeed, as remarked above, all of our examplesof ontat 3-manifolds with algebrai torsion an also be shown to have vanishingECH ontat invariant, suggesting that a re�nement of the latter should exist whihould detet the order of torsion. The appendix arries out enough of this program tosuÆe for our appliations. In partiular, Huthings assoiates to any losed ontat3-manifold (M; �) with generi ontat form �, ompatible omplex struture J andpositive number T 2 (0;1℄, two nonnegative (possibly in�nite) integers fT (M;�; J)and fTsimp(M;�; J). These an be �nite only if the ECH ontat invariant vanishes,and they have the property thatfT+simp(M+; �+; J+) � fT�(M�; ��; J�)whenever there is an exat obordism (X; d�) with � = es�� at the positive/negativeend and T� � T+ (f. Theorem A.9). Sine fT and fTsimp are de�ned by ountingembedded holomorphi urves in sympletizations, our SFT omputations an bereinterpreted as estimates of these integers, leading to the following:Theorem 7.(1) If (M; �) has planar k-torsion, then � admits a nondegenerate ontat form �and generi omplex struture J suh that f1simp(M;�; J) � k.(2) For any g � k � 1, (Vg; �k) admits a sequene of generi ontat forms andomplex strutures (�i; Ji) suh that:(a) fTi(Vg; �i; Ji) � k � 1 for some sequene of real numbers Ti ! +1,(b) For i < j, there is an exat sympleti obordism (X; d�) suh that �mathes es�i at the positive end and es�j at the negative end.As mentioned in Remark 1.2 above, this immediately implies an alternative proofof Corollaries 1 and 3, f. Corollary A.10 in the appendix.Aknowledgments. The authors would like to thank Kai Cieliebak, Helmut Hofer,Patrik Massot, Klaus Niederkr�uger and Jeremy Van Horn-Morris for helpful onver-sations. The inlusion of Mihael Huthings's appendix ame about due to disus-sions between Huthings and the seond author at the MSRI Workshop Sympletiand Contat Topology and Dynamis: Puzzles and Horizons in Marh 2010.

10 JANKO LATSCHEV AND CHRIS WENDLCW gratefully aknowledges support from an Alexander von Humboldt Foundationresearh fellowship. This work was started when both authors held positions at ETHZ�urih, and signi�ant progress was made during a joint onferene visit to the LorentzCenter in Leiden. It is a pleasure to thank these institutions for the stimulatingworking environment.2. Review of SFT as a BV1-algebraThe general framework of SFT, in partiular its algebrai struture, was laid outin [EGH00℄ (see also [Eli07℄ for a more reent point of view), whereas the analytifoundations are the subjet of ongoing work by Hofer-Wysoki-Zehnder (see [Hof℄).In this setion, we will take the existene of SFT as desribed in [EGH00℄ for grantedand review a version of the theory whih is readily derived from this desription (f.[CL09℄ for some details of this translation). To keep the disussion reasonably brief,we will frequently refer to these soures for details. Theorems 1 and 5 will be simpleonsequenes of the algebrai properties of SFT.2.1. Review of the basi setup of SFT. Let (M; �) be a losed manifold of di-mension 2n � 1 with a o-oriented ontat struture. To desribe SFT, one needsto �x a nondegenerate ontat form �, as well as some additional hoies, whih wedenote by a single letter f (for framing). The most important of these are: a ylindri-al almost omplex struture J on the sympletization of M , oherent orientationsfor the moduli spae of �nite energy J-holomorphi urves, an abstrat perturbationsheme for the J-holomorphi urve equation and suitable spanning surfaes for Reeborbits.Given a linear subspae R � H2(M ;R), let RR := R[H2(M ;R)=R℄ denote thegroup ring over R of H2(M ;R)=R, whose elements we write as P aizdi with ai 2 Rand di 2 H2(M ;R)=R. De�ne A = A(�) to be the Z2-graded algebra with unit overthe group ring RR, generated by variables q , where  ranges over the olletion ofgood losed Reeb orbits for � (f. [EGH00, footnote on p. 566 and Remarks 1.9.2 and1.9.6℄), and the degree of q is de�ned asjqj := n� 3 + �CZ() mod 2:Here �CZ() denotes the mod 2 Conley-Zehnder index of the losed orbit , whih isde�ned in terms of the linearized Poinare return map for  (f. [EGH00, p. 567℄). Wealso introdue an extra variable ~ of even degree and onsider the algebra of formalpower series A[[~℄℄.To onstrut the di�erential, one hooses a ylindrial almost omplex struture Jon the sympletization (R �M;! = d(es�)). To be preise, we say that an almostomplex struture J on R � M is adapted to � if it is R-invariant, maps the unitvetor �s in the R-diretion to the Reeb vetor �eld X� of �, and restrits to a tamedomplex struture on the sympleti vetor bundle (�; d�). After a hoie of spanningsurfaes as in [EGH00, p. 566, see also p. 651℄, the projetion to M of eah �nite



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 11energy holomorphi urve u an be apped o� to a 2-yle in M , and so it gives riseto a homology lass in H2(M), whih we projet to de�ne [u℄ 2 H2(M ;R)=R.As explained in [CL09, setion 6℄, the ount of suitably perturbed J-holomorphiurves in R �M with �nite Hofer energy gives rise to a di�erential operatorDSFT : A[[~℄℄!A[[~℄℄suh that� DSFT is odd and squares to zero,� DSFT(1) = 0, and� DSFT = Pk�1Dk~k�1, where Dk : A ! A is a di�erential operator of order� k.More preisely,Dk = X�+;��;g;dj�+j+g=kng(��;�+; d) 1C(��;�+)q�1 � � � q�s�zd ��q+1 � � � ��q+s+ ;where the sum ranges over all nonnegative integers g � 0, homology lasses d 2H2(M ;R)=R and ordered (possibly empty) olletions of good losed Reeb orbits�� = (�1 ; : : : ; �s�) suh that s+ + g = k. The number ng(��;�+; d) 2 Q denotesthe ount of (suitably perturbed) holomorphi urves of genus g with positive asymp-totis �+ and negative asymptotis �� in the homology lass d, inluding asymptotimarkers as explained in [EGH00, p. 622f℄. Finally, C(��;�+) 2 N is a ombinatorialfator de�ned as C(��;�+) = s�!s+!��1 � � ���s��+1 � � ��+s+ ;where � denotes the overing multipliity of the Reeb orbit .Observe in partiular that for Q = q1 � � � qr , the onstant oeÆient (i.e. the ele-ment of the ground ring) in Dk(Q) for k � r orresponds to the ount of holomorphiurves of genus k � r with positive asymptotis � = f1; � � � ; rg and no negativeends.The homology of (A[[~℄℄;DSFT) is denoted by HSFT� (M;�; f;R). Note that byde�nition the operator DSFT ommutes with ~ and with elements of RR. As DSFTis not a derivation, the homology is not an algebra, but only an RR[[~℄℄-module.However, the element 1 2 A and all its RR[[~℄℄-multiples are always losed by theseond property above, and so they de�ne preferred homology lasses. The speialase R = H2(M ;R) is of partiular importane: then RR redues to the trivial groupring R and we abbreviateHSFT� (M;�; f) := HSFT� (M;�; f;H2(M ;R));whih we refer to as the SFT with untwisted oeÆients. Similarly, for any losed2-form 
 on M , we abbreviate the speial ase R = ker 
 � H2(M ;R) byHSFT� (M;�; f;
) := HSFT� (M;�; f; ker
)

12 JANKO LATSCHEV AND CHRIS WENDLand all this the SFT with 
-twisted oeÆients. The fully twisted SFT isHSFT� (M;�; f; f0g);de�ned by taking R to be the trivial subspae. Observe that the inlusions f0g ,!ker 
 ,! H2(M ;R) indue natural R[[~℄℄-module morphismsHSFT� (M;�; f; f0g)! HSFT� (M;�; f;
)! HSFT� (M;�; f):A framed obordism (X;!; fX) with positive end (M+; �+; f+) and negative end(M�; ��; f�) is a sympleti obordism (X;!) with oriented boundary M+t (�M�),together with the following additional data:� a Liouville vetor �eld Y , de�ned near the boundary, pointing outward atM+and inward at M�, suh that �Y !jM� = ��,� a tamed almost omplex struture J interpolating between the given ylindri-al strutures J� at the ends,� oherent orientations for the moduli spaes of �nite energy J-holomorphiurves in the ompletion of X,� an abstrat perturbation sheme ompatible with f+ and f�, and� spanning surfaes for the obordism as desribed in [EGH00, p. 571f℄.As explained in [CL09, setion 8℄, suh a obordism gives rise to a morphism fromHSFT� (M+; �+; f+) to HSFT� (M�; ��; f�) after suitably twisting the di�erential as fol-lows.Suppose R� � H2(M�;R) and R(X) � ker! � H2(X;R) are linear subspaessuh that the maps H2(M�;R) ! H2(X;R) indued by the inlusions M� ,! Xmap R� into R(X). De�ne the group rings RR� = R[H2(M ;R)=R� ℄ and RR(X) =R[H2(X;R)=R(X)℄, and let (A�[[~℄℄;D�SFT) denote theBV1-algebras as de�ned abovefor (M�; ��; f�) with oeÆients in RR� . We also denote by A�X the algebra gen-erated by the q� with oeÆients in RR(X) instead of RR� , Novikov ompleted asdesribed in [EGH00, p.624℄ (note that integration of ! gives a well de�ned homo-morphism H2(X;R)=R(X) ! R). The inlusions M� ,! X give rise to morphismsH2(M�;R)=R� ! H2(X;R)=R(X) and RR� ! RR(X), whih in partiular deter-mine a morphism of algebras A� !A�X .Now (X;!; fX) gives rise to several strutures, the �rst of whih is an element A 2~�1A�X [[~℄℄ satisfying D�SFT(eA) = 0, whih is obtained from ounting holomorphiurves in X with no positive puntures (these may exist only if X is not exat).Using this, one an de�ne a twisted di�erential D�X : A�X [[~℄℄ ! A�X [[~℄℄ by theformula D�X(Q) = e�AD�SFT(eA �Q):In this way, we get a twisted version of SFT for (M�; ��; f�), whih depends on(X;!; fX).Remark 2.1. Above we have de�ned two kinds of twisted versions of SFT, namelySFT twisted with respet to a losed two-form, and the twisted SFT of the negative



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 13end of a (non-exat) sympleti obordism. We hope that it is always lear from theontext whih kind of twisting is meant.The other struture one obtains is a hain map � = e� : (A+[[~℄℄;D+SFT) !(A�X [[~℄℄;D�X) determined by a map � = �X : A+ ! A�X[[~℄℄ satisfying� � is even and �(1) = 0,� e�D+SFT = D�Xe�, and� � =Pk�1 �k~k�1, where eah �k : A+ !A�X is a di�erential operator of order� k over the zero morphism.2This � ounts holomorphi urves in X with at least one positive punture. The�rst ondition above translates to the fat that �(1) = 1. Again � is ~-linear, so itindues a morphism of R[[~℄℄-modules H�(A+;D+SFT)! H�(A�X ;D�X), whih maps thepreferred lass [1℄ 2 H�(A+;D+SFT) and its RM+[[~℄℄-multiples to the orrespondinglasses in H�(A�X;D�X).To disuss the invariane properties of SFT, one studies holomorphi urves intopologially trivial obordisms R �M . More preisely, given two ontat forms ��for the same ontat struture �, there is a onstant  > 0 and an exat sympletiform ! = d(es�s) on R � M suh that the primitive �s agrees with �� at thenegative end and with �+ at the positive end of the obordism. Similarly, one �ndsa framing fR�M ompatible with given framings f� at the ends. Note that in thisase ker! = H2(X) = H2(M), so we an hoose R� = R = R(X) and observe thatthe ompletion proess in the de�nition of A�X is trivial sine ! is exat, giving riseto a natural identi�ation of A�X with A�. Likewise, A 2 ~�1A� vanishes as theobordism is exat. Sine resaling of � does not inuene the ount of holomorphiurves, we obtain a hain map (A+[[~℄℄;D+SFT)! (A�[[~℄℄;D�SFT).Reversing the roles of �+ and ��, one obtains a similar hain map in the otherdiretion, and a deformation argument implies that both ompositions are hain ho-motopi to the identity maps on (A�;D�SFT), respetively. In partiular, they indueRR[[~℄℄-module isomorphisms on homology, so that the ontat invariantHSFT� (M; �;R) := HSFT� (M;�; f;R)is well de�ned up to natural isomorphisms. It is important for us to observe that, byonstrution, these morphisms are the identity on RR[[~℄℄ � A�, thus HSFT� (M; �;R)omes with preferred homology lasses assoiated to the elements of RR[[~℄℄. Consid-ering the speial ases where R is f0g, ker 
 or H2(M ;R) again gives rise to the fullytwisted, 
-twisted and untwisted versions respetively, with natural R[[~℄℄-modulemorphisms(2.1) HSFT� (M; �; f0g)! HSFT� (M; �;
)! HSFT� (M; �):2Given a morphism � : A1 ! A2 between graded ommutative algebras, a homogeneous linearmap D : A1 ! A2 is a di�erential operator of order � k over � if for eah homogeneous elementa 2 A1 the map x 7! D(ax) � (�1)jDjjaj�(a)D(x) is a di�erential operator of order � k � 1, withthe onvention that the zero map has order � �1.

14 JANKO LATSCHEV AND CHRIS WENDLRemark 2.2. The above disussion of morphisms an be re�ned slightly as follows.Given a nondegenerate ontat form � and a onstant T > 0, we an onsider thelinear subspae A(�; T ) � A(�) in the orresponding hain level algebra generatedby all the monomials of the form q1 : : : qr for whih the total ation is bounded byT , i.e. rXj=1 Zj � < T:Sine the energy of holomorphi urves ontributing toDSFT is nonnegative and givenby the ation di�erene of the asymptotis, the operator DSFT restrits to de�ne adi�erential DSFT : A(�; T )[[~℄℄!A(�; T )[[~℄℄:Moreover, if ! = d(es�s) is a sympleti form on R�M suh that � agrees with �+ atthe positive end and �� at the negative end, then the resulting morphism respetsthe trunation with suitable resaling, i.e. it gives rise to a hain map�T : (A(�+; T )[[~℄℄;D+SFT)! (A(��; T )[[~℄℄;D�SFT) = (A(��; T=)[[~℄℄;D�SFT):Beware however that, due to the resaling of forms for the ylindrial obordisms,there is no meaningful �ltration on HSFT� (M; �;R).In the proof of Theorem 4 we will use this re�nement in the situation where �� hasonly its periodi orbits of ation at most T nondegenerate, in whih ase the trunatedomplex (A(��; T )[[~℄℄;D�SFT) an still be onstruted with all the required properties.It is useful to onsider how the hain map � : (A+[[~℄℄;D+SFT) ! (A�X [[~℄℄;D�X)indued by a sympleti obordism (X;!) simpli�es whenever ertain natural extraassumptions are plaed on X. First, suppose that (X;!) is an exat obordism. Aswe already observed above, in this ase X ontains no holomorphi urves withoutpositive ends, hene the \twisting" term A 2 ~�1A�X [[~℄℄ vanishes. Moreover, sineker! = H2(X;R), we an set R(X) = H2(X;R) and redue RR(X) to the untwistedoeÆient ring R. Making orresponding hoies R� = H2(M�;R) so that RR� = Rfor the positive and negative ends, we then have a natural identi�ation of the twohain omplexes (A�X[[~℄℄;D�X) and (A�[[~℄℄;D�SFT), hene the aforementioned hainmap yields the following:Proposition 2.3. Any exat sympleti obordism (X;!) with positive end (M+; �+)and negative end (M�; ��) gives rise to a natural R[[~℄℄-module morphism on theuntwisted SFT, �X : HSFT� (M+; �+)! HSFT� (M�; ��):Now suppose (X;!) is a strong �lling of (M+; �+), whih we may view as a symple-ti obordism whose negative end (M�; ��) is the empty set. For any given subspaeR(X) � ker!, the Novikov ompletion RR(X) of RR(X) need not be trivial, but thehain omplex (A�X [[~℄℄;D�X) has no generators other than the unit, and its di�eren-tial vanishes, hene its homology is simply RR(X)[[~℄℄. Choosing R � H2(M ;R) so



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 15that the natural map H2(M ;R) ! H2(X;R) indued by the inlusion M ,! X takesR into R(X), we also obtain a natural R[[~℄℄-module morphism RR[[~℄℄! RR(X)[[~℄℄.Note that sine ! is neessarily exat near �X, we an always hoose R(X) = ker!and R = H2(M ;R). We obtain:Proposition 2.4. Suppose (X;!) is a strong �lling of (M; �), and R(X) � ker! �H2(X;R) and R � H2(M ;R) are linear subspaes for whih the natural map fromH2(M ;R) to H2(X;R) takes R into R(X). Then there is a natural R[[~℄℄-modulemorphism �X : HSFT� (M; �;R)! RR(X)[[~℄℄;whih ats on RR[[~℄℄ � HSFT� (M; �;R) as the natural map to RR(X)[[~℄℄ induedby the inlusion M ,! X. In partiular, the untwisted SFT of (M; �) admits anR[[~℄℄-module morphism �X : HSFT� (M; �)! Rker![[~℄℄:Finally, we generalize the above to allow for stable sympleti �llings as de�nedin the introdution. Reall that if (X;!) is a stable �lling of (M; �) and we write
 := !jM , then � admits a nondegenerate ontat form � and omplex struture J�suh that !j� and d�j� both de�ne sympleti bundle strutures taming J�, and theReeb vetor �eld X� generates ker 
. In partiular, the pair (�;
) is then a stableHamiltonian struture, meaning it satis�es:(1) � ^ 
n�1 > 0,(2) d
 = 0,(3) ker 
 � ker d�.A routine Moser deformation argument shows that a neighborhood of �X in (X;!)an then be identi�ed sympletially with the ollar((��; 0℄�M; d(t�) + 
)for � > 0 suÆiently small. Choose a small number �0 > 0 and de�neT := f' 2 C1([0;1)! [0; �0)) j '0 > 0 everywhere and '(t) = t near t = 0g:Then if �0 is small enough, every ' 2 T gives rise to a sympleti form !' on theompletion bX := X [M ([0;1)�M), de�ned by!' = (! on X;d ('(t)�) + 
 on [0;1)�M:De�ne a ylindrial almost omplex struture on [0;1)�M whih maps �s to X� andrestrits to J� on �; due to the ompatibility assumptions on J�, this is !'-tame for allpossible hoies of ' 2 T . We an thus extend it to a generi !'-tame almost omplexstruture J on bX. Then one an generalize the previous disussion by onsideringpuntured J-holomorphi urves u : _S ! bX that satisfy the �nite energy onditionE(u) := sup'2T Z _S u�!':

16 JANKO LATSCHEV AND CHRIS WENDLThis de�nition of energy is equivalent to the one given in [BEH+03℄ in the sensethat bounds on either imply bounds on the other; it follows that the ompatnesstheorems of [BEH+03℄ apply to sequenes uk of puntured J-holomorphi urves forwhih E(uk) is uniformly bounded. Suh a bound exists for any sequene of urveswith �xed genus, asymptotis and homology lass. Note also that the restrition of Jto the ylindrial end is also adapted to � in the usual sense, thus the upper levelurves that appear in holomorphi buildings arising from the ompatness theoremare preisely the urves that are ounted in the de�nition of HSFT� (M;�; f;R).The above observations yield the following generalization of Proposition 2.4:Proposition 2.5. Suppose (X;!) is a stable sympleti �lling of (M; �), and R(X) �ker! � H2(X;R) and R � H2(M ;R) are linear subspaes suh that the natural mapH2(M ;R) ! H2(X;R) takes R into R(X). Then there exists a natural R[[~℄℄-modulemorphism �X : HSFT� (M; �;R)! RR(X)[[~℄℄;whih ats on RR[[~℄℄ as the natural map to RR(X)[[~℄℄ indued by the inlusion M ,!X. In partiular, de�ning a 2-form on M by 
 = !jM , the 
-twisted SFT of (M; �)admits an R[[~℄℄-module morphism�X : HSFT� (M; �;
)! Rker![[~℄℄:Example 2.6. The following shows that aside from de�ning �lling obstrutions, SFTan also provide information as to the lassi�ation of sympleti �llings. Consider forinstane the tight ontat struture �0 on S1 � S2, whih it aquires as the boundaryof the Stein domain S1 � B3 � T �S1 � R2 . Presenting (S1 � S2; �0) via a symmetrisummed open book with disk-like pages (see De�nition 3.1), one an �nd a Reeb orbitthat is uniquely spanned by two rigid holomorphi planes whose homology lassesdi�er by the generator [S2℄ := [f�g � S2℄ 2 H2(S1 � S2;R). Hene, in the notationestablished at the beginning of this setion, the fully twisted SFT satis�es a relationof the form [1� z[S2℄℄ = 0 2 HSFT� (S1 � S2; �0; f0g):Then if (X;!) is any weak �lling of (S1 � S2; �0), Proposition 2.5 gives a map fromHSFT� (S1 � S2; �0; f0g) to the Novikov ompletion of R[H2(X;R)℄ whose ation onR[H2(M ;R)℄[[~℄℄ is determined by the inlusion S1 � S2 ,! X. In light of the aboverelation, this implies that the natural map H2(S1 � S2;R) ! H2(X;R) takes [S2℄ tozero. In fat, this is known to be true: it follows from the disk �lling argument ofEliashberg [Eli90℄, whih implies that every weak �lling of S1 � S2 is di�eormorphito a blow-up of S1 � B3.Another example is provided by the standard 3-torus (T 3; �0), whih is the boundaryof the Stein domain T 2�D � T �T 2 and an also be presented by a symmetri summedopen book, but with ylindrial pages. One an then hoose a 1-dimensional subspaeR � H2(T 3;R) with generator d0 represented by a pre-Lagrangian torus, so thatounting holomorphi ylinders yields relations of the form[(1� zd1)~℄ = [(1� zd2)~℄ = 0 2 HSFT� (T 3; �0;R)



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 17for both of the other anonial generators d1; d2 2 H2(T 3;R). Applying Proposi-tion 2.5 again, one an use this to show that for any weak �lling (X;!) of (T 3; �0) suhthat Rd0 ! = 0, and in partiular for any strong �lling, the natural map H2(T 3;R) !H2(X;R) has its image in a spae of dimension at most one. This is also known to betrue: by a ombination of arguments in [Wen10b℄ and [NW11℄, (X;!) must in thisase be a sympleti blow-up of the standard Stein �lling T 2 � D .2.2. Algebrai torsion and its onsequenes. As above, we write R for somegiven linear subspae in H2(M ;R), and use the notation RR = R[H2(M ;R)=R℄ forthe orresponding group ring. Reall the following de�nition from the introdution:De�nition 2.7. For any integer k � 0, we say that (M; �) has algebrai torsionof order k with oeÆients in RR if [~k℄ = 0 in HSFT� (M; �;R). We single out thefollowing speial ases:� (M; �) has (untwisted) algebrai k-torsion if [~k℄ = 0 2 HSFT� (M; �).� For a losed 2-form 
 on M , (M; �) has 
-twisted algebrai k-torsion if [~k℄ =0 2 HSFT� (M; �;
).� (M; �) has fully twisted algebrai k-torsion if [~k℄ = 0 2 HSFT� (M; �; f0g).By default, when we speak of algebrai torsion without speifying the oeÆients,we will always mean the untwisted version. Observe that due to the morphisms(2.1), fully twisted torsion implies 
-twisted torsion for all losed 2-forms 
, andit is not hard to show that the onverse is also true. Likewise, 
-twisted torsionfor any one losed 2-form 
 implies untwisted torsion, and k-torsion for any hoieof oeÆients implies (k + 1)-torsion for the same oeÆients sine DSFT(Q) = ~kimplies DSFT(~Q) = ~k+1.Remark 2.8. Sine all power series in R[[~℄℄ are naturally losed elements of the SFThain omplex, one an de�ne a seemingly more general notion than algebrai torsionvia the ondition [f(~)℄ = 0 2 HSFT� (M; �)for any nonzero power series f 2 R[[~℄℄. In fat, this is not more general: all elementsof the form 1 +O(~) an be inverted in R[[~℄℄ via alternating series, thus [f(~)℄ = 0implies untwisted algebrai k-torsion where k � 0 is the largest integer with f(~) =~kg(~) for some g 2 R[[~℄℄. The situation hanges when one onsiders the vanishingof nonzero elements of RR[[~℄℄ in HSFT� (M; �;R): as shown by Example 2.6 above,this does not always imply non�llability, but it an yield topologial restritions onthe sympleti �llings that exist.The speial ase k = 0 is not a new onept; the following result is stated for theuntwisted theory but has obvious analogues for any hoie of oeÆients RR.Proposition 2.9. The following statements are equivalent.(i) (M; �) has algebrai 0-torsion.(ii) HSFT� (M; �) = 0.

18 JANKO LATSCHEV AND CHRIS WENDL(iii) (M; �) is algebraially overtwisted in the sense of [BN10℄, i.e. its ontathomology is trivial.Proof. The only laim not immediate from the de�nitions is that (i) implies (ii), forwhih we use a variation on the main argument in [BN10℄. For Q1; Q2 2 A[[~℄℄, de�ne[Q1; Q2℄ := DSFT(Q1Q2)�DSFT(Q1)Q2 � (�1)jQ1jQ1DSFT(Q2)to be the deviation of DSFT from being a derivation. Note that sine the �rst termD1 in the expansion of DSFT is a derivation, we always have [Q1; Q2℄ = O(~). Onealso easily heks that DSFT is a derivation of this braket, in the sense thatDSFT[Q1; Q2℄ = �[DSFTQ1; Q2℄� (�1)jQ1j[Q1;DSFTQ2℄:These signs are orret beause the braket has odd degree.Now suppose DSFT(P ) = 1, and de�ne a map B : A[[~℄℄! A[[~℄℄ as an alternatingsum of iterated brakets with P , i.e. asB(Q) := Q� [P;Q℄ + [P; [P;Q℄℄� : : :Clearly [P;B(Q)℄ = Q�B(Q) and DSFT(B(Q)) = B(DSFT(Q)), and so if DSFT(Q) =0, thenDSFT(P �B(Q)) = [P;B(Q)℄ +DSFT(P ) �B(Q) = Q�B(Q) +B(Q) = Q;proving that every losed element in A[[~℄℄ is exat. �With the algebrai formalism in plae, the proofs of Theorems 1 and 5 are nowimmediate.Proofs of Theorems 1 and 5. Suppose (X;!) is an exat sympleti obordism withpositive end (M+; �+) and negative end (M�; ��). Then if [~k℄ = 0 2 HSFT� (M+; �+),the same must be true in HSFT� (M�; ��) due to Proposition 2.3.Likewise, if (X;!) is a strong �lling of (M; �), then Proposition 2.4 gives an R[[~℄℄-module morphism fromHSFT� (M; �) to RR(X)[[~℄℄, where RR(X) is the Novikov omple-tion of R[H2(X;R)= ker !℄. Sine no power of ~ vanishes in RR(X)[[~℄℄, the same mustbe true in HSFT� (M; �), ompleting the proof of Theorem 1. Theorem 5 follows byexatly the same argument, using Proposition 2.5 and observing that HSFT� (M; �;
)depends only on (M; �) and the ohomology lass of 
. �3. Relation to planar torsion in dimension 3This setion desribes the relation of algebrai torsion to planar torsion, and inpartiular provides the proof of Theorem 6.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 193.1. Review of planar torsion. We begin by reviewing briey the notion of planartorsion, whih is de�ned in more detail in [Wena℄. A planar torsion domain is aspeial type of ontat manifold with boundary whih generalizes the thikened torus(T 2 � [0; 1℄; �T ) in the de�nition of Giroux torsion. We an de�ne it in terms of openbook deompositions as follows.Reall �rst that if �M is a losed oriented (not neessarily onneted) 3-manifoldwith an open book deomposition �� : �M n �B ! S1, then the open book an be \blownup" along part of its binding to produe a manifold with boundary: for any givenbinding omponent  � �B, this means replaing  with its unit normal bundle. Thelatter is then a 2-torus T in the boundary of the blown up manifoldM , and it omeswith a anonial homology basis f�; �g � H1(T ), where � is the meridian around theboundary of a neighborhood of  and � is a boundary omponent of a page. Givenany two binding omponents 1; 2 � �B, one an then produe a new manifold via aso-alled binding sum, whih onsists of the following two steps:(1) Blow up at 1 and 2 to produe boundary tori T1 and T2 with anonialhomology bases f�1; �1g and f�2; �2g respetively.(2) Attah T1 to T2 via an orientation reversing di�eomorphism T1 ! T2 thatmaps �1 to �2 and �1 to ��2.Combining both the blow-up and binding sum operations for a given losed manifoldwith an open book �� : �M n �B ! S1, one obtains a ompat manifold M , possiblywith boundary, arrying a �bration� :M n (B [ I)! S1;where B is an oriented (possibly empty) link onsisting of all omponents of �B thathave not been blown up, and I is a speial (also possibly empty) olletion of 2-toriwhih are eah the result of identifying two blown up binding omponents in a bindingsum. The tori T � I [ �M eah arry anonial homology bases f�; �g � H1(T ),where for T 2 I, � is de�ned only up to a sign. These homology bases togetherwith the �bration � determine a so-alled blown up summed open book � on M ,with binding B and interfae I. Its pages are the onneted omponents of the �bers��1(onst). We all a blown up summed open book irreduible if the �bers ��1(onst)are onneted, whih means it ontains only a single S1-family of pages. In general,every manifold M with a blown up summed open book � an be written as a unionof irreduible subdomains, M =M1 [ : : : [Mn;where Mi are manifolds with boundary that eah arry irreduible blown up summedopen books �i, whose pages are pages of �, and they are attahed to eah other alongtori in the interfae of �.Just as an open book onM determines a speial lass of ontat forms, we de�ne aGiroux form on a manifoldM with a blown up summed open book to be any ontatform � with the following properties:

20 JANKO LATSCHEV AND CHRIS WENDL(1) The Reeb vetor �eld X� is everywhere positively transverse to the pages andpositively tangent to the oriented boundaries of their losures,(2) The harateristi foliation ut out by � = ker � on eah boundary or interfaetorus T � I [ �M has losed leaves in the homology lass of the meridian.Note that whenever � is a Giroux form, the binding onsists of periodi orbits of X�,and eah torus in I [�M is foliated by periodi orbits. A Giroux form an be de�nedfor any blown up summed open book that ontains no losed pages, and it is thenunique up to deformation. We say that a ontat struture � on M is supported bya given blown up summed open book if and only if it an be written as the kernel ofa Giroux form. The e�et of a binding sum on supported ontat strutures is thenequivalent to a speial ase of the ontat �ber sum de�ned by Gromov [Gro86℄ andGeiges [Gei97℄.De�nition 3.1. A blown up summed open book is alled symmetri if it has noboundary and ontains exatly two irreduible subdomains, eah with pages of thesame topologial type, and eah with empty binding and (interior) interfae.Symmetri examples are onstruted in general by taking any two open books withdi�eomorphi pages, hoosing an oriented di�eomorphism from the binding of one tothe binding of the other and onstruting the orresponding binding sum on theirdisjoint union. Supported ontat manifolds that arise in this way inlude the tightS1 � S2 (with disk-like pages) and the standard T 3 (ylindrial pages).We all an irreduible blown up summed open book planar if its pages have genus 0,and a general blown up summed open book is then partially planar if it ontains aplanar irreduible subdomain in its interior.De�nition 3.2. For any integer k � 0, a planar torsion domain of order k (orsimply planar k-torsion domain) is a onneted ontat 3-manifold (M; �), possiblywith boundary, with a supporting blown up summed open book � suh that:(1) M ontains a planar irreduible subdomain MP � M in its interior, whosepages have k + 1 boundary omponents,(2) M nMP is not empty, and(3) � is not symmetri.We then all the subdomains MP and M nMP the planar piee and the paddingrespetively.A ontat 3-manifold is said to have planar k-torsion whenever it admits a ontatembedding of a planar k-torsion domain.De�nition 3.3. Suppose (M; �) is a ontat 3-manifold ontaining a planar k-torsiondomain M0 � M with planar piee MP0 for some k � 0, and 
 is a losed 2-formon M . If every interfae torus T � M0 lying in MP0 satis�es RT 
 = 0, then we saythat (M; �) has 
-separating planar k-torsion. We say that (M; �) has fully separatingplanar k-torsion if this is true for every losed 2-form on M , or equivalently, eah ofthe relevant interfae tori separates M .



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 21

1
0

23

PSfrag replaements���+�S1�(W; d�)(V4; �3)(V2; �2)Figure 3. Some examples of onvex surfaes and dividing sets thatdetermine S1-invariant planar torsion domains, of orders 1, 0, 3 and 2respetively. The examples at the top right and bottom left are bothfully separating. The bottom right example de�nes a losed manifoldontatomorphi to the example (V4; �3) from Theorem 4. Note thatin this ase, it's important that the two surfaes on either side of thedividing set are not di�eomorphi (so that the summed open book isnot symmetri).Example 3.4. The simplest examples of planar torsion domains have the form S1��,where � is an orientable surfae (possibly with boundary), the ontat struture isS1-invariant and the resulting dividing set � � � ontains the boundary. This may beviewed as a blown up summed open book whose pages are the onneted omponentsof �n�, so the binding is empty, and the interfae and boundary together are S1��.Some speial ases are shown in Figure 3.Remark 3.5. Another phenomenon that is allowed by the de�nition but not seen inthe ases S1�� of Example 3.4 is for an irreduible subdomain to have interfae toriin its interior, due to summing of a single onneted open book to itself at di�erent
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PSfrag replaements���+�S1�(W; d�)(V4; �3)(V2; �2)Figure 4. Shemati representations of two summed open booksthat inlude \self summing", i.e. interfae tori in the interior of anirredubile subdomain. Assuming trivial monodromy, the example atthe left is obtained from the tight S1 � S2 with its obvious ylindrialopen book by summing one binding omponent to the other: the resultis a Stein �llable ontat struture on the torus bundle over S1 withmonodromy �1. At the right, the additional subdomain with disk-likepages turns it into a planar torsion domain: the 3-manifold is the same,but the ontat struture is hanged by a half Lutz twist and is thusovertwisted. Note that in this example either irreduible subdomainan be taken as the planar piee, so it is both a 0-torsion domain anda 2-torsion domain.binding omponents. Examples of this are shown in Figure 4, whih also illustratesthe fat that the hoie of planar piee (and onsequently the order of planar torsion)is not always unique, even for a �xed planar torsion domain.It is shown in [Wena℄ that a ontat manifold has planar 0-torsion if and only ifit is overtwisted, and every ontat manifold with Giroux torsion also has planar1-torsion. The latter is the reason why Theorem 6 implies Theorem 2.3.2. Proof of Theorem 6. With these de�nitions in plae, Theorem 6 follows easilyfrom an existene and uniqueness result proved in [Wena℄ for J-holomorphi urves inblown up summed open books. Namely, suppose (M; �) is a losed ontat 3-manifoldontaining a ompat and onneted 3-dimensional submanifold M0, possibly withboundary, on whih � is supported by a blown up summed open book � with bind-ing B, interfae I and indued �bration � : M0 n (B [ I) ! S1. Assume there areN � 2 irreduible subdomains M0 =M1 [ : : : [MN ;of whih M1 lies fully in the interior ofM0, and denote the orresponding restritionsof � by �i :Mi n (Bi [ Ii)! S1for i = 1; : : : ; N , with Bi := B \Mi and Ii := I \ intMi. Note that while � itselfis not neessarily well de�ned at �Mi, �i always has a ontinuous extension to �Mi.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 23Assume the pages in Mi have genus gi � 0, where g1 = 0. In partiular, M0 is aplanar torsion domain with planar piee M1.Proposition 3.6 ([Wena℄). For any number �0 > 0, (M; �) admits a Morse-Bottontat form � and ompatible Fredholm regular almost omplex struture J with thefollowing properties.(1) On M0, � is a Giroux form for �.(2) The Reeb orbits in B are nondegenerate and ellipti, and the omponents ofI [ �M0 are all Morse-Bott submanifolds.(3) All Reeb orbits in B1 [ I1 [ �M1 have minimal period at most �0, while everyother losed orbit of the Reeb vetor �eld X� in M has minimal period atleast 1.(4) For eah irreduible subdomain Mi with gi = 0, the �bration �i : Mi n (Bi [Ii) ! S1 admits a C1-small perturbation ^�i : Mi n (Bi [ Ii) ! S1 suh thatthe interior of eah �ber ^��1i (�) for � 2 S1 lifts uniquely to an R-invariantfamily of properly embedded surfaesS(i)�;� � R �Mi; (�; �) 2 R � S1;whih are the images of embedded �nite energy J-holomorphi urvesu(i)�;� = (a(i)� + �; F (i)� ) : _Si ! R �Mi;all of them Fredholm regular with index 2, and with only positive ends.(5) Suppose u : _S ! R�M is a �nite energy puntured J-holomorphi urve whihis not a over of a trivial ylinder, and suh that all its positive asymptotiorbits are simply overed and ontained in B1 [ I1 [ �M1, with at most onepositive end approahing eah onneted omponent of B1 [ �M1 and at mosttwo approahing eah onneted omponent of I1. Then u has genus zero andparametrizes one of the surfaes S(i)�;� desribed above.Reall that a J-holomorphi urve is alled Fredholm regular if it orresponds toa transversal intersetion of the appropriate setion of a Banah spae bundle withthe zero-setion, see for example [Wen10a℄. We also say that J is Fredholm regular ifevery somewhere injetive J-holomorphi urve is Fredholm regular; this is a generiondition due to [Dra04℄. If u is a rigid urve that is Fredholm regular, this impliesin partiular that u an be perturbed uniquely to a solution of any suÆiently smallperturbation of the nonlinear Cauhy-Riemann equation.Proof of Theorem 6. The following is an adaptation of the argument used in [Wena℄to show that planar torsion kills the ECH ontat invariant, and it an similarlybe used to ompute an upper bound on the integer fTsimp(M;�; J) de�ned via ECHin the appendix. Given a losed 2-form 
 on M , let k0 � k be the smallest orderof 
-separating planar torsion that (M; �) admits. We will prove that (M; �) thenhas 
-twisted algebrai k0-torsion, whih as previously observed, implies algebrai k-torsion. The statement for untwisted algebrai torsion is then the speial ase where

24 JANKO LATSCHEV AND CHRIS WENDL
 = 0. Throughout the proof, for any d 2 H2(M ;R), we denote by�d 2 H2(M ;R)= ker 
the orresponding equivalene lass.Suppose M0 � (M; �) is a planar k0-torsion domain with planar piee MP0 � M0,suh that [T ℄ � ker 
 � H2(M ;R) for every interfae torus T lying in MP0 . Denoteby �P :MP0 n (BP [ IP )! S1the orresponding �bration in the planar piee. Write the onneted omponents ofthe binding, interfae and boundary respetively asBP = 1 [ : : : [ m;�MP0 = T1 [ : : : [ Tn;IP = Tn+1 [ : : : [ Tn+r;where by de�nition we havem + n+ 2r = k0 + 1 and n � 1:Now given the speial Morse-Bott ontat form �0 and ompatible almost omplexstruture J0 provided by Proposition 3.6, we onsider the moduli spaeM(J0) :=M0(1; : : : ; m; T1; : : : ; Tn; Tn+1; Tn+1; : : : ; Tn+r; Tn+r; J0)of unparametrized J0-holomorphi urves u : _S ! R �M suh that(1) _S has genus 0, no negative puntures and m + n+ 2r positive punturesz1; : : : ; zm; �1; : : : ; �n; w+1 ; w�1 ; : : : ; w+r ; w�r(2) For the puntures listed above, u approahes the simply overed orbit i at zi,any simply overed orbit in Ti at �i and any simply overed orbit in Tn+i atboth w+i and w�i .By Prop. 3.6, M is a onneted 2-dimensional manifold onsisting of an R-invariantfamily of embedded Fredholm regular urves that projet to the pages in MP0 . Notehere we are using the fat that the blown up summed open book on M0 is notsymmetri, so in partiular the padding M0 nMP0 annot ontain additional genus 0urves with the asymptoti behavior that de�nes M(J0). It also annot ontain anygenus 0 urves asymptoti to a proper subset of the same orbits, as this would meanthe existene of an 
-separating planar torsion domain with order less than k0.We next perturb the Morse-Bott data (�0; J0) to generi nondegenerate data (�; J)by the sheme desribed in [Bou02℄, extend J to a suitable framing f and assume thatHSFT� (M;�; f;
) is well de�ned (see Remark 3.7 below). Reall that the perturba-tion to nondegenerate data is ahieved by hoosing a Morse funtion on eah of therelevant Morse-Bott families of orbits and using it to alter the ontat form in smallneighborhoods of these families. In our ase, eah Morse-bott family is parametrizedby a irle, so we may assume without loss of generality that our Morse funtion on S1has exatly two ritial points, whih orrespond to the two orbits in the family that



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 25survive as nondegenerate orbits after the perturbation. Moreover, J-holomorphiurves are obtained as perturbations of J0-holomorphi \asades", i.e. multi-levelbuildings omposed of a mixture of holomorphi urves with gradient ow lines alongthe Morse-Bott manifolds. We may therefore assume after the perturbation that eahof the tori Ti for i = 1; : : : ; n+r ontains two nondegenerate simple Reeb orbits ei andhi , ellipti and hyperboli respetively. These orbits ome with preferred framingsdetermined by the tangent spaes to Ti, and in these framings their Conley-Zehnderindies are �CZ(ei ) = 1 and �CZ(hi ) = 0:There are also two embedded J-holomorphi index 1 ylinders (orresponding togradient ow lines along the Morse-Bott family)v�i : R � S1 ! R �Mwhose projetions to M are disjoint and �ll the two regions in Ti separated by ei andhi , so the homology lasses they represent are related to eah other by[v+i ℄� [v�i ℄ = [Ti℄ 2 H2(M ;R);and for a suitable hoie of oherent orientation, these two together ontribute termsof the form (z[Ti℄ � 1)qhi ��qeito the operatorDSFT. The urves inM(J0) likewise give rise to a unique J-holomorphipuntured sphere in the spaeM(J) :=M0(1; : : : ; m; h1 ; e2; : : : ; en; en+1; en+1; : : : ; en+r; en+r; J)with punture �1 asymptoti to h1 and all other puntures asymptoti to elliptiorbits. This urve is embedded and has index 1, thus if d 2 H2(M ;R) denotes thehomology lass de�ned by the pages inMP0 with attahed apping surfaes, then thisurve produes a termz �d~m+n+2r�1 ��qh1 mYi=1 ��qi nYi=2 ��qei rYi=1 12 ��qen+i ��qen+iin DSFT. We thus de�ne the monomialF = q1 : : : qmqh1 qe2 : : : qenqen+1qen+1 : : : qen+rqen+rand ompute, DSFTF = z �d~k0 + n+rXi=2 (z[Ti℄ � 1)qhi �F�qei :Every term in the summation now vanishes sine [Ti℄ � ker 
, implying that ~k0 isexat. �

26 JANKO LATSCHEV AND CHRIS WENDLRemark 3.7. To make the above omputation fully rigorous, one must show that therelevant ount of urves doesn't hange under a suitable abstrat perturbation, e.g. asprovided by [Hof℄. The urves that were ounted in the above argument are Fredholmregular and will thus survive any suh perturbation, but we also need to hek thatno additional urves appear. If any suh urves exist, then in the unperturbed limitthey must give rise to nontrivial holomorphi asades in the natural ompati�ationof M(J0), see [BEH+03℄. It suÆes therefore to observe that in the above setup, allpossible asades are aounted for by the J0-holomorphi pages in MP0 , due to theuniqueness statement in Prop. 3.6.4. S1-invariant examples in dimension 3In this setion we onsider the speial examples (S1��; ��) desribed in the intro-dution, and prove in partiular Theorems 3 and 4. Note that the examples (Vg; �k) ofTheorem 4 an be onstruted via a summed open book as follows. Fix g � k � 1, andlet (M�; ��) denote the losed ontat 3-manifold supported by a planar open book�� : M� n B� ! S1 with k binding omponents and trivial monodromy. Similarly,let (M+; �+) be the ontat manifold supported by an open book �+ :M+ nB+ ! S1with pages of genus g � k + 1 > 0, k binding omponents and trivial monodromy.Choosing any one-to-one orrespondene between the onneted omponents of B+and B�, we produe a new losed ontat manifold (M; �) by taking the binding sumof (M+; �+) t (M�; ��) along orresponding binding omponents as desribed in x3;this produes a losed planar (k � 1)-torsion domain whih is ontatomorphi to(Vg; �k).To omplete the proof of Theorem 4, we will have to show that ertain types ofholomorphi urves in R � Vg do not exist (at least algebraially), whih would needto exist if ~k�2 were exat (see Lemma 4.15 below). To do this, we will onstruta preise model for ontat manifolds of the form (S1 � �; ��), in whih all therelevant holomorphi urves an be lassi�ed. The proof of Theorem 3 will alsofollow immediately from this lassi�ation.4.1. Holomorphi urves in (S1 � �; ��). The basi idea of our model for (S1 ��; ��) will be to hoose data so that the singular foliation of � de�ned by the gradientow lines of a suitable Morse funtion gives rise to a foliation of the sympletizationby holomorphi ylinders, whih an be ounted by Morse homology. We will thenbe able to exlude all the other relevant urves by a ombination of intersetionarguments and index estimates.For the onstrutions arried out below, the following lemma turns out to be on-venient.Lemma 4.1. Suppose � is a ompat onneted oriented surfae with nonemptyboundary, and ~h : � ! R is a smooth Morse funtion with all ritial points in theinterior and none of index 2, and with �� = ~h�1(1). Then there exists a onformalstruture j on �, ompatible with the orientation, and a smooth, stritly inreasing



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 27funtion ' : R ! R suh that h := ' Æ ~h : �! R satis�es�d(dh Æ j) > 0;and eah boundary omponent has a ollar neighborhood biholomorphially identi�edwith (�Æ; 0℄ � S1 for some small Æ > 0, so that in these holomorphi oordinates(s; t) 2 (�Æ; 0℄� S1 we have h(s; t) = es:Proof. To onstrut j with the required properties, we start by hoosing oriented o-ordinates (s; t) 2 (�2Æ; 0℄�S1 on a ollar neigbhorhood of eah boundary omponentsuh that ~h(s; t) = es in these oordinates. In this ollar neighborhood, we simplyde�ne j by requiring j(�s) = �t and j(�t) = ��s. Note that�d(d~h Æ j) = es ds ^ dt > 0on these ollars.Next we hoose oriented Morse oordinates near the ritial points, suh that loally~h(x; y) = x2 � y2 + ~h(0):In suh oordinates, we an de�ne j suh that j(�x) = ��y and j(�y) = � 1��x forsome � > 0. A omputation then yields�d(d~h Æ j) = �2� � 2�� dx ^ dy;whih is positive whenever 0 < � < 1.Now extend j arbitrarily to all of � and onsider the funtion h = ' Æ ~h, where' : R ! R is a smooth funtion with '0 > 0 and '00 � 0. Observe that the 2-form� := �d~h ^ (d~h Æ j)is everywhere nonnegative, and vanishes preisely at the ritial points of ~h. We thenompute,(4.1) � d(dh Æ j) = �('0 Æ ~h) d(d~h Æ j) + ('00 Æ ~h)�:This is already positive whenever �d(d~h Æ j) is positive, whih is true on a neighbor-hood of the ritial points and the boundary. Outside of this neighborhood, we have� > 0 and an thus arrange �d(dh Æ j) > 0 by hoosing ' so that'00'0 � Kfor a suÆiently large onstant K > 0. Sine �d(d~h Æ j) > 0 on the ollar neigh-borhoods (�2Æ; 0℄ � S1 of ��, we are free to set '00 = 0 in [�Æ; 0℄ � S1. Now sine�d(dhÆj) > 0 everywhere, (4.1) implies that this property will survive a further post-omposition with an inreasing aÆne funtion, hene through suh a omposition wean arrange without loss of generality that '(s) = s on the ollar neighborhoods[�Æ; 0℄� S1. �

28 JANKO LATSCHEV AND CHRIS WENDLLet �� and �+ denote ompat oriented and possibly disonneted surfaes, suhthat eah onneted omponent has non-empty boundary and the total number ofboundary omponents of �� and �+ agrees. On eah of the surfaes ��, we hoosea funtion h� and onformal struture j� as provided by the lemma and de�ne a1-form by �� = �dh� Æ j�:This indues a sympleti form �� and Riemannian metri g� on ��, de�ned by�� = d��; g� = ��(�; j��):Sine dh� = es ds in holomorphi oordinates (s; t) 2 (�Æ; 0℄�S1 near eah omponentof the boundary, we �nd �� = es ds ^ dt; rh� = �s:Denote the union of all these ollar neighborhoods of ��� byU� � ��:The gradient rh� is a Liouville vetor �eld pointing orthogonally outward at ���.Remark 4.2. Sine the subharmoniity ondition on the pair (h�; j�) is open, thereis some freedom in the onstrution. In partiular, by perturbing the onformalstruture if neessary we an ahieve that the ow of rh� is Morse-Smale.We now glue �+ and �� together along an orientation preserving di�eomorphism��+ ! ��� to reate a losed oriented surfae� = �+ [ (���);divided into two halves by a speial set of irles � := ��+ � �. We will alwaysassume � is onneted, and as the above notation suggests we assign it the sameorientation as �+, whih is opposite the given orientation on ��. On eah onnetedomponent of U+ and U�, one an de�ne new oordinatesS1 � [0; Æ) 3 (�; �) := (t;�s) for (s; t) 2 U+;S1 � (�Æ; 0℄ 3 (�; �) := (t; s) for (s; t) 2 U�;and then de�ne the gluing map and the smooth struture on � so that eah omponentof U := U+ [ U� � � inherits smooth positively oriented oordinates (�; �) 2 S1 �(�Æ; Æ).Choose a funtion g0 : [�Æ; Æ℄ ! R with g0(�) = �1 for � near �Æ, g0(0) = 0,g00 � 0 and g00 > 0 near � = 0 and a funtion  : [�Æ; Æ℄ ! R with (�) = �e�� for� near �Æ, 0 > 0 wherever g00 = 0, (�) > 0 for � < 0 and (�) < 0 for � > 0. For� 2 (0; 1), we then set g�(�) = g0(�) + �2(�);whih satis�es� g0� > 0 for suÆiently small � > 0,� g�(�) = �(1� �2e��) for � near �Æ,



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 29� g�(0) = 0.Now de�ne a smooth family of funtions h� : �! R byh� = 8><>:1� �2h+ on �+ n U+,g�(�) for (�; �) 2 U ,�1 + �2h� on �� n U�.For eah �xed � > 0, h� is a Morse funtion with all its ritial points in � nU , andthey are preisely the ritial points of h�.Next hoose a funtion f0 : [�Æ; Æ℄ ! R suh that f0(�) = 0 for � near �Æ, f0 � 0everywhere and � � f 00(�) � 0 for � 6= 0 and f 000 (0) < 0, and a funtion  : [�Æ; Æ℄! Rwith  (�) = e�� for � near �Æ,  � 0 everywhere and � �  0(�) < 0 for � 6= 0. Thenwe de�ne f�(�) = f0(�) + � (�):With these hoies in plae, we denote the oordinate in S1 by � and de�ne asmooth family of 1-forms �� on S1 � � by(4.2) �� = 8><>:��+ + h� d� on S1 � (�+ n U+),f�(�) d� + g�(�) d� on S1 � U ,��� + h� d� on S1 � (�� n U�).Observe that S1�� admits a natural summed open book with empty binding, inter-fae I = S1 � �, �bration� : S1 � (� n �)! S1 : (�; z) 7! (� if z 2 �+;�� if z 2 ��;and the meridians on S1 � � generated by the irles S1 � fonstg.Proposition 4.3. There exists �0 > 0 with the following properties.(i) For any � 2 (0; �0℄, �� is a positive ontat form on S1 � � and is a Girouxform for the summed open book desribed above. Moreover, for all these ontatforms eah omponent of the interfae S1 � � is a Morse-Bott submanifold ofReeb orbits pointing in the ��-diretion.(ii) For any � 2 (0; �0℄ and for eah � 2 S1, the leaves of the harateristi foliationon f�g � � are preisely the gradient ow lines of h�.(iii) The 2-form ! = d(es�s) is sympleti on (0; �0℄ � S1 � �, where s denotes theoordinate on the �rst fator.Proof. To prove (i), note that the natural o-orientation indued by the summed openbook on its pages is ompatible with the orientations de�ned on �� by j�, for whih�� are positive volume forms. To prove the ontat ondition on S1 � (�� n U�),observe that �� ! �d� on this region as � ! 0, so the ontat planes are almosttangent to the pages. Thus it suÆes to observe that d�� is positive on �� n U�,whih is lear sine d�� = ��� when restrited to the pages.

30 JANKO LATSCHEV AND CHRIS WENDLOn S1 � U , a routine omputation shows that the ontat ondition follows fromf�g0� � f 0�g� > 0. But this is easily omputed to equalf�g0� � f 0�g� = f0g00 � f 00g0 + �( g00 �  0g0) +O(�2):Our onditions on the various funtions ensure that all four summands are nonnega-tive, with the �rst one stritly positive for � near 0 and the last one stritly positivefor � away from zero. So for �0 > 0 su��iently small, the ontat ondition holds forall � 2 (0; �0℄ on S1 �U as well. Here it is also easy to ompute the Reeb vetor �eldX��: writing D� = f�g0� � f 0�g�, we have(4.3) X��(�; �; �) = 1D�(�) �g0�(�) ��� � f 0�(�) ���� :Our assumptions on f 0�(�) then imply thatX�� always has a omponent in the negative��-diretion for � 2 (�Æ; 0), and in the positive ��-diretion for � 2 (0; Æ), while at� = 0 it points in the ��-diretion. Moreover the ondition g�(0) = 0 implies that theontat planes at � = 0 are tangent to the irles S1 � fonstg, thus �� is a Girouxform. The Morse-Bott ondition at S1 � � follows from f 00� (0) < 0, whih for small� > 0 follows from f 000 (0) < 0. This onludes the proof of (i).Next we verify that the harateristi foliation on f�g � � mathes the gradientow of h�. This is obvious in U , where both harateristi leaves and gradient owlines are simply straight lines in the ��-diretion. On �� n U�, a vetor v 2 T�� istangent to the harateristi foliation if and only if ��(v) = 0, implying dh�(j�v) = 0and thus v is orthogonal to the level sets of h�, whih makes it proportional to rh�as laimed, and establishes (ii).Finally, onsider the two-form ! = d(es�s). On R � S1 � U , we have �s = fs d� +gs d� and so ! = es(ds ^ �s + dfs ^ d� + dgs ^ d�);with dfs = f 0s d�+  dsdgs = g0s d�+ 2s ds:One then omputes! ^ ! = es(fsg0s � f 0sgs +  g0s � 2sf 0s) ds ^ d� ^ d� ^ d�here, and observe that all four terms are nonnegative, with the �rst one stritlypositive for small s > 0, so ! is sympleti here.On R�S1�(�+nU), we have �s = s�++(1�s2h+) d�, and so another omputationshows ! ^ ! = e2s(s �+ ^ ds ^ d�+O(s2))here, whih is also a positive volume form for small enough s > 0. A similar ompu-tation on R � S1 � (�� n U) �nishes the proof of part (iii). �



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 31From now on, denote the ontat struture on S1 � � for � 2 (0; �0℄ by�� = ker��:Due to Gray's stability theorem, �� is independent of � up to isotopy, and it is iso-morphi to ��.Remark 4.4. From the disussion above it is lear that for every � 2 S1, f�g � �is a onvex surfae for �� with dividing set �, positive part �+ and negative part��. In partiular, the Euler lass e(��) 2 H2(S1 � �) satis�es he(��); [f�g � �℄i =�(�+)� �(��). It follows from the S1-invariane of �� that the Euler lass vanisheson all yles of the form S1 �  for losed urves  � �. Thuse(��) = [�(�+)� �(��)℄ PD[S1 � f�g℄:The following assertion an be heked by a routine omputation.Lemma 4.5. The Reeb vetor �eld X�� on S1 � (�� n U�) is given by(4.4) X�� = 11 + �2 �jrh�j2g� � h�� �� ��� + �j�rh�� : �In partiular, this shows that every ritial point z 2 Crit(h�) gives rise to a periodiorbit z := S1 � fzgof X�� . We shall denote by nz the n-fold over of z for any n 2 N and z 2 Crit(h�).Observe that there is always a natural trivialization of the ontat bundle along nz ,de�ned by hoosing any frame at a point and transporting by the S1-ation.We next de�ne a ompatible omplex struture J� on �� as follows. On S1�(��n�),the projetion S1 � �! � de�nes a bundle isomorphism�� : ��jS1�(�n�) ! T�jS1�(�n�);whih we an use to de�ne J� : �� ! �� on S1 � (�� n U�) by(4.5) J� = ���j�:Sine �� 2 �� on S1 � U , we an now extend J� to this region by settingJ��� = ��(�)[f�(�)�� � g�(�)��℄;for any smooth family of funtions �� : (�Æ; Æ) ! (0;1) whih equals �1=g� near� = �Æ, so in partiular for � > 0, J� satis�esd�(J���) = 0 and d��(��; J���) > 0:Extend J� to an R-invariant almost omplex strutureJ� : T �R � (S1 � �)�! T �R � (S1 � �)�in the standard way, i.e. by setting J��s = X�� where s is the R-oordinate. Then foreah z 2 Crit(h�), there is a trivial ylinderR � S1 ! R � (S1 � �) : (s; t) 7! (s; t; z);

32 JANKO LATSCHEV AND CHRIS WENDLwhih an be reparametrized to de�ne an embedded J�-holomorphi urve of Fredholmindex 0. We shall abbreviate this urve by R � z, and similarly write R � nz for theobvious J�-holomorphi n-fold over of R � z.Proposition 4.6. For � 2 (0; �0℄, suppose x : R ! � is a solution to the gradientow equation _x = rh�(x) approahing z� 2 Crit(h�) at �1. Then there exists aproper funtion a : R ! R, unique up to a onstant, suh that the embeddingux : R � S1 ! R � (S1 � �) : (s; t) 7! (a(s); t; x(s))is a J�-omplex urve. Both ends of u are positive if and only if the two ritial pointsz+ and z� lie on opposite sides of the interfae.Proof. For any z 2 �, regard rh�(z) as a vetor in T(�;z)(S1 � �) for some �xed� 2 S1, and observe that rh�(z) 2 (��)z due to Prop. 4.3. Thus we an de�ne anS1-invariant vetor �eld v(�; z) = J�rh�(z);whih takes values in �� and vanishes only at S1 � Crit(h�). For z 2 �� n U�, (4.5)implies that v(�; z) is a linear ombination of j�rh�(z) and ��, and the same is truefor z 2 U due to the ondition d�(J���) = 0. By (4.3) and (4.4), the Reeb vetor�eld X�� is also a linear ombination of the same two vetor �elds everywhere, andis of ourse linearly independent of v exept when the latter vanishes, from whih weonlude �� 2 RX�� � Rveverywhere on S1 � �. It follows that J��� is everywhere a linear ombination of �sand rh�, so the desired omplex urves are obtained by integrating the distributionR�� � RJ���:In partiular, this generates a foliation whose leaves inlude an R-invariant familyof ylinders of the form ux desribed above for eah nontrivial gradient ow linex : R ! �, and the trivial ylinders R � z de�ned above for eah z 2 Crit(h�). Thesigns of the ylindrial ends an now be dedued from the orientations of the Reeborbits, using the fat that the orientations of z and � in the S1-diretion math ifand only if z and � lie on the same side of the dividing set �. �From the proposition it follows that eah of the embeddings ux is a (not neessar-ily J�-holomorphi) parametrization of a �nite energy J�-holomorphi urve, whoseFredholm index ind(ux) is the sum of the Conley-Zehnder indies at its ends if bothare positive, or the di�erene if one end is negative. We shall abuse notation byidentifying the map ux : R � S1 ! R � (S1 � �) with the unique unparametrizedJ�-holomorphi urve it determines, and do the same with the obvious unbranhedmultiple over unx(s; t) := ux(s; nt)for eah n 2 N.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 33Proposition 4.7. Assume h+ and h� are hosen so that their gradient ows areMorse-Smale (see Remark 4.2). Then after possibly adjusting the gluing map ��+ !���, there exist funtions (0; �0℄! (0;1) : � 7! T�(0; �0℄! N : � 7! N�with lim�!0 T� = lim�!0N� = +1 suh that the following onditions hold for all � > 0:(1) rh� is Morse-Smale.(2) Every losed orbit of X�� with period less than T� is either in S1 �U or is nzfor some z 2 Crit(h�) and n � N�.(3) For all n � N�, nz is nondegenerate as an orbit of X�� and has Conley-Zehnderindex(4.6) �CZ(nz ) = (1 if ind(z) = 0 or 2,0 if ind(z) = 1,with respet to the S1-invariant trivialization of �� along nz , where ind(z)denotes the Morse index of z.Proof. Up to parametrization, the ow of rh� mathes that of rh� on �� n U�and �� on U . Thus if rh� are both Morse-Smale, any ow lines of rh� onnetingtwo index 1 ritial points must pass through �, and an thus be eliminated by asmall rotation of the gluing map ��+ ! ���. The existene of the funtion T� withlim�!0 T� =1 follows from (4.4), as all orbits outside of S1�U other than the nz forz 2 Crit(h�) orrespond to losed orbits of j�rh� in level sets of h�, with periodsthat beome in�nitely large as �! 0. We an then de�neN� := maxfn 2 N j All nz have periods < T� as orbits of X��g;and observe that N� ! 1 as � ! 0 sine the periods of z onverge to 1. Theformula for �CZ(nz ) is a standard omputation from Floer theory relating Conley-Zehnder indies to Morse indies, see for example [SZ92℄. �We will assume from now on that the onditions of Prop. 4.7 are satis�ed. Thenrh� is Morse-Smale for all � 2 (0; �0℄, and it will follow that eah of the J�-holomorphiylinders ux orresponding to gradient ow lines x : R ! � between ritial pointsz�; z+ 2 Crit(h�) has positive Fredholm index. Indeed, these ylinders ome in �vetypes:(1) z� 2 �� with index 0 and z+ 2 �+ with index 2: then ind(ux) = 2 and bothends are positive.(2) z�; z+ 2 �+ with indies 1 and 2: then ind(ux) = 1 and one end is negative.(3) z�; z+ 2 �� with indies 0 and 1: then ind(ux) = 1 and one end is negative.(4) z� 2 �� with index 0 and z+ 2 �+ with index 1: then ind(ux) = 1 and bothends are positive.(5) z� 2 �� with index 1 and z+ 2 �+ with index 2: then ind(ux) = 1 and bothends are positive.

34 JANKO LATSCHEV AND CHRIS WENDLThis lassi�ation is exatly the same for the multiply overed ylinders unx(s; t) forall n � N�.Proposition 4.8. For every gradient ow line x : R ! �, the orresponding J�-holomorphi ylinders unx for n � N� are all Fredholm regular.Proof. By the riterion in [Wen10a, Theorem 1℄, an immersed, onneted �nite energyJ�-holomorphi urve u with genus g asymptoti to nondegenerate Reeb orbits isFredholm regular whenever ind(u) > 2g � 2 + #�0;where the integer #�0 � 0 denotes the number of ends at whih u approahes orbitswith even Conley-Zehnder index. In the ase at hand, we always have g = 0 andeither ind(u) = 2 with #�0 = 0 or ind(u) = 1 with #�0 = 1, so the riterion issatis�ed in all ases. �It follows that the embedded ylinders ux for all gradient ow lines x on �, togetherwith the trivial ylinders R � z for z 2 Crit(h�), form a stable �nite energy foliationin the sense of [HWZ03,Wen08℄.In the following, we will make use of the intersetion theory for puntured holomor-phi urves, de�ned by Siefring [Sie11℄. This theory de�nes an intersetion numberu � v 2 Zfor any two asymptotially ylindrial maps u; v from puntured Riemann surfaesinto the sympletization of a ontat 3-manifold, with the following properties:� u � v is invariant under homotopies of u and v through asymptotially ylin-drial maps.� u � v � 0 whenever both are �nite energy pseudoholomorphi urves that arenot overs of the same somewhere injetive urve, and the inequality is stritif they have nonempty intersetion.Lemma 4.9. Suppose u and v are �nite energy pseudoholomorphi urves in thesympletization R � M of a ontat manifold (M; �), suh that u has no negativeends, and the positive puntures � 2 �+v of v are asymptoti to Reeb orbits denotedby �. Then u � v = X�2�+v u � (R � �):Proof. By R-translation we an assume the image of u is ontained in [0;1) �M ,and an then homotop v through a family of asymptotially ylindrial maps so thatits intersetion with [0;1)�M onsists only of the trivial half-ylinders [0;1)� �for � 2 �+v . The lemma thus follows from the homotopy invariane of u � v. �It is possible in general to have u � v > 0 even if u and v are disjoint holomorphiurves: in this ase intersetions an \emerge from in�nity" under generi pertur-bations, and exluding this typially requires the omputation of ertain windingnumbers. We will only need to worry about this in one speial ase:



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 35Lemma 4.10. For any z 2 Crit(h�), a gradient ow line x : R ! � that begins andends on opposite sides of the interfae, and n � N�, (R � nz ) � ux = 0.Proof. The urves R � nz and ux obviously do not interset sine x does not passthrough any ritial points, so we only have to hek that there are no asymptotiontributions to (R � nz ) � ux. This is trivially true unless z is one of the end pointsof x, so assume the latter. Then the de�nition of the intersetion number in [Sie11℄implies that (R � nz ) � ux = 0 if and only if the asymptoti end of unx approahingnz has the largest possible asymptoti winding about the orbit. This bound on thewinding is an integer ��(nz ), whih is the winding of a partiular eigenfuntion ofthe Hessian of the ontat ation funtional, and was shown in [HWZ95℄ to be relatedto the Conley-Zehnder index by�CZ(nz ) = 2��(nz ) + p(nz );where p(nz ) 2 f0; 1g. Sine �CZ(nz ) is either 0 or 1 by Prop. 4.7, we onlude��(nz ) = 0, whih is obviously the same as the winding of unx about nz as it ap-proahes asymptotially. �Proposition 4.11. Suppose u : _S ! R � (S1 � �) is a �nite energy J�-holomorphiurve whih is not a over of a trivial ylinder and has all its positive ends asymptotito Reeb orbits of the form nz for z 2 Crit(h�) and n � N�. Then u is a over of uxfor some gradient ow line x : R ! �.Proof. If u is neither a over of any ux nor of a trivial ylinder over z for somez 2 Crit(h�), then it must have a nontrivial intersetion with one of the urves ux,implying u �ux > 0. By a small perturbation using positivity of intersetions, we anassume also that x is a generi ow line, onneting an index 0 ritial point z� 2 ��to an index 2 ritial point z+ 2 �+. Then ux has no negative ends, so u � ux is thesum of the intersetion numbers of ux with all the positive asymptoti orbits of u byLemma 4.9. But these are all zero by Lemma 4.10, giving a ontradition. �Proposition 4.12. Suppose x : R ! � is a gradient ow line of h� and u : _S !R � (S1 � �) is a J�-holomorphi multiple over of ux with overing multipliity atmost N�. Then ind(u) � 1, and the inequality is strit unless the over is unbranhed,i.e. u = unx for some n � N�.Proof. The index formula for u isind(u) = ��( _S) + 21(u��) + �CZ(u);where �CZ(u) is the sum of the Conley-Zehnder indies of its positive asymptotiorbits minus those of its negative asymptoti orbits, and 1(u��) is the relative �rstChern number of the bundle u�� ! _S with respet to the natural trivialization ofeah orbit nz . The latter vanishes due to the S1-invariane (f. Remark 4.4). For theConley-Zehnder indies, we use Prop. 4.7, distinguishing between two ases:� If x passes through �, then both ends of ux are positive and thus all ends of uare positive. Moreover, the Morse-Smale ondition guarantees that ux annot

36 JANKO LATSCHEV AND CHRIS WENDLhave both its ends at hyperboli ritial points with Conley-Zehnder index 0,hene �CZ(u) � 1.� Otherwise ux has a positive end at an ellipti ritial point z+ with �CZ(z+) =1 and a negative end at a hyperboli ritial point z� with �CZ(z�) = 0, soagain �CZ(u) � 1.As a result, ind(u) � ��( _S)+1, whih is stritly greater than 1 unless _S is a ylinder,in whih ase there are no branh points. �Proposition 4.13. Suppose z 2 Crit(h�) and u : _S ! R � (S1 � �) is a J�-holomorphi multiple over of R � z with overing multipliity at most N�. Thenind(u) � 0, and the inequality is strit unless u has exatly one positive end.Proof. If ind(z) = 1, then Prop. 4.7 implies that all asymptoti orbits of u haveConley-Zehnder index 0 in the natural trivialization, hene ind(u) = ��( _S) � 0,with equality if and only if _S is a ylinder, implying it has one positive and onenegative end. Otherwise, the asymptoti orbits of u all have Conley-Zehnder index 1,so if g � 0 is the genus of u and its sets of positive and negative puntures are denotedby �+ and �� respetively, we haveind(u) = ��( _S) + #�+ �#�� = �(2� 2g �#�+ �#��) + #�+ �#��= 2g � 2 + 2#�+ = 2g + 2 �#�+ � 1� � 0: �Remark 4.14. The moduli spaes of J�-holomorphi urves in R � (S1 � �) an beoriented oherently whenever all asymptoti orbits are nondegenerate and \good", see[EGH00,BM04℄. In partiular, the spaes of ylinders unx overing gradient ow lines xan be given orientations that math a orresponding set of oherent orientations forthe spaes of Morse gradient ow lines.4.2. Proofs of Theorems 3 and 4. The results of the previous subsetion giveenough information on J�-holomorphi urves in R � (S1 � �) to prove the maintheorems. Reall that the natural ompati�ation of the moduli spae of �niteenergy puntured holomorphi urves onsists of holomorphi buildings, whih ingeneral may have multiple levels and nodes, see [BEH+03℄.Proof of Theorem 3. Assume �� is disonneted and let �1� and �2� denote two ofits onneted omponents. Then we an hoose the Morse funtions h� so that h�has exatly one index 0 ritial point in eah of �1� and �2�, denoted by z1� and z2�respetively, and h+ has an index 1 ritial point z+ 2 �+ suh that the two negativegradient ow lines of h� owing out of z+ end at z1� and z2� respetively. In partiular,there is a unique gradient ow line x1 onneting z1� to z+. By Prop. 4.11, the setof all J�-holomorphi buildings with no negative ends and positive ends approahingany subset of the two simply overed orbits z+ and z1� onsists of the following:(1) The ylinder ux1 with two positive ends at z+ and z1�.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 37(2) All ylinders ux orresponding to gradient ow lines x onneting z1� to index 1ritial points in �1�. Eah of these ylinders has one positive and one negativeend, with the positive end approahing z1�.Sine both of these orbits are nondegenerate and all of the holomorphi urves inquestion are Fredholm regular by Prop. 4.8, they all survive any suÆiently smallperturbation to make �� nondegenerate and J� generi, as well as the introdutionof an abstrat perturbation for the holomorphi urve equation. The hain omplexfor SFT an therefore be de�ned so as to ontain two speial generators qz1� andqz+ suh that DSFT(qz1� qz+ ) is omputed by ounting the J�-holomorphi urveslisted above (f. Remark 3.7). We laim now that for a suitable hoie of oherentorientations, the algebrai ount of ylinders of the seond type is zero. Indeed,the orientations an be hosen ompatibly with a hoie of oherent orientations forthe spae of gradient ow lines (f. Remark 4.14), thus the ount of these ylindersmathes the ount of all gradient ow lines onneting z1� to index 1 ritial pointsin �1�. The latter omputes a part of the term dhz1�i in the Morse ohomology of �,but sine z1� is the only index 0 ritial point in �1�, hz1�i is a losed generator of theMorse ohomology, and the laim follows. We onlude that only the ylinder ux1with two positive ends gives a nontrivial ount, and thusDSFT �qz1� qz+� = ~: �Reall from Remark 2.2 that if all the Reeb orbits below some given ation T > 0are nondegenerate, then one an de�ne a trunated omplex (A(�; T )[[~℄℄;DSFT). Theproof that (Vg; �k) has no algebrai (k � 2)-torsion for k � 2 depends on establishingthe following riterion.Lemma 4.15. Suppose K is a nonnegative integer and (M; �) is a losed ontatmanifold admitting a ontat form �, ompatible almost omplex struture J andonstant T > 0 with the following properties:(1) All Reeb orbits of � with period less than T are nondegenerate.(2) For every pair of integers g � 0 and r � 1 with g+ r � K +1, let M1g;r(J ;T )denote the spae of all index 1 onneted J-holomorphi buildings in R �Mwith arithmeti genus g, no negative ends, and r positive ends approahingorbits whose periods add up to less than T . ThenM1g;r(J ;T ) onsists of �nitelymany smooth urves (i.e. buildings with only one level and no nodes), whihare all Fredholm regular.(3) There is a hoie of oherent orientations for whih the algebrai ount ofurves in M1g;r(J ;T ) is zero whenever g + r � K + 1.Then if DSFT : A(�; T )[[~℄℄ ! A(�; T )[[~℄℄ is de�ned by ounting solutions to asuÆiently small abstrat perturbation of the J-holomorphi urve equation, there is

38 JANKO LATSCHEV AND CHRIS WENDLno Q 2 A(�; T )[[~℄℄ suh thatDSFT(Q) = ~K +O(~K+1):Proof. We begin by observing that sine all the buildings in M1g;r(J ;T ) are smoothFredholm regular urves, the ount of the orresponding moduli spae of solutionsunder any suitable abstrat perturbation will remain 0 (f. Remark 3.7).Reall now that DSFT has an expansion DSFT =PD`~` in powers of ~, where D`ounts (perturbed) holomorphi urves whose genus and number of positive punturesadd up to `. The assumption (3) now guarantees that, for every Q 2 A(�; T ) eahterm of D`(Q) with ` � K ontains at least one q-variable. So if Q 2 A(�; T )[[~℄℄ isarbitrary, we an write its di�erential uniquely asDSFT(Q) = P +O(~K+1);with P a polynomial of degree at most K in ~ whose nontrivial terms eah ontainat least one q-variable. This establishes the laim. �We now �x one of our spei� examples (Vg; �k). The two sides �+ and �� of � arethen both onneted, so we an hoose eah of the funtions h� : �� ! R to have aunique loal minimum; in this ase h� : �! R for � > 0 has a unique index 0 ritialpoint in �� and a unique index 2 ritial point in �+. Reall that for any � 2 (0; �0℄,Proposition 4.3 gives an exat sympleti obordism([�; �0℄� (S1 � �); d(es�s))relating the ontat forms e��� and e�0��0 . Then for any suÆiently C1-small funtionF� : S1 � �! R, the subdomainX� := f(s;m) 2 R � (S1 � �) j �+ F�(m) � s � �0ggives an exat sympleti obordism between e�0��0 and e��0�, where �0� is the perturbedontat form �0� := eF���:By Prop. 4.7, �� has nondegenerate orbits up to period T� exept in S1�U , thus onean hoose a generi C1-small funtion F� with ompat support in S1�U so that �0�has only nondegenerate orbits up to period T� (the fat that generi perturbations inan open subset suÆe follows from the appendix of [ABW10℄). Choose a orrespond-ing omplex struture J 0� on the perturbed ontat struture �0� := ker �0� suh that J 0�is C1-lose to J�. The proof of Theorem 4 now rests on the following observation.Lemma 4.16. The assumptions of Lemma 4.15 are satis�ed with � = �0�, J = J 0�,T = T� and K = k � 2.Proof. It will turn out that it suÆes to ount holomorphi buildings for the unper-turbed struture J�, so to start with, suppose u is an index 1 J�-holomorphi buildingin R � (S1 � �) with no negative ends and at most k � 1 positive ends, asymptotito orbits whose periods add up to less than T�. We laim that u is then a smoothurve (with only one level and no nodes), and is a ylinder of the form unx for some



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 39gradient ow line x : R ! � of h� and n � N�. Indeed, we start by arguing that noneof the asymptoti orbits of u an lie in the region S1 � U . By Proposition 4.7, allasymptoti orbits of u outside this region are of the form nz for z 2 Crit(h�), and thushave trivial projetions to �. Moreover, all losed Reeb orbits in S1�U projet to Uas losed urves homologous to some positive multiple of a omponent of �, orientedas boundary of �+. It follows that the projetion of u to � provides a homology fromthe sum of these urves to zero. Sine there are k omponents of �, but only at mostk � 1 ends of u, there is at least one omponent of S1 � U whih does not ontainany asymptotis of u. Using this interfae omponent, it is easy to onstrut a losedurve on � whih has nonzero intersetion number with the projeted asymptotis ofu in U � �, proving that the sum annot be homologous to zero. This ontraditionproves our laim that none of the asymptotis an lie in S1 � U .Now Proposition 4.7 implies that all the asymptoti orbits of u are of the form nzfor z 2 Crit(h�) and n � N�. Proposition 4.11 then implies that every omponenturve in the levels of u is one of the following:(1) A over of a trivial ylinder R � z for some z 2 Crit(h�).(2) A over of the ylinder ux for some gradient ow line x : R ! � of h�,onneting ritial points of h� on opposite sides of �.By Proposition 4.13, all urves of the �rst type have nonnegative index. Proposi-tion 4.12 implies in turn that all urves of the seond type have index at least 1, andthere must be at least one suh urve sine u has no negative ends. Sine ind(u) = 1,it follows that u ontains exatly one urve of the seond type, whih is an unbranhedover unx for some gradient ow line x and n � N�, and all omponents of u that areovers of trivial ylinders have exatly one positive end. Combinatorially, this is onlypossible if u has preisely one nontrivial onneted omponent, whih is of the formunx.By Prop. 4.8, the urves unx are all Fredholm regular, thus they will all survive thesmall perturbation of J� to J 0�; in fat the lak of nontrivial J�-holomorphi buildingsmeans that no additional J 0�-holomorphi buildings an appear under this perturba-tion. Thus it will suÆe to show that the algebrai ount of the J�-holomorphiylinders unx for n � N� is zero. For this, hoose a system of oherent orientationsfor the gradient ow lines of h�, and a orresponding system of orientations for themoduli spaes of J�-holomorphi urves (see Remark 4.14). The relevant ount ofholomorphi urves is then the same as a ertain ount of gradient ow lines: weare interested namely in all index 1 holomorphi ylinders unx for whih both endsare positive, and these orrespond to the gradient ow lines x that pass through �and onnet an index 1 ritial point on one side to an index 0 or 2 ritial point onthe other. Consider in partiular the set of all gradient ow lines that onnet theunique index 2 ritial point z+ 2 �+ to any index 1 ritial point in ��. The ountof these ow lines alulates part of the di�erential �hz+i in the Morse homologyof �, but sine there is no other ritial point of index 2, hz+i is neessarily losedin Morse homology, implying that the relevant algebrai ount of ow lines is zero.

40 JANKO LATSCHEV AND CHRIS WENDLApplying the same argument to the unique index 0 ritial point in �� using Morseohomology, we �nd indeed that the algebrai ount of ylinders unx with two positiveends for any n � N� vanishes. �Remark 4.17. The preeding result also establishes the onditions of Proposition A.6in the appendix, thus implying the lower bound stated in Theorem 7.Proof of Theorem 4. In light of Theorem 6, it remains to show that [~k�2℄ does notvanish in HSFT� (Vg; �k).We will argue by ontradition and suppose ~k�2 vanishes in HSFT� (Vg; �k). Choosea nondegenerate ontat form � suh that there is a topologially trivial obordismX with positive end (Vg; �) and negative end (Vg; e�0��0). Choose all neessary datato de�ne DSFT on A(�)[[~℄℄ suh that it omputes HSFT� (Vg; �k). In partiular, thereexists Q 2 A(�)[[~℄℄ suh that DSFT(Q) = ~k�2:Writing Q = Q1 + O(~k�1), we �nd a polynomial Q1 of degree at most k � 2 in ~with the property that DSFT(Q1) = ~k�2 +O(~k�1):Note that sine Q1 is a polynomial in the q-variables, there exists some T > 0 suhthat in fat Q1 2 A(�; T )[[~℄℄.Now hoose � > 0 so small that e�T� > T . Gluing the obordism X� onstrutedabove to X, we obtain an exat obordism with positive end (Vg; �) and negative end(Vg; e��0�) whih aording to Remark 2.2 gives rise to a hain map,�T : (A(�; T )[[~℄℄;DSFT)! (A(�0�; e��T )[[~℄℄;DSFT);where the right hand side admits the obvious inlusion into (A(�0�; T�)[[~℄℄;DSFT).But then DSFT�T (Q1) = �TDSFT(Q1) = ~k�2 + O(~k�1), whih ontradits Lem-mas 4.15 and 4.16. This ontradition shows that ~k�2 annot vanish in HSFT� (Vg; �k),ompleting the proof of the theorem. �Remark 4.18. We onlude this setion by giving the rough idea of how to onstrutthe exat obordisms with positive end (Vg+1; �k+1) and negative end (Vg; �k) alludedto in Remark 1.6; this was explained to us by J. Van Horn-Morris. First observethat if Vg = S1 � � with � = �+ [� �� and Vg+1 = S1 � �0 with �0 = �0+ [�0 �0�,then one an transform the former to the latter by piking two distint points p�; p+in the same onneted omponent of � and attahing 2-dimensional 1-handles H :=D 1 � D 1 along the orresponding points in both ��+ and ���, produing �0+ and �0�respetively with a preferred orientation reversing di�eomorphism ��0+ ! ��0�. AStein obordism between (Vg; �k) and (Vg+1; �k+1) is then onstruted by \multiplyingthe handle attahment by an annulus". More preisely, we de�ne the two Legendrianloops `� = S1 � fp�g � Vg, and attah to these a 4-dimensional round 1-handlebH := H� [�1; 1℄� S1 �= D 1 � �D 2 � S1�



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 41with boundary� bH = �� bH [ �+ bH := ��D 1 � �D 2 � S1� � [ �D 1 � � �D 2 � S1� �:This produes a smooth obordism from Vg to Vg+1, and one an make it into a Steinobordism by regarding bH as an \S1-invariant Weinstein handle", with a Morse-Bottplurisubharmoni funtion with ritial set f(0; 0)g� S1, isotropi unstable manifoldD 1�f0g�S1 and oisotropi stable manifold f0g�D 2�S1. Perturbing the Morse-Bottfuntion to a Morse funtion with ritial points of index 1 and 2 along f(0; 0)g�S1,one sees that the same obordism an be obtained by attahing a ombination ofstandard Stein 1-handles and 2-handles. One an then use open book deompositions[VHM℄ to show that the resulting ontat struture on Vg+1 is the one determined bythe dividing urves �0 � �0. 5. OutlookWe lose by mentioning a few questions that arise from the results of this paper.As shown in the appendix, algebrai torsion in dimension three seems to be loselyrelated to the ECH ontat invariant; indeed, all of our examples are ontat manifoldsfor whih the latter vanishes, and they exhibit a orrespondene between the minimalorder of algebrai torsion and the integers f and fsimp de�ned by Huthings. Itis unlear however whether a preise relationship between these invariants exists ingeneral, as SFT ounts a muh larger lass of holomorphi urves than ECH.It is presumably also possible to de�ne a orresponding invariant in Heegaard Floerhomology, but the latter is apparently still unknown.Question 1. Is there a Heegaard Floer theoreti ontat invariant that implies ob-strutions to Stein obordisms between pairs of ontat 3-manifolds whose Ozsv�ath-Szab�o invariants vanish?Remark 5.1. There is an obvious Stein obordism obstrution in Heegaard Floerhomology, de�ned in terms of the largest integer k � 1 for whih the ontat invariantis in the image of the kth power of the so-alled U -map. (Note that one ould de�ne anexat obordism obstrution in ECH in preisely the same way.) Nontrivial examplesof this obstrution have been omputed by Karakurt [Kar℄. Interestingly, sine thisinvariant is only really interesting in ases where the ontat invariant is nonvanishing,Karakurt's results are ompletely disjoint from ours.In ontrast to ECH or Heegaard Floer homology, SFT is also well de�ned in higherdimensions, and it remains to �nd interesting examples beyond the 0-torsion examplesthat are known from [BN,BvK10℄. Some andidates arise in [MNW℄: in partiular, theauthors de�ne a higher-dimensional generalization of Giroux torsion whih obstrutsstrong �llability and onjeturally implies algebrai 1-torsion. They also �nd examplesof ontat forms in all dimensions that have this form of torsion but don't admit anyontratible Reeb orbits, implying there is no algebrai 0-torsion, and in some ases

42 JANKO LATSCHEV AND CHRIS WENDLthe examples are also known to be weakly (and hene stably) �llable, implying thatthey do not have any fully twisted algebrai torsion.Conjeture. For all integers k � 1 and n � 2, there exist in�nitely many losed(2n� 1)-dimensional ontat manifolds that have algebrai torsion of order k but notk� 1. There also exist (2n� 1)-dimensional ontat manifolds that have (untwisted)algebrai k-torsion but admit stable sympleti �llings.Finally, one wonders to what extent algebrai torsion might also give obstrutionsto non-exat obordisms. Results in [Wenb℄ show that Corollary 1 for instane isfalse without the exatness assumption, and the reason is that a non-exat obordismbetween (M+; �+) and (M�; ��) does not in general imply a morphismHSFT� (M+; �+)! HSFT� (M�; ��):On the other hand, if (M+; �+) has algebrai torsion, then (M�; ��) learly annotbe �llable, and as was explained in x2, a non-exat obordism does give a map fromHSFT� (M+; �+) to a suitably twisted version of HSFT� (M�; ��), where the twisting isde�ned by a ount of holomorphi urves without positive ends in the obordism. Itis however unlear whether the vanishing of [~k℄ in this twisted SFT also implies aresult for the untwisted theory. A promising lass of test examples is provided bythe so-alled apping and deoupling obordisms onstruted in [Wenb℄, for whih theholomorphi urves without positive ends an be enumerated preisely.Question 2. If (M+; �+) and (M�; ��) are related by a non-exat sympleti obor-dism and (M+; �+) has algebrai torsion of some �nite order, must (M�; ��) also havealgebrai torsion of some (possibly higher) �nite order? Is there a preise relation be-tween these orders for the apping/deoupling obordisms onstruted in [Wenb℄?Appendix (by Mihael Huthings). ECH analogue of algebrai k-torsionThe purpose of this appendix is to de�ne an analogue of algebrai k-torsion inembedded ontat homology (ECH). Spei�ally, given a losed oriented 3-manifoldY , a nondegenerate ontat form � on Y , and an almost omplex struture J on R�Yas needed to de�ne the ECH hain omplex, we de�ne a number f(Y; �; J) 2 N[f1g,whih is similar to the order of algebrai torsion. It is not known whether thisnumber is an invariant of the ontat manifold (Y; � = Ker�). Nonetheless thisnumber, together with some variants thereof, an be used to reprove some of theresults on nonexistene of exat sympleti obordisms between ontat manifoldsthat are proved in the main paper using algebrai torsion. In addition, the results inthis appendix do not depend on any unpublished work: in partiular we do not useany sympleti �eld theory or Seiberg-Witten theory here.A.1. Basi reolletions about ECH. We begin by realling what we will need toknow about the de�nition of ECH.Let Y be a losed oriented 3-manifold with a nondegenerate ontat form �. LetR denote the Reeb vetor �eld determined by �, and let � = Ker(�) denote the



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 43orresponding ontat struture. Choose a generi almost omplex struture J onR � Y suh that J is R-invariant, J(�s) = R where s denotes the R oordinate, andJ(�) = �, with d�(v; Jv) � 0 for v 2 �. To save verbiage below, we refer to the pair(�; J) as ECH data for (Y; �). From these data one de�nes the ECH hain omplexECC(Y; �; J) as follows.An orbit set is a �nite set of pairs � = f(�i; mi)g where the �i's are distintembedded Reeb orbits and the mi's are positive integers. The homology lass ofthe orbit set � is de�ned by [�℄ := Pimi[�i℄ 2 H1(Y ). The orbit set � is alledadmissible if mi = 1 whenever �i is hyperboli (i.e. its linearized return map has realeigenvalues). The ECH hain omplex is freely generated over Z by admissible orbitsets.Now let � = f(�i; mi)g and � = f(�j; nj)g be two orbit sets with [�℄ = [�℄ 2 H1(Y ).De�nition A.1. De�ne MJ(�; �) to be the moduli spae of holomorphi urvesu : (�; j) ! (R � Y; J), where the domain � is a (possibly disonneted) punturedompat Riemann surfae, and u has positive ends at overs of �i with total overingmultipliity mi, negative ends at overs of �j with total overing multipliity nj, andno other ends. We onsider two suh holomorphi urves to be equivalent if theyrepresent the same 2-dimensional urrent in R � Y .Let H2(Y; �; �) denote the set of relative homology lasses of 2-hains in Y with�Y =Pimi�i�Pj nj�j; this is an aÆne spae over H2(Y ). Any holomorphi urveu 2 MJ(�; �) determines a lass [u℄ 2 H2(Y; �; �). If Z 2 H2(Y; �; �), de�neMJ(�; �; Z) = fu 2 MJ(�; �) j [u℄ = Zg:Also the ECH index is de�ned by(A.1) I(�; �; Z) := � (Z) +Q� (Z) +Xi miXk=1 CZ� (�ki )�Xj njXk=1 CZ� (�kj ):Here � is a trivialization of � over the Reeb orbits �i and �j; � (Z) denotes therelative �rst Chern lass of � over Z with respet to the boundary trivializations � ;Q� (Z) denotes the relative self-intersetion pairing; and CZ� (k) denotes the Conley-Zehnder index with respet to � of the kth iterate of . These notions are explainedin detail in [Hut02,Hut09℄. The ECH index of a holomorphi urve u 2 MJ(�; �) isde�ned by I(u) := I(�; �; [u℄).We will need the following fats, whih are proved in [Hut09, Thm. 4.15℄ and[HS06, Cor. 11.5℄:Proposition A.2.(a) If u 2 MJ(�; �) does not multiply over any omponent of its image, thenind(u) � I(u), where ind denotes the Fredholm index.(b) If J is generi and u 2 MJ(�; �), then:� I(u) � 0, with equality if and only if u is R-invariant (as a urrent).

44 JANKO LATSCHEV AND CHRIS WENDL� If I(u) = 1, then u = u0 t u1 where u1 is embedded and onneted,ind(u1) = I(u1) = 1, and u0 is R-invariant (as a urrent).The di�erential � on the ECH hain omplex is now de�ned as follows: If � is anadmissible orbit set, then�� := X� Xfu2MJ (�;�)=R j I(u)=1g "(u) � �:Here the sum is over admissible orbit sets � with [�℄ = [�℄, and "(u) 2 f�1g is asign explained in [HT09, x9℄. The signs depend on some orientation hoies, but thehain omplexes for di�erent sign hoies are anonially isomorphi to eah other.It is shown in [HT07,HT09℄ that � is well-de�ned and (what is muh harder) �2 = 0.The homology of the hain omplex is the embedded ontat homology ECH(Y; �; J).Note that the empty set ; is a legitimate generator of the ECH hain omplex, and�; = 0. The homology lass [;℄ 2 ECH(Y; �; J) is alled the ECH ontat invariant .Taubes has shown that ECH(Y; �; J) is anonially isomorphi to a version ofSeiberg-Witten Floer ohomology [Tau10℄, and in partiular depends only on Y . Inaddition, under this isomorphism the ECH ontat invariant depends only on � andagrees with an analogous ontat invariant in Seiberg-Witten Floer ohomology. How-ever we will not need these fats here.There is also a �ltered version of ECH whih is important in appliations. If� = f(�i; mi)g is an orbit set, de�ne the sympleti ationA(�) := Xi mi Z�i �:It follows from the onditions on J that the ECH di�erential dereases sympleti a-tion, i.e. if h��; �i 6= 0 then A(�) > A(�). Hene for eah L 2 (0;1℄, the submoduleECCL(Y; �; J) of ECC(Y; �; J) generated by admissible orbit sets of ation less thanL is a subomplex. The homology of this subomplex is denoted by ECHL(Y; �; J),and alled �ltered ECH . Of ourse, taking L =1 reovers the usual ECH.It is shown in [HT℄ that �ltered ECH does not depend on J (we will not use thisfat here). However �ltered ECH does depend on the ontat form �. In partiular,if  is a positive onstant, then an almost omplex struture J as needed to de�nethe ECH of � determines an almost omplex struture (whih we also denote by J)as needed to de�ne the ECH of �, with the same holomorphi urves. There is thena anonial isomorphism of hain omplexes(A.2) ECCL(Y; �; J) = ECCL(Y; �; J);indued by the obvious bijetion on generators.A.2. The relative �ltration J+. We now reall from [Hut09, x6℄ how to de�ne arelative �ltration on ECH whih is similar to the exponent of ~ in SFT.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 45Let � and � be admissible orbit sets with [�℄ = [�℄ 2 H1(Y ), and let Z 2H2(Y; �; �). Similarly to (A.1), de�ne(A.3) J+(�; �; Z) := �� (Z)+Q� (Z)+Xi mi�1Xk=1 CZ� (�ki )�Xj nj�1Xk=1 CZ� (�kj )+j�j�j�j:Here j�j denotes the ardinality of the admissible orbit set �. (There is also a moregeneral de�nition of J+ when the orbit sets are not neessarily admissible, but we willnot need this here.) If u 2 MJ(�; �), de�ne J+(u) := J+(�; �; [u℄). There is now thefollowing analogue of Proposition A.2, proved in [Hut09, Prop. 6.9 and Thm. 6.6℄:Proposition A.3. Let � and � be admissible orbit sets with [�℄ = [�℄.(a) If u 2 MJ(�; �) is irreduible and not multiply overed and has genus g, then(A.4) J+(u) � 2 g � 1 + j�j+Xi (N+i � 1) +Xj (N�j � 1)! :Here N+i denotes the number of positive ends of u at overs of �i, and N�jdenotes the number of negative ends of u at overs of �j. Moreover, equalityholds in (A.4) when ind(u) = I(u).(b) If J is generi, and if u 2 MJ(�; �), then J+(u) � 0.Note that if u ontributes to the ECH di�erential, then J+(u) is even. (Comparing(A.1) and (A.3) shows that the parity of J+(u)� I(u) is the parity of the number ofReeb orbits �i or �j that are positive hyperboli, whih is the parity of ind(u).) Thuswe an deompose the ECH di�erential � as(A.5) � = �0 + �1 + �2 + � � �where �k denotes the ontribution from holomorphi urves u with J+(u) = 2k.Sine J+ is additive under gluing [Hut09, Prop. 6.5(a)℄, it follows that �20 = 0,�0�1 + �1�0 = 0, et. Thus we obtain a spetral sequene E�(Y; �; J), where E1 isthe homology of �0, and E2 is the homology of �1 ating on E1. Let us all this the\J+ spetral sequene". Unfortunately this spetral sequene is not invariant underdeformation of the ontat form. The reason is that although an exat sympletiobordism indues a map on ECH whih (up to a given sympleti ation) is induedby a hain map that somehow ounts (possibly broken) holomorphi urves [HT℄,Proposition A.3(b) does not generalize to exat sympleti obordisms. That is, thehain map indued by a obordism an inlude ontributions from multiply overedholomorphi urves with J+ negative. However we an still use the J+ spetral se-quene to de�ne a useful analogue of the order of algebrai k-torsion.A.3. The analogue of order of algebrai torsion. Let Y be a losed oriented3-manifold, and let (�; J) be ECH data on Y .

46 JANKO LATSCHEV AND CHRIS WENDLDe�nition A.4. De�ne f(Y; �; J) to be the smallest nonnegative integer k suh that; does not survive to the Ek+1 page of the spetral sequene E�(Y; �; J). If no suhk exists, de�ne f(Y; �; J) :=1.Note that if there exists x 2 ECC(Y; �; J) with(�0 + � � �+ �k)x = ;;then f(Y; �; J) � k. In partiular, f(Y; �; J) < 1 if the ECH ontat invariantvanishes. One an use the obordism maps on ECH de�ned in [HT℄ (using Seiberg-Witten theory) to show that f(Y; �; J) does not depend on J . However we will notneed this fat here.There are now two diÆulties in using f to obstrut exat sympleti obordisms.First, we would like to show that if there is an exat sympleti obordism from(Y+; �+) to (Y�; ��) then(A.6) f(Y+; �+; J+) � f(Y�; ��; J�):This would imply that f depends only on the ontat struture and is monotone withrespet to exat sympleti obordisms. Unfortunately, we annot prove (A.6) or theseonsequenes (and we do not know whether these are true), due to the aforementionedlak of invariane of the spetral sequene. Seond, f(Y; �; J) is diÆult to omputein pratie, beause often one only understands the ECH hain omplex up to a givensympleti ation.To deal with the latter diÆulty, we an de�ne a �ltered version of f . To preparefor this, note that the J+ spetral sequene has an analogue for any subomplex ofECC(Y; �; J).De�nition A.5. Given L 2 (0;1℄, de�ne fL(Y; �; J) to be the smallest nonnegativeinteger k suh that ; does not survive to the Ek+1 page of the J+ spetral sequenefor the subomplex ECCL(Y; �; J). If no suh k exists, de�ne fL(Y; �; J) :=1.The following proposition an be used in alulations to give lower bounds on fL.Proposition A.6. Let (�; J) be ECH data on Y , and �x L 2 (0;1℄. Let k be apositive integer. Suppose that the algebrai ountXfu2MJ (�;;;Z)=Rg "(u) = 0whenever:� � is an admissible orbit set with A(�) < L, and� Z 2 H2(Y; �; ;) is suh that I(�; ;; Z) = 1, and� urves in MJ(�; ;; Z) have genus g and N+ positive ends with g +N+ � k.Then fL(Y; �; J) � k.In the third bullet point above, note that urves inMJ(�; ;; Z) are embedded andonneted by Proposition A.2(b), and then g and N+ are uniquely determined by



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 47� and Z. Here N+ is determined by [Hut09, Thm. 4.15℄, while g is determined byProposition A.3(a).Proof. Let � be an admissible orbit set with A(�) < L and let Z 2 H2(Y; �; ;)suh that I(�; ;; Z) = 1 and J+(�; ;; Z) < 2k. Then by Proposition A.2(b), urvesin MJ(�; ;; Z) are embedded and onneted, so by Proposition A.3(a), suh urveshave g + N+ � k. Then by hypothesis, the algebrai ount of suh urves is zero.This means that h�i�; ;i = 0 whenever i < k. �We now prove a weaker version of (A.6), whih will still allow us to obstrut exatsympleti obordisms. This requires the following additional de�nitions.De�nition A.7. An orbit set � = f(�i; mi)g is simple (with respet to J) if:� mi = 1 for eah i.� If � = f(�j; nj)g is another orbit set (not neessarily admissible), and if thereis a (possibly broken) J-holomorphi urve from � to �, then nj = 1 for eah j.Given L 2 (0;1℄, let ECCLsimp(Y; �; J) denote the subomplex of ECC(Y; �; J) gen-erated by simple admissible orbit sets � with A(�) < L.Note that even when L = 1, the homology of the subomplex ECCLsimp is notinvariant under deformation of �, as shown by the ellipsoid example in [Hut10℄.De�nition A.8. De�ne fLsimp(Y; �; J) to be the smallest nonnegative integer k suhthat ; does not survive to the Ek+1 page of the J+ spetral sequene for the subom-plex ECCLsimp(Y; �; J). If no suh k exists, de�ne fLsimp(Y; �; J) :=1.Note that fLsimp(Y; �; J) � fL(Y; �; J), beause the inlusion of hain omplexesindues a morphism of spetral sequenes. The main result of this appendix is nowthe following theorem.Theorem A.9. Let (��; J�) be ECH data on Y�. Suppose there is an exat sympletiobordism from (Y+; �+) to (Y�; ��). ThenfLsimp(Y+; �+; J+) � fL(Y�; ��; J�)for eah L 2 (0;1℄.Here is how Theorem A.9 an be used in pratie to obstrut sympleti obordisms.Below, write fsimp := f1simp.Corollary A.10. Suppose there exists an exat sympleti obordism from (Y+; �+) to(Y�; ��). Fix ECH data (�+; J+) for (Y+; �+) and a ontat form �0� with Ker(�0�) =��. Fix a positive integer k. Suppose that for eah L > 0 there exist ECH data(��; J�) for (Y�; ��) with fL(Y�; ��; J�) � k and an exat sympleti obordismfrom (Y�; �0�) to (Y�; ��). Then fsimp(Y+; �+; J+) � k.Proof. The �rst hypothesis implies that there exist a positive onstant  and an exatsympleti obordism from (Y+; �+) to (Y�; �0�). The seond hypothesis then impliesthat for eah L > 0 there exist ECH data (��; J�) for (Y�; ��) with fL(Y�; ��; J�) �

48 JANKO LATSCHEV AND CHRIS WENDLk and an exat sympleti obordism from (Y+; �+) to (Y�; ��). By the salingisomorphism (A.2) and Theorem A.9 we havef �1Lsimp (Y+; �+; J+) = fLsimp(Y+; �+; J+) � k:Sine L was arbitrary, we onlude that fsimp(Y+; �+; J+) � k. �Here is another orollary of Theorem A.9 whih tells us a bit more about themeaning of f .Corollary A.11. Suppose (Y; �) is overtwisted. Then f(Y; �; J) = 0 whenever (�; J)is ECH data for (Y; �).Proof. The argument in the appendix to [Yau06℄ shows that one an �nd ECH data(�+; J+) for (Y; �) suh that there is an embedded Reeb orbit  with the followingproperties:�  has smaller sympleti ation than any other Reeb orbit.� There is a unique Fredholm index 1 holomorphi plane u in R�Y with positiveend at .The holomorphi plane u is embedded in R � Y , so I(u) = 1 also, and J+(u) = 0.This means that �0f(; 1)g = �;. Sine  has minimal sympleti ation, f(; 1)g issimple. Thus fsimp(Y; �+; J+) = 0. We an also assume, by multiplying �+ by a largepositive onstant, that there is an exat (produt) sympleti obordism from (Y; �+)to (Y; �). Theorem A.9 with L =1 then implies that f(Y; �; J) = 0. �One might onjeture that the onverse of Corollary A.11 holds:Conjeture A.12. Given a losed ontat 3-manifold (Y; �), if f(Y; �; J) = 0 for allECH data (�; J) for (Y; �), then (Y; �) is overtwisted.Remark A.13. Conjeture A.12 implies the well-known onjeture that if (Y�; ��)is a losed tight ontat 3-manifold, and if (Y+; �+) is obtained from (Y�; ��) byLegendrian surgery, then (Y+; �+) is also tight.Proof. Suppose (Y+; �+) is obtained from (Y�; ��) by Legendrian surgery. Reallfrom [Wei91℄ that there is an exat sympleti obordism from (Y+; �+) to (Y�; ��).If (Y+; �+) is overtwisted, then as explained above one an �nd ECH data (�+; J+) for(Y+; �+) suh that fsimp(Y+; �+; J+) = 0. Theorem A.9 then implies that f(Y�; ��; J�) =0 for all ECH data (��; J�) for (Y�; ��). If we knew Conjeture A.12, then we ouldonlude that (Y�; ��) is overtwisted. �A.4. A obordism hain map. We now state and prove the key lemma in the proofof Theorem A.9.Lemma A.14. Under the assumptions of Theorem A.9, there is a hain map� : ECCLsimp(Y+; �+; J+) �! ECCL(Y�; ��; J�)with the following properties:



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 49(a) �(;) = ;.(b) There is a deomposition � = �0 + �1 + � � � suh that(A.7) Xi+j=k(�i�j � �i�j) = 0for eah nonnegative integer k.Proof. The proof has four steps.Step 1. We begin with the de�nition of �. Let (X;!) be an exat sympletiobordism from (Y+; �+) to (Y�; ��). Let � be the orresponding 1-form on X. Thereexists a neighborhoodN+ ' (�"; 0℄�Y+ of Y+ inX in whih � = es�+ where s denotesthe (�"; 0℄ oordinate. Likewise there exists a neighborhood N� ' [0; ")� Y� of Y�in X in whih � = es��. We then de�ne the \ompletion"X = ((�1; 0℄� Y�) [Y� X [Y+ ([0;1)� Y+);with smooth struture de�ned using the above neighborhoods. Choose a generialmost omplex struture J on X whih agrees with J+ on [0;1)� Y+, whih agreeswith J� on (�1; 0℄� Y�, and whih is !-tame on X. If �+ and �� are orbit sets inY+ and Y� respetively, de�ne MJ(�+; ��) to be the moduli spae of J-holomorphiurves in X satisfying the obvious analogues of the onditions in De�nition A.1.The ruial point in all of what follows is this:(*) If the orbit set �+ is simple, then a holomorphi urve inMJ(�+; ��) annothave any multiply overed omponent. Also, a broken holomorphi urvearising as a limit of a sequene of urves in MJ(�+; ��) annot have anymultiply overed omponent in the obordism level.Note that the proof of (*) uses exatness of the obordism to dedue that everyomponent of a holomorphi urve in X has at least one positive end.Another key point is that the de�nition of the ECH index I, and the index inequalityin Proposition A.2(a), arry over diretly to holomorphi urves in X, see [Hut09,Thm. 4.15℄. In partiular, if �+ is simple and if u 2 MJ(�+; ��) has I(u) = 0, thenthe index inequality applies to give ind(u) � I(u), and sine J is generi we onludethat I(u) = 0 and u is an isolated point in the moduli spae, ut out transversely. Asa result, we an de�ne the map � as follows: If �+ is a simple admissible orbit set inY+ with A(�+) < L, then(A.8) �(�+) := X�� Xfu2MJ (�+;��)jI(u)=0g "(u);where the �rst sum is over admissible orbit sets �� in Y�, and "(u) 2 f�1g is a signde�ned as in [HT09, x9℄.Step 2. We now show that � is well-de�ned, i.e. that the sum on the right handside of (A.8) is �nite, and we also prove that � satis�es property (a).To start, note that if there exists u 2 MJ(�+; ��), then exatness of the obordismand Stokes's theorem imply that A(�+) � A(��), with equality only if u is the empty

50 JANKO LATSCHEV AND CHRIS WENDLholomorphi urve. This has three important onsequenes. First, � maps ECCLsimpto ECCL as required. Seond, �(;) = ;. (The sign here follows from the onventionsin [HT09, x9℄.) Third, for any simple admissible orbit set �+, only �nitely manyadmissible orbit sets �� an make a nonzero ontribution to the right hand side of(A.8). So to prove that � is well-de�ned, we need to show that if �+ is a simpleadmissible orbit set in Y+ and if �� is an admissible orbit set in Y�, then there areonly �nitely many urves u 2 MJ(�+; ��) with I(u) = 0.Suppose to obtain a ontradition that there are in�nitely many suh urves. Bya Gromov ompatness argument as in [Hut02, Lem. 9.8℄ we an then pass to asubsequene that onverges to a broken holomorphi urve with total ECH index andtotal Fredholm index both equal to 0. By (*), the level of the broken urve inX annotontain any multiply overed omponent. Consequently the index inequality impliesthat this level has I � 0, and so by Proposition A.2(a) all levels have I = 0. Theproof of [HT07, Lem. 7.19℄ then shows that there is only one level (i.e. there annotbe sympletization levels ontaining branhed overs of R-invariant ylinders). Thusthe limiting urve is also an element of MJ(�+; ��) with I = 0, and sine this is anisolated point in the moduli spae we have a ontradition.Step 3. We now show that � is a hain map. If �+ is a simple admissible orbitset in Y+, then to prove that (�� � ��)�+ = 0, we analyze ends of the I = 1 partof MJ(�+; ��) where �� is an admissible orbit set in Y�. Again, by (*), a brokenurve arising as a limit of suh urves annot ontain a multiply overed omponentin the obordism level. Thus the proof of [HT07, Lem. 7.23℄ arries over to show thata broken urve arising as a limit of suh urves onsists of an ind = I = 0 piee u0in the obordism level, an ind = I = 1 piee u1 in a sympletization level, and (ifu1 is in R � Y�) possibly additional levels in R � Y� between u0 and u1 onsistingof branhed overs of R-invariant ylinders. The gluing analysis to prove that theECH di�erential has square zero [HT07, Thm. 7.20℄ then arries over with minormodi�ations to prove that �� = ��.Step 4. We now show that � satis�es property (b). To do so, note that if u is aholomorphi urve ounted by �, then J+(u) is even by the same parity argumentas before. Also, sine u ontains no multiply overed omponent, and sine everyomponent of u has a positive end, the proof of [Hut09, Thm. 6.6℄ arries over toshow that J+(u) � 0. We now de�ne �k to be the ontribution to � from urves uwith J+(u) = 2k. Equation (A.7) then follows from the fat that J+ is additive undergluing. �A.5. Conlusion.Proof of Theorem A.9. Let LE�simp(Y+; �+; J+) denote the J+ spetral sequene forthe subomplex ECCLsimp(Y+; �+; J+), and let LE�(Y�; ��; J�) denote the J+ spetralsequene for the subomplex ECCL(Y�; ��; J�). By Lemma A.14(b), � indues amorphism of spetral sequenes�� : LE�simp(Y+; �+; J+) �! LE�(Y�; ��; J�);
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