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AUTOMATIC TRANSVERSALITY AND ORBIFOLDS OFPUNCTURED HOLOMORPHIC CURVES IN DIMENSIONFOURCHRIS WENDLAbstrat. We derive a numerial riterion for J{holomorphi urvesin 4{dimensional sympleti obordisms to ahieve transversality with-out any generiity assumption. This generalizes results of Hofer-Lizan-Sikorav [HLS97℄ and Ivashkovih-Shevhishin [IS99℄ to allow punturedurves with boundary that generally need not be somewhere injetiveor immersed. As an appliation, we ombine this with the intersetiontheory of puntured holomorphi urves to prove that ertain geomet-rially natural moduli spaes are globally smooth orbifolds, onsistinggenerially of embedded urves, plus unbranhed multiple overs thatform isolated orbifold singularities.Contents1. Introdution 21.1. The setting 31.2. Loal and global transversality results 71.3. Outline of the proofs 102. Cauhy-Riemann type operators on bundles 122.1. Generalities 122.2. The line bundle ase 153. The normal operator for a holomorphi urve 183.1. Teihm�uller slies and Cauhy-Riemann operators 183.2. Funtional analyti setup 233.3. The generalized normal bundle 303.4. Splitting the linearization 333.5. The transversality riterion in dimension four 384. Appliation to spaes of embedded urves 384.1. Intersetion theory for puntured holomorphi urves 394.2. Some overing relations 434.3. Multiply overed limits are immersed 47Appendix A. Counting boundary zeros 55Referenes 572000 Mathematis Subjet Classi�ation. Primary 32Q65; Seondary 57R17.Researh partially supported by an NSF Postdotoral Fellowship (DMS-0603500) anda DFG grant (CI 45/2-1). 1

2 CHRIS WENDL1. IntrodutionAppliations of pseudoholomorphi urves in sympleti 4{manifolds andontat 3{manifolds often depend on the rather speial transversality prop-erties that exist in this low-dimensional setting. Unlike the general situa-tion, where the moduli spae is smooth only at somewhere injetive urvesand only for generi data, ertain moduli spaes in dimension 4 are smoothfor all data as long as the right numerial riteria are satis�ed. For exam-ple, suppose (W;J) is any almost omplex 4{manifold, (�; j) is a losedRiemann surfae of genus g and u : (�; j) ! (W;J) is a pseudoholomor-phi urve. The following result was �rst mentioned by Gromov [Gro85℄,and later given a omplete proof by Hofer-Lizan-Sikorav:Theorem ([HLS97℄). If u is embedded and 1(u�TW; J) > 0, then the mod-uli spae of unparametrized pseudoholomorphi urves near u is a smoothmanifold of dimension 21(u�TW; J) + 2g � 2.Observe that the assumptions in the theorem do not require any datato be generi: rather, the riterion 1(u�TW ) > 0 implies regularity foruniquely 4{dimensional reasons that are loosely related to positivity ofintersetions. The dimension of the moduli spae is then equal to its so-alled virtual dimension, also alled the index of u, de�ned as ind(u) =21(u�TW ) + 2g � 2. Thus 1(u�TW ) > 0 is equivalent to the onditionind(u) > 2g � 2, whih leads one to summarize results of this type withthe motto, \the moduli spae is smooth if the index is suÆiently large."Exatly how large the index needs to be depends on the genus: this is thereason why almost all appliations of suh results (inluding the one in thispaper) prinipally involve urves of genus zero.Versions of the theorem above for ompat immersed holomorphi urveswith boundary were proved in [HLS97℄, and similar results for immersedpuntured urves in sympletizations of ontat 3{manifolds also appearedin [HWZ99,Wen05℄. The reason for dealing with immersed urves in par-tiular was that one ould then desribe a neighborhood of u in the modulispae using setions of its normal bundle and thus redue the linearizationto the so-alled normal Cauhy-Riemann operator. The key fat aboutthis operator is that its domain is a spae of setions on a omplex linebundle, thus the zeroes of these setions an be ounted and related tothe same topologial invariants that appear in the index formula, givingrise to onstraints on the kernel and okernel. A generalization for losedholomorphi urves with ritial points was arried out in [IS99℄, where thenormal bundle was replaed by a normal sheaf.In this paper, we establish a transversality riterion that generalizesall of the above results, applying to arbitrary J{holomorphi urves withtotally real boundary and ylindrial ends in 4{dimensional sympletiobordisms.
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TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 3One of the advantages of this approah to transversality is that it ap-plies to more than just somewhere injetive urves: in x4, we will desribea setting in whih our riterion, ombined with some nontrivial interse-tion theory, implies that ertain moduli spaes are smooth orbifolds, whihonsist mostly of embedded holomorphi urves but also have isolated sin-gularities onsisting of unbranhed multiple overs over embedded urves.These moduli spaes arise quite naturally in a geometri setting: they arethe building bloks of J{holomorphi foliations, f. [HWZ03,Wen08℄.1.1. The setting. Let n � 2. In all of what follows, (W;J) will denotea 2n{dimensional almost omplex manifold with nonompat ylindrialends, whih approah (2n� 1){manifoldsM� equipped with stable Hamil-tonian strutures. We now reall the preise de�nitions.We use the term stable Hamiltonian struture to mean the olletion ofdata that were introdued in [BEH+03℄ as the appropriate setting for pseu-doholomorphi urves in ylindrial manifolds. Namely, suh a strutureH = (�;X; !; J) on a (2n� 1){manifoldM onsists of the following data:1� � is a smooth ooriented hyperplane distribution on M� ! is a smooth losed 2{form on M whih restrits to a sympletistruture on the vetor bundle � !M� X is a smooth vetor �eld whih is transverse to �, satis�es !(X; �) �0, and whose ow preserves �� J is a smooth omplex struture on the bundle � !M , ompatiblewith ! in the sense that !(�; J �) de�nes a bundle metriNote that, as a onsequene of these de�nitions, the ow 'tX : M ! Mof X also preserves the sympleti struture !j�, and the speial 1{form �assoiated to � and X by the onditions�(X) � 1; ker� � �;satis�es d�(X; �) � 0. The sympletization R �M now admits a naturalR{invariant almost omplex struture ~J , de�ned by the onditions~J�a = X; ~J j� = Jwhere a denotes the oordinate on the R{fator and �a 2 T (R �M) is theorresponding unit vetor �eld.Reall that a T{periodi orbit x : R ! M is nondegenerate if the lin-earized return map d'TX(x(0))j�x(0) does not have 1 as an eigenvalue. Moregenerally, a Morse-Bott manifold of T{periodi orbits is a submanifoldN �M tangent to X suh that 'TX jN is the identity, and for all p 2 N ,TpN = ker �d'TX(p)� 1

� :1The inlusion of J in the data is somewhat nonstandard but onvenient for ourpurposes. The data (�;X; !) are equivalent to the de�nition of a framed Hamiltonianstruture stated in [EKP06℄, with the exeption that the latter requires ! to be exat;here it need only be losed.

4 CHRIS WENDLWe will say that an orbit with period T is Morse-Bott if it is ontainedin a Morse-Bott manifold of T{periodi orbits; note that this manifoldould be a irle, meaning the orbit is nondegenerate. Moreover, X itselfis said to be Morse-Bott (or nondegenerate) if every periodi orbit of X isMorse-Bott (or nondegenerate).We now �x two losed (2n� 1){manifolds M� with stable Hamiltonianstrutures H� = (��; X�; !�; J�) and assoiated data �� and ~J�, as wellas an almost omplex 2n{manifold (W;J) whih deomposesW = E� [M� W0 [M+ E+so that� W0 is a ompat 2n{manifold with boundary �W0 =M� tM+� (E�; J) �= ((�1; 0℄�M�; ~J�) and (E+; J) �= ([0;1)�M+; ~J+)Fix also a totally real submanifold L � W .Near �E� � E�, the data H� de�ne natural sympleti forms !� +d(a��) whih an be extended (non-uniquely) over E�. Then given anysympleti form ! on W0 that attahes smoothly to !� + d(a��) at �W0,we denote by J!(W;H+;H�) the spae of almost omplex strutures J onW that are ompatible with ! on W0 and satisfy the onditions above.2We will onsider pseudoholomorphi (or J{holomorphi) urvesu : ( _�; j)! (W;J);where _� = � n �, (�; j) is a ompat onneted Riemann surfae withboundary, � � int� is a �nite set of interior puntures,3 and by de�ni-tion u satis�es the nonlinear Cauhy-Riemann equation Tu Æ j = J Æ Tuand boundary ondition u(��) � L. We also will assume u is asymptoti-ally ylindrial, whih means the following. Partition the puntures intopositive and negative subsets � = �+ [ ��;and at eah z 2 ��, hoose a biholomorphi identi�ation of a punturedneighborhood of z with the half-ylinder Z�, whereZ+ = [0;1)� S1 and Z� = (�1; 0℄� S1:Then writing u near the punture in ylindrial oordinates (s; t), for jsjsuÆiently large, it satis�es an asymptoti formula of the formu Æ '(s; t) = exp(Ts;x(T t)) h(s; t) 2 E�:Here T > 0 is a onstant, x : R ! M� is a T{periodi orbit of X�,the exponential map is de�ned with respet to any R{invariant metri2The sympleti form ! will play almost no role in anything that follows, but beomesimportant in appliations, e.g. it yields ompatness results as in [BEH+03℄.3For brevity we're leaving out the ase of puntures on the boundary, though thisan presumably be handled by similar methods.



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 5on R � M�, h(s; t) 2 �x(T t) goes to 0 uniformly in t as s ! �1 and' : Z� ! Z� is a smooth embedding suh that'(s; t)� (s+ s0; t+ t0)! 0as s! �1 for some onstants s0 2 R, t0 2 S1. We will denote by z theT{periodi orbit parametrized by x, and all it the asymptoti orbit of uat the punture z. With this asymptoti behavior in mind, it is onvenientto think of ( _�; j) as a Riemann surfae with ylindrial ends, and we willsometimes refer to neighborhoods of the puntures as ends of _�. As is wellknown (f. [Hof93, HWZ96℄), the asymptotially ylindrial holomorphiurves in (W;J) are preisely those whih satisfy a ertain �nite energyondition, though we will not need this fat here.Denote by M := M(J; L) the moduli spae of equivalene lasses ofasymptotially ylindrial J{holomorphi urves inW with boundary on L;here an equivalene lass is de�ned by the data (�; j;�; u) where � isonsidered to be an ordered set, and we de�ne (�; j;�; u) � (�0; j 0;�0; u0) ifthere exists a biholomorphi map ' : (�; j) ! (�0; j 0) taking � to �0 withthe ordering preserved, suh that u = u0 Æ'. We shall often abuse notationand write u 2 M or (�; j;�; u) 2 M when we mean [(�; j;�; u)℄ 2 M.The moduli spae has a natural topology de�ned by C1lo{onvergene on_� and uniform onvergene up to the ends. For any u 2 M, denote byMu the onneted omponent of M ontaining u.It is often interesting to onsider subspaes of M de�ned by imposingonstraints on the asymptoti behavior at some of the puntures.De�nition 1.1. For a given puntured surfae _� = � n (�+ [ ��), let denote a hoie of periodi orbit z in M� for some subset of punturesz 2 ��. We all  a hoie of asymptoti onstraints,4 and refer to eahpunture z for whih  spei�es an orbit z as a onstrained punture.For any hoie of domain _� and asymptoti onstraints , we an onsiderthe onstrained moduli spae M �Monsisting of urves u : _� ! W that approah the spei�ed orbit z ateah of the onstrained puntures z 2 �, and arbitrary orbits at the un-onstrained puntures. The onstraints de�ne another partition of �,� = �C [ �U4One an impose more stringent onstraints as well, e.g. on the rate at whih u on-verges to its asymptoti orbits; suh onstraints are treated in [Wenb,Wena℄. Anotherpossibility is to allow marked points that map to spei�ed points in the image, perhapswith usps of presribed order, as in [Bar00,Fra05℄. We omit all these possibilities herefor the sake of brevity.

6 CHRIS WENDLinto the sets of onstrained and unonstrained puntures respetively. Thepositive and negative subsets within eah of these will be denoted by ��Cand ��U .If the asymptoti orbits of u are all Morse-Bott, then the so-alled virtualdimension of Mu is given by the Fredholm index(1.1) ind(u; ) = (n� 3)�( _�) + 2�1 (u�TW ) + ��(u; )where �1 (u�TW ) is the relative �rst Chern number of (u�TW; J)! _� withrespet to a suitable hoie of trivialization � along the ends and boundary,and ��(u; ) is a sum of Conley-Zehnder indies of the asymptoti orbitsand a Maslov index at the boundary with respet to �; a preise de�nitionwill be given in x3.2.As we shall review in more detail in x3, the nonlinear Cauhy-Riemannequation an be expressed as a smooth setion of a Banah spae bundle��J : B ! E : (j; u) 7! Tu+ J Æ Tu Æ j;suh that a neighborhood of any non-onstant (�; j;�; u) inM is in one-to-one orrespondene with ���1J (0)=Aut( _�; j), where the group Aut( _�; j)of biholomorphi maps (�; j) ! (�; j) �xing � ats on pairs (j 0; u0) 2���1J (0) by ' � (j 0; u0) = ('�j 0; u0 Æ '):It is then standard to say that (�; j;�; u) 2 M is regular if it represents atransverse intersetion with the zero-setion, i.e. the linearizationD ��J(j; u) : T(j;u)B ! E(j;u)is surjetive. We will give a preise de�nition in x3.2 one the funtionalanalyti setup is in plae. Observe that if u : _� ! W is not onstant,then the ation of Aut( _�; j) indues a natural inlusion of its Lie algebraaut( _�; j) into kerD ��J(j; u). For the sake of ompleteness, we will presentin x3.2 a proof of the following standard folk theorem:Theorem 0. Assume u : ( _�; j) ! (W;J) is a non-onstant urve in Mwith only Morse-Bott asymptoti orbits. If u is regular, then a neighborhoodof u inM naturally admits the struture of a smooth orbifold of dimensionind(u; ), whose isotropy group at u isAut(u) := f' 2 Aut( _�; j)j u = u Æ 'g;and there is a natural isomorphismTuM = kerD ��J(j; u)=aut( _�; j):In partiular, regularity implies that M is a manifold near u if u issomewhere injetive, and in general the isotropy group for an orbifold sin-gularity has order bounded by the overing number of u. Note that inontrast to the standard theory of J{holomorphi urves (f. [MS04℄), we



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 7shall in this paper be espeially interested in ases where u ahieves reg-ularity despite being multiply overed, so the moduli spae is smooth butmay be an orbifold rather than a manifold.In the ase dimW = 4, another number that turns out to play an impor-tant role is the so-alled normal �rst Chern number N (u; ) 2 12Z, whihan be de�ned most simply via the formula(1.2) 2N(u; ) = ind(u; )� 2 + 2g +#�0() + #�0(��):Here g is the genus of � and �0() � � is the subset of puntures for whihthe asymptoti orbit has even Conley-Zehnder index (this is the orretde�nition if all orbits are nondegenerate; in the Morse-Bott ase the de�-nition is more ompliated and may depend on the asymptoti onstraints,see x3.2). We will be able to give a better motivated de�nition in x3.5 usingthe linear theory in x2, but for now, the signi�ane of N(u; ) an be illus-trated by onsidering the ase where � is losed and � = ;. Then a ombi-nation of (1.1) and (1.2) yields the relation N (u; ) = 1(u�TW )� �(�),so N (u; ) is the �rst Chern number of the normal bundle if u is immersed.This is the appropriate philosophial interpretation of N (u; ) in general,as will beome obvious from further onsiderations.As a �nal piee of preparation, note that sine a non-onstant holomor-phi urve u : _� ! W is neessarily immersed near the ends, it an haveat most �nitely many ritial points. Indeed, as we will review in x3.3, thebundle u�TW ! _� admits a natural holomorphi struture suh that thesetion du 2 �(HomC (T _�; u�TW ))is holomorphi; its ritial points are thus isolated and have positive order,whih we denote by ord(du; z) for any z 2 Crit(u). The quantity(1.3) Z(du) := Xz2du�1(0)\int _� ord(du; z) + 12 Xz2du�1(0)\�� ord(du; z)is therefore a �nite nonnegative half-integer (or integer if �� = ;), and itequals zero if and only if u is immersed.1.2. Loal and global transversality results. We now state the mainresult of this paper. The following will be a onvenient piee of shorthandnotation: if �� 6= ;, then for given onstants  2 R and G � 0, de�ne thenonnegative integerK(; G) = minfk + ` j k; ` nonnegative integers,k � G and 2k + ` > 2g:(1.4)If �� = ; we modify this de�nition slightly by requiring the integer ` tobe even. Note that in most appliations known to the author, it will turnout that  < 0, so K(; G) = 0.

8 CHRIS WENDLTheorem 1. Suppose dimW = 4 and (�; j;�; u) 2 M is a non-onstanturve with only Morse-Bott asymptoti orbits. If(1.5) ind(u; ) > N (u; ) + Z(du);then u is regular. Moreover when this ondition is not satis�ed, we have thefollowing bounds on the dimension of kerD ��J(j; u): if ind(u; ) � 2Z(du)then2Z(du) � dim�kerD ��J(j; u)=aut( _�; j)�� 2Z(du) +K(N(u; )� Z(du);#�0())and if 2Z(du) � ind(u; ), thenind(u; ) � dim�kerD ��J(j; u)=aut( _�; j)�� ind(u; ) +K(N (u; ) + Z(du)� ind(u; );#�0()):Remark 1.2. Plugging in the de�nition of N (u; ) and the index formula,the ondition (1.5) is equivalent toind(u; ) > 2g +#�0() + #�0(��) � 2 + 2Z(du);or 2�1 (u�TW ) + ��(u; ) + #�1() > 2Z(du);where �1() := � n �0(). These are diret generalizations of the riteriain [HLS97,Wen05, IS99℄.Remark 1.3. An important speial ase of the dimension bound, whihwe will use in the appliation, appears when N(u; ) < Z(du): thenK(N(u; ) � Z(du);#�0()) = 0, so dimker �D ��J(j; u)� = 2Z(du), itssmallest possible value.Results of this type have been used previously for a variety of appli-ations, inluding disk �lling and deformation arguments in ontat 3{manifolds [Hof93, HWZ95b,Wen08℄, and the sympleti isotopy problem[She01,Sik03℄. In the last setion of this paper, we will use our generaliza-tion to prove a somewhat surprising global struture theorem for ertain ge-ometrially natural moduli spaes of holomorphi urves in 4{dimensionalsympleti obordisms.To motivate this, onsider for a moment the ase of a losed holomorphiurve u : � ! W that satis�es the riterion ind(u) > N(u) + Z(du). Weknow then that M is smooth in some neighborhood of u, but ideally onewould like to know that the entire onneted omponentMu is smooth. Ingeneral this will not be true, as other urves inMu may have more ritialpoints and thus fail to satisfy the riterion. One favorite way to evadethis issue is by assuming that u is embedded : then the adjuntion formula(f. [MS04℄) guarantees that all somewhere injetive urves u0 2 Mu arealso embedded, hene Z(du0) = 0 and the riterion is satis�ed. The ath is



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 9that unless one imposes additional restritive onditions on the homologylass [u℄ 2 H2(W ), not every urve in Mu need be somewhere injetive:a sequene of embedded urves may onverge to a branhed over, whihwill not always be regular sine its branh points are ritial. Thus Mumay fail to be globally smooth if it ontains branhed overs, and there isno way to avoid this in general.5The surprising fat is that if we impose an additional, rather naturalintersetion-theoreti ondition on u, then the multiple overs that ariseturn out to be \harmless": even the multiple overs are regular, and Muis thus globally smooth. The ondition in question arises from the studyof J{holomorphi foliations: in partiular, we fous on puntured embed-ded urves u : _� ! W that exist in 1{ or 2{dimensional families (withrespet to some onstraints ) and have the property of never intersetingtheir neighbors, i.e. these families foliate either an open set or a hyper-surfae ontaining u( _�) � W . A omplete haraterization of suh urvesis given in [Wenb℄ and will be reviewed in x4; we refer to them as stable,niely embedded urves. If u is suh a urve, then it automatially satis�esthe riterion of Theorem 1, thus the loal struture of Mu near u is wellunderstood, but one still has the global question:Question. Can a sequene of stable, niely embedded urves onverge to amultiple over?If the answer is no, then Mu is a smooth manifold, and we'll show thatthis is indeed the ase whenever W is an R{invariant sympletization (withgeneri J) or a losed sympleti manifold. In general, it turns out thatmultiple overs an appear, but only if they are immersed, in whih asethe regularity riterion is still satis�ed. The proof of this fat will make useof our transversality arguments for non-immersed urves, establishing ine�et that any omponent ofM ontaining suh a non-immersed multipleover an onsist only of multiple overs. The result is:Theorem 2. For generi J, if u 2 M is a stable, niely embedded urve,then every urve in Mu is regular: in partiular Mu naturally admits thestruture of a smooth orbifold of dimension ind(u; ) 2 f1; 2g, with onlyisolated singularities. Moreover, all urves in Mu are embedded exeptfor a disrete subset, onsisting of unbranhed multiple overs over stable,niely embedded index 0 urves, and the images of any two urves in Muare either idential or disjoint.This will follow from a more general result (Theorem 4) proved in x4,whih applies also to parametrized moduli spaes under a generi homotopyof almost omplex strutures. As a simple orollary, we observe the twoaforementioned ases where the answer to the question posed above is no:5Note that multiply overed urves also pose a problem in the standard transversalitytheory, but for ompletely di�erent reasons.

10 CHRIS WENDLCorollary 1.4. For the urve u : _� ! W in Theorem 2, suppose thateither� _� is a losed Riemann surfae (without puntures), or� (W;J) = (R � M; ~J) is the sympletization of a 3{manifold withstable Hamiltonian struture H = (X; �; !; J), where J is generi.Then every urve in Mu is embedded, thus Mu is a manifold.Proof. For the R{invariant sympletization (R �M; ~J), a multiple overu = v Æ ' would require a somewhere injetive urve v of index 0, whihdoesn't exist if J is generi. The reasoning in the losed ase is di�erent:it depends on the fat that, as we'll show in x4.3, stable niely embeddedurves always have genus zero. Then ' must be a holomorphi map S2 !S2 with no branh points, ontraditing the Riemann-Hurwitz formula. �Unbranhed multiple overs an and do appear in general if _� has pun-tures and (W;J) is a non-ylindrial manifold, e.g. a nontrivial sympletiobordism. We will show an example at the end of x4, where the resultingolletion of urves atually foliates W .The phenomenon illustrated by Theorem 2 ontrasts with the more gen-eral study of holomorphi urves, e.g. in Sympleti Field Theory, wheretransversality an only be ahieved in general by abstrat perturbations.Suh perturbations usually destroy many of the nie geometri propertiesof holomorphi urves|suh as positivity of intersetions|but the philoso-phy here is that for urves that are espeially nie in some geometri sense,preisely these nie properties make abstrat perturbations unneessary.In partiular, the theorem is part of a larger program outlined in [Wena℄,to prove that the ompati�ed moduli spaes of urves that an our infoliations always have a nie global struture: in priniple, after provinga suitable ompatness theorem for this \nie" lass of urves, transver-sality should always follow \for free". Suh results are neessary tools inthe general theory of J{holomorphi foliations, as one would like to provethat these foliations an always be arried through under various types ofhomotopies and strething arguments. The situation is already well un-derstood in the R{invariant ase due to [Wena℄, and Theorem 2 may beseen as a partial result in the diretion of generalizing that ompatnesstheorem to sympleti obordisms. (See Example 4.22 and Remark 4.23for an idea of what suh a generalization might look like.)1.3. Outline of the proofs. The tehnial bakbone of Theorem 1 is theanalysis of the normal Cauhy-Riemann operator DNu assoiated to anyholomorphi urve u : _�! W . As we will reall, this is well de�ned evenif u has ritial points, beause there always exists a splittingu�TW = Tu �Nu



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 11suh that (Tu)z is the image of Tz _� under du at all regular points z. Thedomain of DNu is then a spae of setions of Nu, a omplex line bundle. Wedesribe the required linear theory of suh operators in x2, giving riteriathat guarantee surjetivity of DNu as well as bounds on the dimension ofits kernel.The next step is then to relate the operatorDNu to the nonlinear problem.In the immersed ase, the traditional approah (f. [HLS97, HWZ99℄) isto set up the nonlinear problem to detet J{invariant maps that an beexpressed as setions of the normal bundle of a given solution u, in whihase the linearization is equivalent to DNu . This is no longer possible whenu has ritial points; Ivashkovih and Shevhishin in [IS99℄ dealt with thisdiÆulty by replaing the normal bundle with a normal sheaf and provingthat u is regular if and only if DNu is surjetive. Our approah takes someinspiration from theirs but is less algebrai and more analytial in avor, aswe avoid any referene to sheaves and exat sequenes in favor of Banahspae splittings and Fredholm operators. Unlike [HLS97,HWZ99℄, we treatthe nonlinear problem in the way that is standard for arbitrary dimensions,as a setion ��J : T � B ! Eof a suitable Banah spae bundle, where B is a (globally de�ned) Banahmanifold of maps _� ! W (inluding reparametrizations) and T is a (lo-ally de�ned) �nite dimensional spae of omplex strutures parametrizingon open subset in the Teihm�uller spae of _�. We will use the splittingu�TW = Tu � Nu and some properties of the standard Cauhy-Riemannoperator on �(T _�) to give a preise relation (Theorem 3) between thekernels and images of D ��J(j; u) and DNu in arbitrary dimensions. A on-sequene is the fat that eah of these operators is surjetive if and only ifthe other is.As for the proof of Theorem 2: assume un is a sequene of stable, nielyembedded urves onverging to a multiple over u = vÆ', where v is some-where injetive. We observe �rst that the embedded urves un neessarilysatisfy the riterion of Theorem 1, so this will remain true for the limit uunless it aquires ritial points. The main task then is to show that u isimmersed, and the kernel bounds in Theorem 1 for non-immersed urvesturn out to be a useful tool in proving this. The �rst step is to show thatthe underlying simple urve v is embedded and has index 0: this follows bya areful appliation of the intersetion theory of puntured holomorphiurves, whih we review at the beginning of x4. Note that this is the onlypoint in the argument at whih we assume J to be generi: it's neessary toobtain a lower bound on the index of v and thus on its related intersetioninvariants, but it will not be required in proving transversality for u. Withthis established, ritial points of u arise only from branh points of theover ', hene Z(du) = Z(d'), i.e. the rami�ation number of '. Now the

12 CHRIS WENDLdimension bound in Theorem 1 turns out to imply that a neighborhoodof u in Mu \lives inside a spae of dimension at most 2Z(du)"; we willmake this statement preise later using the impliit funtion theorem. Butif Z(du) > 0, then the spae of holomorphi branhed overs homotopito ' is nontrivial and has preisely this dimension, whih yields a 2Z(du){dimensional smooth submanifold of Mu ontaining u. It follows that thisdesribes a neighborhood of u inMu, so any sequene of urves onvergingto u must then have the form un = v Æ 'n, i.e. they are all multiple overswith the same image, and this is a ontradition.Aknowledgments. Many thanks to Denis Auroux, Kai Cieliebak, OliverFabert, Helmut Hofer, Sam Lisi, Klaus Mohnke, Sewa Shevhishin andRihard Siefring for useful onversations.2. Cauhy-Riemann type operators on bundles2.1. Generalities. Let (�; j) be a ompat Riemann surfae with genus g,m � 0 boundary omponents, and a �nite set of positive/negative interiorpuntures � = �+ [ �� � int�, with the orresponding puntured sur-fae denoted by _� = � n �. Regarding _� as a surfae with ylindrialends fUzgz2�� biholomorphi to the half-ylinders Z�, it admits a natu-ral ompati�ation � obtained by replaing [0;1) � S1 by [0;1℄ � S1and (�1; 0℄� S1 by [�1; 0℄� S1. The ompati�ed spae is naturally atopologial 2{manifold with boundary�� = �� t[z2� Æz;where for eah z 2 ��, Æz �= f�1g� S1 denotes the orresponding \irleat in�nity". Note that in making this de�nition we've hosen ylindrialoordinates (s; t) 2 Z� over eah end fUzgz2��, and we will ontinue touse these oordinates whenever onvenient. The de�nitions of � and Æz donot depend on this hoie, and in fat the resulting identi�ation of eahÆz with S1 = R=Z is unique up to a onstant shift.Let E ! � be a omplex vetor bundle of rank n whose restrition to _�and eah of the irles Æz has a smooth struture. Assume moreover that Eis given a Hermitian struture over eah end Uz. By an admissible trivial-ization of E near z 2 ��, we mean a smooth unitary bundle isomorphism� : EjUz ! Z� � R2n (where R2n is identi�ed with C n), whih overs theoordinate map Uz ! Z� and extends ontinuously to a smooth unitarytrivialization EjÆz ! S1 � R2n . An asymptoti operator at z 2 � is then abounded real linear operatorAz : H1(EjÆz)! L2(EÆz)



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 13whose expression with respet to any admissible trivialization takes theform H1(S1;R2n)! L2(S1;R2n) : � 7! �J0 _� � S�;here J0 = i is the standard omplex struture on R2n = C n and S =S(t) is any smooth loop of symmetri 2n{by{2n matries. This de�nes anunbounded self-adjoint operator on the omplexi�ation of L2(EjÆz). Wesay that Az is nondegenerate if its spetrum �(Az) does not ontain 0.De�ne the standard ��{operator for smooth funtions on _� by�� : C1( _�; C ) ! 
0;1( _�) : f 7! df + i df Æ j:For any two omplex vetor bundles E and E 0 over the same base, wedenote by HomC (E;E 0) and HomC (E;E 0) the orresponding bundles ofomplex linear and antilinear maps E ! E 0 respetively. There are alsothe orresponding endomorphism bundles EndC (E) := HomC (E;E) andEndC (E) := HomC (E;E).De�nition 2.1. A (smooth, real linear) Cauhy-Riemann type operatoron E is a �rst-order linear di�erential operatorD : � (Ej _�)! ��HomC (T _�; Ej _�)�suh that for every smooth setion v : _� ! E and smooth funtion f :_�! R, D(fv) = (��f)v + f(Dv):Given an asymptoti operator Az at z 2 ��, we will say that D is asymp-toti to Az if its expression in an admissible trivialization � near z takesthe form (Dv)(s; t) = �sv(s; t) + J0�tv(s; t) + S(s; t)v(s; t);where S(s; t) is a smooth family of real-linear transformations on R2n whihonverges uniformly as s ! �1 to a smooth loop of symmetri matriesS(t), suh that �J0 ddt � S(t)is the oordinate expression for Az with respet to �.De�ne the Banah spae W k;p(E) to onsist of setions v : _� ! E oflass W k;plo suh that in any hoie of admissible trivialization near eahpunture z 2 ��, the orresponding map Z� ! R2n is of lass W k;p. If` � Ej�� is a smooth totally real submanifold, de�ne the subspaeW k;p` (E) = fv 2 W k;p(E) j v(��) � `g:Observe that HomC (T _�; E) also admits a natural extension over �, and theombination of the oordinates (s; t) with the trivialization � near z 2 �also gives rise to a trivialization of HomC (T _�; E). Using this we an de�ne

14 CHRIS WENDLthe Banah spaes W k;p(HomC (T _�; E)). We will generally write W 0;p asLp.Now �x a smooth totally real subbundle ` � Ej��, and asymptotioperators Az for eah z 2 �, denoting the olletion of all these operatorsby A�. Let D be a Cauhy-Riemann type operator that is asymptotito Az for eah z 2 �. We will then be interested in the bounded linearoperator D : W 1;p` (E)! Lp(HomC (T _�; E)):This is a Fredholm operator if all the Az are nondegenerate, and its indexis determined by a variety of topologial quantities whih we shall reallnext.Fix a set of admissible trivializations near eah punture z 2 � as wellas smooth omplex trivializations of Ej��, denoting the olletion of allthese hoies by �. One an then de�ne the relative �rst Chern number�1 (E) 2 Z. If E is a line bundle, then �1 (E) is de�ned simply by ountingzeroes of a generi smooth setion _� ! E that extends ontinuously over� and is a nonzero onstant with respet to � on ��. For higher rankbundles, �1 (E) an be de�ned axiomatially via the diret sum propertyand the assumption that it mathes the ordinary �rst Chern number if _�is losed.For eah onneted omponent C � ��, the totally real subbundle `jC �EjC has aMaslov index �� (EjC ; `jC), and we shall denote the sum of theseby ��(E; `).Finally for eah punture z 2 ��, the asymptoti operatorAz, expressedas �J0�t � S(t) with respet to �, gives rise to a linear Hamiltonian owin R2n via the equation _�(t) = J0S(t)�(t):If Az is nondegenerate, then the resulting path of sympleti matries	(t) 2 Sp(n) ends at a matrix 	(1) whih does not have 1 as an eigenvalue,so it has a well de�ned Conley-Zehnder index whih we denote by ��CZ(Az).All of this together allows us to de�ne the total Maslov index��(E; `;A�) := ��(E; `) + Xz2�+ ��CZ(Az)� Xz2�� ��CZ(Az):The Fredholm index of D is then given by the following generalization ofthe Riemann-Roh formula:(2.1) ind(D) = n�( _�) + 2�1 (E) + ��(E; `;A�):This follows from the formula for the ase �� = ; proved in [Sh95℄,together with a gluing/doubling argument; f. [Wen05℄. Note that all de-pendene on � in the right hand side of (2.1) anels out.Let us briey review the useful generalization of the above that arises byonsidering Banah spaes with exponential weights. Pik numbers Æz 2 R



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 15for eah z 2 � and denote the olletion of these by Æ� = fÆzgz2�. Thenwe de�ne W k;p;Æ�(E)to be the spae ofW k;plo setions v : _�! E suh that in an admissible trivi-alization near eah z 2 ��, the funtion Z� ! R2n : (s; t) 7! e�Æzsv(s; t) isof lass W k;p. This imposes an exponential deay ondition at eah pun-ture where Æz > 0, or a bound on exponential growth if Æz < 0. There arenow obvious de�nitions for the spaesW 1;p;Æ�` (E) and Lp;Æ�(HomC (T _�; E)),so that the Cauhy-Riemann type operatorD de�nes a bounded linear mapD :W 1;p;Æ�` (E)! Lp;Æ�(HomC (T _�; E)):It is simple to show (f. [HWZ99,Wenb℄) that this map is onjugate toanother Cauhy-Riemann operator DÆ� : W 1;p` (E) ! Lp(HomC (T _�; E)),whih is asymptoti at z 2 �� to Az � Æz; denote the latter olletion ofoperators byA��Æ�. The operator on the weighted spae is thus Fredholmif and only if �Æz 62 �(Az) for all z 2 ��, and its index an then be reado� again from (2.1), but with A� � Æ� replaing A�. Note in partiularthat if all Az are nondegenerate and all Æz are suÆiently lose to 0, thenthe weighting does not hange the index of D.2.2. The line bundle ase. For the rest of this setion we assume n = 1,so eah asymptoti operator is equivalent to an unbounded self-adjointoperator on L2(S1;R2) of the formA = �J0 ddt�S(t), whose eigenfuntionsan be assigned winding numbers. For � 2 �(A) de�ne w(�) 2 Z to bethe winding number of any nontrivial setion in the �{eigenspae of A;this number depends only on �, by a result in [HWZ95a℄. Moreover, it isshown in the same paper that w(�) is an inreasing funtion of � whihtakes every integer value exatly twie (ounting multipliity). We de�ne��(A) = maxfw(�) j � 2 �(A), � < 0g;�+(A) = minfw(�) j � 2 �(A), � > 0g;p(A) = �+(A)� ��(A);(2.2)so if A is nondegenerate, p(A) 2 f0; 1g. By another result in [HWZ95a℄,these winding numbers are related to the Conley-Zehnder index by(2.3) �CZ(A) = 2��(A) + p(A) = 2�+(A)� p(A):This entire disussion applies also to the operators Az one trivializations� are spei�ed; we thus denote these winding numbers by ���(Az), andobserve that p(Az) 2 f0; 1g does not depend on �. The latter is the parityof the punture z 2 �, de�ning a partition of � into sets of even and oddpuntures, denoted �0 and �1 respetively.

16 CHRIS WENDLDe�ne the 12Z{valued adjusted �rst Chern number of (E; `;A�) by(2.4) 1(E; `;A�) = �1 (E) + 12��(E; `) + Xz2�+ ���(Az)� Xz2�� ��+(Az);and observe that this does not depend on �. Using (2.3) and the indexformula, it is easy to show that(2.5) 21(E; `;A�) = ind(D)� 2 + 2g +#�0 +m:Note that 1(E; `;A�) is neessarily an integer if �� = ;.The adjusted �rst Chern number has the following interpretation whihjusti�es its name. If v 2 kerD is a nontrivial setion, then the equationDv = 0 together with the similarity priniple implies that v has onlyisolated zeroes, all of positive order. Moreover, by arguments in [HWZ96,Sie08℄, v satis�es an asymptoti formula of the form(2.6) v(s; t) = e�s(e�(t) + r(s; t))in admissible trivializations near eah punture z 2 ��, where � 2 �(Az)satis�es �� < 0, e� 2 �(EjÆz) is a setion in the orresponding eigenspaeand the remainder r(s; t) goes to zero as s! �1. It follows that v(s; t) hasonly �nitely many zeroes, and near z 2 �� it has a well de�ned asymptotiwinding number wind�z (v) 2 Z, whih is bounded from above by ���(Az)if z 2 �+, or from below by ��+(Az) if z 2 ��. We use this to de�ne theasymptoti vanishing of v:Z1(v) = Xz2�+ ����(Az)� wind�z (v)�+ Xz2�� �wind�z (v)� ��+(Az)� :De�ne also the 12Z{valued ount of zeroes,Z(v) = Xz2v�1(0)\int _� ord(v; z) + 12 Xz2v�1(0)\�� ord(v; z);where the order of a zero on the boundary is de�ned by a doubling argu-ment desribed in the appendix. Now a simple omputation using thesede�nitions and Prop. A.2 yields the relation(2.7) Z(v) + Z1(v) = 1(E; `;A�):Observe that both terms on the left hand side are manifestly nonnegative.The next result is the main objetive of this setion. Reall from (1.4)the nonnegative integer K(; G).Proposition 2.2.(1) In the ase ind(D) � 0, D is injetive if 1(E; `;A�) < 0, andotherwise dimkerD � K (1(E; `;A�);#�0) :



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 17(2) In the ase ind(D) � 0, D is surjetive if ind(D) > 1(E; `;A�),and otherwiseind(D) � dimkerD � ind(D) +K (1(E; `;A�)� ind(D);#�0) :Proof. The argument rests ruially on (2.7), together with the observationthat if z 2 �0, then the spae of eigenfuntions with negative eigenvalue andwinding ���(Az) is 1{dimensional, as is the spae with positive eigenvalueand winding ��+(Az).We prove the result �rst for the ase ind(D) � 0. If 1(E; `;A�) < 0,then D is learly injetive, else (2.7) would fore any nontrivial setionv 2 kerD to have either Z(v) < 0 or Z1(v) < 0. To establish the di-mension bound for kerD when 1(E; `;A�) � 0, hoose any nonnegativeintegers k and n suh that k � #�0 and 2k+n > 21(E; `;A�). In this sit-uation we an onstrut an injetive homomorphism from kerD into a realvetor spae of dimension n+ k. Indeed, if �� 6= ;, pik n distint points�1; : : : ; �n 2 ��, and hoose also k distint even puntures z1; : : : ; zk 2 �0.For eah of the zj, the orrespondene v 7! e� oming from the asymp-toti formula (2.6) de�nes a linear map from kerD into the 1{dimensionalvetor spae Vzj onsisting of eigenfuntions of Azj with winding equal to���(Azj). We an de�ne this map so that it takes the value 0 2 Vzj if andonly if the eigenfuntion in (2.6) has a di�erent winding number. Usingthese maps and the evaluation of v at the points �j 2 ��, we obtain ahomomorphism	 : kerD! `�1 � : : :� `�n � Vz1 � : : :� Vzk :The laim is that 	 is injetive, and thus dimkerD � n+ k. Indeed, sup-pose v 2 kerD is a nontrivial setion with 	(v) = 0. Then the asymptotiwinding of v di�ers from ���(Azj) at eah of the puntures zj, implyingZ1(v) � k. Similarly, v has boundary zeroes at �1; : : : ; �n, ontributing atleast n=2 to Z(v), hene1(E; `;A�) = Z(v) + Z1(v) � n2 + k;whih ontradits our assumptions on n and k.A minor modi�ation to this argument is needed if �� = ;. We mustnow assume n is even, and hoose distint interior points �1; : : : ; �n=2 2 _�,using evaluation at these points to de�ne the homomorphism	 : kerD! E�1 � : : :� E�n=2 � Vz1 � : : :� Vzk :The right hand side is again a vetor spae of real dimension n + k, andthe same argument as above shows that 	 is injetive.To deal with the ase ind(D) � 0, we onsider the formal adjoint D�(f. [Sh95℄). This an be regarded as a Cauhy-Riemann type operatoron the bundle F := HomC (T _�; E) ! _� with an appropriate totally real

18 CHRIS WENDLboundary ondition `� and asymptoti operators A�z, whih have the sameparity as Az. It satis�es(2.8) ind(D�) = � ind(D); dimkerD� = dimokerD;and applying (2.5) to D and D� together, we �nd1(E; `;A�)� 1(F; `�;A��) = 12 [ind(D)� ind(D�)℄ = ind(D):Then the ondition 1(F; `�;A��) < 0 is satis�ed if and only if ind(D) >1(E; `;A�), and this implies D is surjetive. If ind(D) � 1(E; `;A�),then 1(F; `�;A��) � 0 and we an apply the above estimate to dimkerD�,giving dimkerD = ind(D) + dim okerD = ind(D) + dimkerD�� ind(D) +K (1(F; `�;A��);#�0)= ind(D) +K (1(E; `;A�)� ind(D);#�0) : �Remark 2.3. The proof of Theorem 2 requires only the very simplest ase ofthis dimension bound, namely that kerD is trivial when 1(E; `;A�) < 0.As that proof will demonstrate, however, suh bounds an sometimes beuseful in ases where D is not surjetive, so perhaps the more generaldimension bound will eventually �nd similar appliation.3. The normal operator for a holomorphi urveIn this setion we will give the preise de�nition of regularity and showthat it is equivalent to the surjetivity of a ertain Cauhy-Riemann op-erator on a generalized normal bundle. The preise relation between thisoperator and the onept of regularity is stated in x3.4 as Theorem 3, andin x3.5 we apply the linear transversality theory from x2.2 to show thatTheorem 1 follows as an easy orollary.Throughout the following, we �x a ompat, onneted and orientedsurfae � of genus g � 0 with m � 0 boundary omponents, and a �niteset � � int�, writing _� = � n �.3.1. Teihm�uller slies and Cauhy-Riemann operators. We beginby olleting some lassial fats about moduli spaes of Riemann surfaeswhih an be related to the analysis of Cauhy-Riemann type operators.Let J (�) denote the spae of smooth omplex strutures on � thatindue the given orientation, and denote by Di�+(�;�) the group of ori-entation preserving di�eomorphisms on � that �x �, and Di�0(�;�) �Di�+(�;�) those whih are homotopi to the identity. Both of these groupsat on J (�) by ('; j) 7! '�j, and the Teihm�uller spae of _� is a smooth�nite-dimensional manifold de�ned asT ( _�) = J (�)=Di�0(�;�):



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 19Its quotient by the mapping lass group M( _�) = Di�+(�;�)=Di�0(�;�)gives the moduli spae of Riemann surfaes (with genus g, m boundaryomponents and #� interior marked points)M( _�) = T ( _�)=M( _�) = J (�)=Di�+(�;�);whih is in general an orbifold of the same dimension. We say _� is stableif �( _�) < 0, in whih asedimM( _�) = 6g � 6 + 3m + 2#� = �3�( _�)�#�;and the automorphism groupAut( _�; j) = f' 2 Di�+(�;�) j '�j = jgis �nite for any hoie of j 2 J (�) (though its order may depend on j).Let D � C denote the losed unit disk, A = [0; 1℄�S1 the ompat annulusand T2 = R2=Z2 the 2{dimensional torus. For our purposes, the non-stableases to be onsidered are the following:(1) M(S2) = f[i℄g and dimAut(S2; i) = 6.(2) M(C ) = f[i℄g and dimAut(C ; i) = 4.(3) M(D ) = f[i℄g and dimAut(D ; i) = 3.(4) M(R � S1) = f[i℄g and dimAut(R � S1; i) = 2.(5) M(D n f0g) = f[i℄g and dimAut(D n f0g; i) = 1.(6) dimM(A ) = 1 and dimAut(A ; j) = 1.(7) dimM(T2) = 2 and dimAut(T2; j) = 2.For all but the last ase, the mapping lass group M( _�) is trivial and thusM( _�) = T ( _�) is a manifold. Observe also that if _� is not stable,(3.1) dimAut( _�; j)� dimM( _�) = 3�( _�) + #�:Fixing p > 2, the latter is the Fredholm index of the standard linearCauhy-Riemann operatorD�� : W 1;pT (��)(T�; �)! Lp(EndC (T�));whereW 1;pT (��)(T�; �) is the spae ofW 1;p{smooth vetor �elds Y : �! T�satisfying Y (��) � T (��) and Y j� = 0.Lemma 3.1. For all hoies of (�; j;�), dimoker(D��) = dimM( _�).Proof. This may be regarded as a standard piee of Teihm�uller theory inthe stable ase (f. [Tro92℄), and also follows by using a simpli�ed versionof the argument in the proof of Prop. 2.2 to show thatD�� is injetive. Hereone must aount also for the ondition Y j� = 0, whih ensures Z(Y ) �#�, thus it suÆes to observe that the adjusted �rst Chern number isstritly less than #�. In the non-stable ase, a similar argument shows thatdimker(D��) � dimAut( _�; j), and by interpreting D�� as the linearization

20 CHRIS WENDLof a nonlinear operator ��j' = T' + j Æ T' Æ j, one sees that ker(D��)ontains aut( _�; j), giving an inequality in the other diretion, henedimker(D��) = dimAut( _�; j):The result then follows from (3.1). �Given j 2 J (�) and the orresponding Cauhy-Riemann operator D�� ,pik a omplement of im(D��), i.e. a subspae C � Lp(EndC (T�)) suhthat im(D��)� C = Lp(EndC (T�)):By approximation, we may assume every setion in C is smooth and van-ishes on a neighborhood of �. We an then hoose a small neighborhoodO � C of 0 and de�ne the map(3.2) � : O ! J (�) : y 7! �
1+ 12jy� j �1+ 12jy��1 ;whih has the properties �(0) = j and��t�(ty)����t=0 = y;thus it is injetive if O is suÆiently small. The imageT := �(O) � J (�)is thus a smooth manifold of dimension dimC = dimT ( _�), with TjT = Cand onsisting of smooth omplex strutures lose to j that are identialto j on some �xed neighborhood of �. It parametrizes a neighborhood of[j℄ in T ( _�), i.e. the projetion J (�)! T ( _�) restrits to a di�eomorphismfrom T onto a neighborhood of [j℄. This provides an expliit onstrutionof the following general objet:De�nition 3.2. Given j 2 J (�), we de�ne a Teihm�uller slie throughj to be any smooth family T � J (�) parametrized by an injetive mapU ! J (�), where U is an open subset of Rdim T ( _�), suh that all j 0 2T are idential on some �xed neighborhood of �, and im(D��) � TjT =Lp(EndC (T�)).Lemma 3.3. If ( _�; j) is stable, then there exists a Teihm�uller slie Tthrough j that is invariant under the group ation Aut( _�; j) � J (�) !J (�) : ('; j 0) 7! '�j 0.Proof. The automorphism group G := Aut( _�) is �nite and onsists ofbiholomorphi maps on (�; j) that �x �. Eah point in � then has a G{invariant neighborhood biholomorphially equivalent to the standard unitdisk, on whih G ats by rational rotations. Let g denote a metri on �that is invariant under the ation of G; suh a metri an be onstrutedby starting from the Poinar�e metri on _� and interpolating this with at



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 21rotation-invariant metris on disk-like neighborhoods of eah point in �.Then g indues a bundle metri on EndC (T�) ! � and a orrespondingG{invariant L2{inner produt h ; iL2 on the spae of setions of this bundle.To prove the lemma, it suÆes to onstrut a G{invariant omplementC � Lp(EndC (T�)) of im(D��) that onsists of smooth setions vanishingnear �: then an appropriate Teihm�uller slie an be de�ned via (3.2) sine'�j = j implies �('�y) = '��(y) for any ' 2 G. Observe that im(D��)itself isG{invariant, sine '�j = j also impliesD��('�Y ) = '�(D��Y ) for allY 2 W 1;pT (��)(T�; �). Now using the G{invariant L2{produt hosen above,de�ne a omplement C0 as the L2{orthogonal omplement of im(D��), i.e.C0 = ny 2 Lp(EndC (T�)) �� 
D��Y; y�L2 = 0 for all Y 2 W 1;pT (��)(T�; �)o :This spae is G{invariant due to the G{invariane of im(D��) and h ; iL2 ,and by ellipti regularity for weak solutions of the formal adjoint equation,it onsists only of smooth setions. Now hoosing G{invariant disk-likeneighborhoods of the points in �, we an obtain the desired omplementC by multiplying the setions in C0 by G{invariant uto� funtions thatvanish near G and equal 1 outside a suÆiently small neighborhood of �.�For the two non-stable ases in whih T ( _�) is nontrivial, it will be on-venient to have expliit global Teihm�uller slies. If _� = A = [0; 1℄�S1, foreah � > 0 de�ne the di�eomorphism '� : A ! [0; � ℄� S1 : (s; t) 7! (�s; t)and let TA denote the olletion of omplex strutures f'�� ig�>0. Thisparametrizes the entirety of T (A ) (whih equals M(A ) sine the map-ping lass group is trivial), and also gives a natural identi�ation of everyAut(A ; '�� i) with S1, ating on A by translation of the seond fator. If_� = T2 = R2=Z2, we de�ne TT2 to be the spae of all onstant om-plex strutures on R2 = C that are ompatible with the standard orienta-tion; learly these desend to T2, and they also parametrize the entirety ofT (T2). Then for eah j 2 TT2, the subgroupAut0(T2; j) := Aut(T2; j) \ Di�0(T2)an be identi�ed naturally with T2, ating by translations. Choosing abase point p = [(0; 0)℄ 2 T2, the stabilizer of [j℄ 2 T (T2) under the ationof M(T2) = SL(2;Z) is meanwhile the �nite subgroupAut(T2; j; p) := f' 2 Aut(T2; j) j '(p) = pg = fA 2 SL(2;Z) j Aj = jAg;and Aut(T2; j) is the semidiret produt of Aut(T2; j; p) with Aut0(T2; j) =T2. Note in partiular that for any j 2 TT2, this group ats by aÆnetransformations on R2 (desending to T2), and the ation ('; j 0) 7! '�j 0therefore preserves TT2.The following will be useful for tehnial reasons in our analysis of therelationship between Du and its normal omponent.

22 CHRIS WENDLLemma 3.4. For any j 2 J (�) and �nite set K � _�, there exists aTeihm�uller slie T through j suh that every j 0 2 T is idential to j onsome �xed neighborhood of K [ �.Proof. It suÆes to onstrut C = TjT so that every y 2 C vanishes nearK [ �. This an be done using uto� funtions to replae a basis of anygiven omplement with one that vanishes in suh a neighborhood; the newbasis an be made Lp{lose to the old one if the neighborhood is suÆientlysmall. �For any Teihm�uller slie T through j, the operatorL� : TjT �W 1;p(T�; �)! Lp(EndC (T�)) : (y; Y ) 7! jy +D��Yis learly surjetive; indeed, sine D�� is omplex linear, L�(y; jY ) =j �y +D��Y �, and the target spae is spanned by TjT and im(D��). For theanalysis in the following setions it will be useful to derive a orrespondingstatement for the standard Cauhy-Riemann operator on a Riemann sur-fae with ends. We will reall in the next setion the onstrution of ertainBanah manifolds ontaining asymptotially ylindrial maps _�! W . Inthe simple ase W = _�, the tangent spae to suh a Banah manifold B�at the identity map 1 : _�! _� an be written asT1B� = W 1;p;ÆT (��)(T _�)� V �� ;where Æ > 0 is a small weight applying at every end and V �� � �(T _�) is a2#�{dimensional spae of smooth setions that are supported near in�nityand onstant in some �xed hoie of ylindrial oordinates near eah end.The natural nonlinear Cauhy-Riemann operator de�nes a setion of aBanah spae bundle over B�, whose linearization at 1 is the usual linearCauhy-Riemann operator given by the holomorphi struture of T _�! _�,denoted here byD� : W 1;p;ÆT (��)(T _�)� V �� ! Lp;Æ(EndC (T _�)):Now sine every y 2 TjT is smooth and vanishes near �, there is a natu-ral inlusion of TjT � Lp;Æ(EndC (T _�)), as well as a bounded linear mapTjT ! Lp;Æ(EndC (T _�)) : y 7! jy.Lemma 3.5. The operatorL : TjT � �W 1;p;ÆT (��)(T _�)� V �� �! Lp;Æ(EndC (T _�))(y; �) 7! jy +D��is surjetive.Proof. Applying the linear theory in x2, we �nd that ind(D�) = ind(D��)and hene ind(L) = ind(L�). Now in light of the natural inlusionW 1;p;ÆT (��)(T _�)� V �� ,! W 1;pT (��)(T�; �);



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 23we have ker(L) � ker(L�), but sine dimker(L) � ind(L) in general anddimker(L�) = ind(L�) by the remarks above, it follows thatdimker(L) � dimker(L�) = ind(L�) = ind(L);implying L is surjetive. �Corollary 3.6. For any Teihm�uller slie T through j, Lp;Æ(EndC (T _�)) =im(D�)� TjT .3.2. Funtional analyti setup. To state the de�nition of regularity, webegin by reviewing the nonlinear funtional analyti setup used in [Dra04,Bou02℄ for asymptotially ylindrial maps u : _�! W with nondegenerateor Morse-Bott asymptoti orbits. Fix the surfae �, puntures � = �+ [�� � int�, and asymptoti onstraints . Reall that the latter hoiepartitions � into a set of onstrained and unonstrained puntures � =�C[�U , and assigns to eah z 2 ��C an orbit Pz ofX�, whih we will assumeis Morse-Bott, and we will denote its period by Tz. For eah z 2 ��U , weinstead hoose an arbitrary Morse-Bott manifold of periodi orbits in M�,denoted again by Pz, with period Tz > 0. By a slight abuse of notation,eah Pz may be regarded both as a submanifold Pz � M� and as a set ofTz{periodi orbits  2 Pz (sometimes with only one element). Denote thisolletion of hoies for all puntures z 2 � by P�. We shall then onsider aBanah manifold onsisting of asymptotially ylindrial maps u : _�!Wwhose asymptoti orbits z for z 2 � satisfy z 2 Pz.Before explaining the Banah manifold, we digress for a moment to de�nesome important invariants that enter into the index formula. Reall thatany T{periodi orbit  of X� has an assoiated asymptoti operator A,de�ned on setions of the bundle �� along . One an write it down byhoosing a parametrization x : S1 !M� of  with �( _x) � T , and de�ningA : �(x���)! �(x���) byAv = �J�(rtv � TrX�)for any symmetri onnetion r on M�. This gives an unbounded self-adjoint operator on L2(x���) of the form onsidered in x2, and it is nonde-generate if and only if the orbit is nondegenerate, in whih ase we de�nethe Conley-Zehnder index ��CZ() = ��CZ(A) for any hoie of trivialization� on x���. If  is degenerate, then A an be perturbed to a nondegen-erate asymptoti operator by adding any number � 2 R n ��(A), and wethus de�ne the perturbed Conley-Zehnder index��CZ( + �) := ��CZ(A + �);and its parity p( + �) = (0 if ��CZ( + �) is even,1 if ��CZ( + �) is odd,

24 CHRIS WENDLwhih does not depend on �. Observe that if  is nondegenerate and� is suÆiently lose to zero, then ��CZ( + �) = ��CZ() sine �(A) isdisrete. More generally, one an see from the relationship between theConley-Zehnder index and spetral ow (f. [RS95℄) that for suÆientlysmall � > 0,(3.3) ��CZ( � �)� ��CZ( + �) = dimker(A):In partiular if  belongs to a Morse-Bott family P , then the right handside of (3.3) is dimP � 1, and ��CZ( � �) remains unhanged if we move to a di�erent orbit in the same family.If M� are 3{dimensional, then �� have omplex rank one, so reallingthe de�nitions in x2.2, we an assoiate to any T{periodi orbit  of X�and real number � the so-alled extremal winding numbers���( + �) := ���(A + �);or for the ase � = 0, simply ���() = ���(A). We will refer to theeigenfuntions of A involved in this de�nition as extremal eigenfuntionsat  if � = 0, or more generally extremal eigenfuntions with respet to �.Now if � 62 ��(A), (2.3) gives��CZ( + �) = 2���( + �)� p( + �)p( + �) = ��+( + �)� ���( + �) 2 f0; 1g:Choosing Æ > 0 arbitrarily small, it will also be onvenient to de�ne(3.4) ��() = ���( � Æ)� ���( + Æ);whih equals 0 whenever  is nondegenerate, and is otherwise either 0 or 1.6Notation. Fix a number Æ > 0, whih we will generally assume to be assmall as may be needed. Suppose � = �+ [ �� is a set of puntures and is a set of asymptoti onstraints, de�ning onstrained and unonstrainedsubsets �C ;�U � � respetively. We then assoiate to eah punture z 2 �a real number(3.5) z := (Æ if z 2 �C ,�Æ if z 2 �U .For asymptotially ylindrial maps u : _�! W subjet to onstraints ,we will use the following notational onventions throughout. The asymp-toti orbit of u at a punture z 2 �� will be alled z, with asymptotioperator Az := Az , and the olletion of these for all puntures will bedenoted by � and A� respetively. Denote the orresponding olletion of6For orbits in two-dimensional families, the numbers ��() are losely related to thesign of a Morse-Bott surfae, as de�ned in [Wenb℄.



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 25perturbed asymptoti operators fAz�zgz2�� by A���, noting that thesign hoie must always math the sign of the punture. For i 2 f0; 1g, let��i () = fz 2 �� j p(z � z) = igand �i() = �+i ()[��i (). This de�nes a partition of � into so-alled evenand odd puntures with respet to the onstraints. Note that when z isnondegenerate, the parity of z is simply the even/odd parity of ��CZ(z);in general however this distintion depends on not just the orbit and on-straints, but also the sign of the punture.Choose p > 2 and de�ne the Banah manifoldB := B1;p;Æ( _�;W ;L; P�)to onsist of maps _� ! W of lass W 1;plo whih satisfy u(��) � L andhave asymptotially ylindrial behavior approahing the orbits fPzgz2�at the orresponding puntures: the latter means in partiular that usingylindrial oordinates (s; t) 2 Z� near z 2 ��, there exists an orbit z 2Pz with parametrization x : R ! M� and a onstant s0 suh that forsuÆiently large jsj, u(s+ s0; t) = exp~x(s;t) h(s; t);where ~x(s; t) := (Tzs; x(Tzt)) 2 E� � R �M� and h 2 �(~x�TE�) is ofweighted Sobolev lass W 1;p;Æ on Z�. The tangent spae TuB an then bewritten as TuB =W 1;p;Æ� (u�TW )� V� �X�;where the summands are de�ned as follows. The subsript � refers to thetotally real subbundle(3.6) � := (uj��)� TL! ��;so that setions v 2 W 1;p;Æ� (u�TW ) are required to satisfy the boundaryondition v(��) � �, as well as deaying in aordane with the smallexponential weight Æ > 0 at eah end. The other two summands are both�nite dimensional vetor spaes onsisting of setions _�! u�TW that aresupported near in�nity and asymptotially equal to onstant vetors insome hoie of R{invariant oordinates near the asymptoti orbit. In par-tiular, V� has dimension 2#� and ontains vetor �elds that are parallelto the orbit ylinders ~x(s; t) = (Ts; x(T t)) near in�nity, while the vetor�elds in X� are trivial whenever Pz is a �xed orbit and otherwise parallelto the Morse-Bott manifolds Pz, thus(3.7) dimX� =Xz2�(dimPz � 1) = Xz2�U dimker(Az):Fixing a omplex struture j on �, there is a Banah spae bundle E ! Bwhose �bers are spaes of omplex antilinear bundle mapsEu = Lp;Æ(HomC (T _�; u�TW ));

26 CHRIS WENDLand the nonlinear Cauhy-Riemann operator de�nes a smooth setion��J : B ! E : u 7! Tu+ J Æ Tu Æ j;whose zeroes are parametrizations of asymptotially ylindrial pseudo-holomorphi urves u : ( _�; j) ! (W;J). The linearization of ��J at a zerou de�nes a linear Cauhy-Riemann type operator,Du : �(u�TW )! �(HomC (T _�; u�TW ))v 7! rv + J Æ rv Æ j + (rvJ) Æ Tu Æ j;(3.8)where r is any symmetri onnetion onW . As a bounded linear operatorTuB ! Eu, Du is Fredholm. To write down its index, let � be an arbitraryhoie of trivialization for u�TW along �� and for �� along the orbits z,and de�ne the total Maslov index��(u; ) = ��(u�TW;�) + Xz2�+ ��CZ(z + z)� Xz2�� ��CZ(z � z):The trivializations of �� extend naturally to trivializations of TW = T (R�M�) along the orbits via the splitting(3.9) T (R �M�) = (R � RX�)� ��;so that one an also de�ne the relative Chern number �1 (u�TW ).Proposition 3.7.ind(Du) = n�( _�) + 2�1 (u�TW ) + ��(u; ) + #�:Proof. Denote by D0 the restrition of Du to W 1;p;Æ� (u�TW ), soind(Du) = ind(D0) + dimV� + dimX�= ind(D0) + 2#� + Xz2�U dimker(Az):Then D0 is a Cauhy-Riemann type operator asymptoti at z 2 � to theoperators Bz := C�Az;where we use the splitting (3.9) and de�ne on the �rst summand the \triv-ial" asymptoti operator C = �J0 ddt . The latter is degenerate, but wehave(3.10) �CZ(C� Æ) = �1if Æ > 0 is suÆiently small. By the disussion of exponential weights inx2.1, D0 is now onjugate to a Cauhy-Riemann operator W 1;p� (u�TW )!



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 27Lp(HomC (T _�; u�TW )) with nondegenerate asymptotis, so by (2.1):ind(D0) = n�( _�) + 2�1 (u�TW ) + ��(u�TW;�)+ Xz2�+ ��CZ(Bz + Æ)� Xz2�� ��CZ(Bz � Æ)= n�( _�) + 2�1 (u�TW ) + ��(u�TW;�)+ Xz2�+ ��CZ(Az + Æ)� Xz2�� ��CZ(Az � Æ)�#�;where in the last line we've used the splitting Bz = C � Az and (3.10).Now using (3.3), we haveXz2�+��CZ(Az + Æ)� Xz2�� ��CZ(Az � Æ)�#�+ 2#� + Xz2�U dimker(Az)= Xz2�+U ��CZ(Az � Æ) + Xz2�+C ��CZ(Az + Æ)� Xz2��U ��CZ(Az + Æ)� Xz2��C ��CZ(Az � Æ) + #�= Xz2�+ ��CZ(Az + z)� Xz2�� ��CZ(Az � z) + #�;

(3.11)
and the result follows. �For the following lemma, reall that D� : �(T _�) ! �(EndC (T _�)) de-notes the natural linear Cauhy-Riemann operator on �(T _�) determinedby the holomorphi struture of T _�; it is the linearization at the identityof the operator ���j ' = T'+ j Æ T' Æ j ating on maps ' : _�! _�. We usethe bundle map du : T _�! u�TW to de�ne linear maps�(T _�) du�! �(u�TW );�(EndC (T _�)) du�! �(HomC (T _�; u�TW ):(3.12)Lemma 3.8. For any smooth vetor �eld v 2 �(T _�),Du(du(v)) = du(D�v):Proof. Choose any open subset U � _� with ompat support. On thisneighborhood, the ow '� of v is well de�ned for � suÆiently lose to 0,and by de�nition, if z 2 U and Y 2 Tz _�,(D�v)Y = r� ����j '� (Y )����=0 ;

28 CHRIS WENDLwhere r is any onnetion on _�. Similarly, using the fat that u : ( _�; j)!(W;J) and 1 : ( _�; j)! ( _�; j) are both holomorphi,Du(du(v))(Y ) = r� ���J(u Æ '� )(Y )����=0= r� [T (u Æ '� )(Y ) + J Æ T (u Æ '� ) Æ j(Y )℄j�=0= r� [Tu Æ T'� (Y ) + J Æ Tu Æ T'� Æ j(Y )℄j�=0= r� [Tu Æ T'� (Y ) + Tu Æ j Æ T'� Æ j(Y )℄j�=0= r� �du('�(z)) � ���j '� (Y )����=0= rv(z)(du) � ���j (1)(Y ) + du�r� ����j '� (Y )����=0�= du(D�v(Y )): �Varying omplex strutures on the domain an be inorporated into thepiture by �xing j0 2 J (�) and hoosing a Teihm�uller slie T through j0(see Def. 3.2). We an now rede�ne the Banah spae bundle E over T �Bso that E(j;u) = Lp;Æ �HomC ((T _�; j); (u�TW; J))� ;and extend the setion ��J over this bundle by��J : T � B ! E : (j; u) 7! Tu+ J Æ Tu Æ j:The linearization at (j; u) 2 ���1J (0) an now be expressed via its \partialderivatives,"D ��J(j; u) : TjT � TuB ! E(j;u) : (y; v) 7! Guy +Duvwhere Gu : TjT � �(EndC (T _�))! �(HomC ((T _�; j); (u�TW; J)))y 7! J Æ Tu Æ y:We an now present the preise de�nition of regularity.De�nition 3.9. The urve (�; j;�; u) 2 M is alled regular if thereexists a Teihm�uller slie T through j suh that the operator D ��J(j; u) :TjT � TuB ! E(j;u) is surjetive.Remark 3.10. This ondition learly doesn't depend on the hoie of mapu : ( _�; j) ! (W;J) representing a given equivalene lass in M; if ' :(�0; j 0) ! (�; j) is a biholomorphi map and u0 = u Æ ', one an usethe pullbak '� to onstrut a Teihm�uller slie T 0 through j 0 so that theoperators D ��J(j 0; u0) and D ��J(j; u) are onjugate. The next lemma showsalso that the surjetivity of D ��J(j; u)|and in fat the odimension of itsimage|does not depend on the hoie of Teihm�uller slie.



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 29Lemma 3.11. For (�; j;�; u) 2 M and any two Teihm�uller slies T andT 0 through j, denote by L : TjT �TuB ! E(j;u) and L0 : TjT 0�TuB ! E(j;u)the orresponding linearizations of ��J at (j; u). Then im(L) = im(L0).Proof. Using the inlusion TjT � Lp;Æ(EndC (T _�)), extend L toL : Lp;Æ(EndC (T _�))� TuB ! E(j;u)(y; v) 7! J Æ Tu Æ y +Duv:For y = D�Y 2 im(D�) � Lp;Æ(EndC (T _�)), we use the fat that u isJ{holomorphi and writeL(y; 0) = J Æ Tu Æ y = du(jy) = du(D�(jY )):Then by Lemma 3.8, this equals Du(du(jY )) if Y is smooth, and thesame holds for general Y in the domain of D� by a density argument,thus the restrition of L to im(D�) has image ontained in im(Du). SineLp;Æ(EndC (T _�)) = im(D�)�TjT by Cor. 3.6, this implies im(L) = im(L).Now using the same argument for T 0, we have im(L) = im(L) = im(L0).�Sine Du is Fredholm and T is �nite dimensional, D ��J(j; u) is also Fred-holm. Realling (3.1) and the de�nition of ind(u; ) = vir-dimMu in (1.1),we haveindD ��J(j; u) = dimT + ind(Du) = ind(u; ) + dimAut( _�; j):For ompleteness, we now prove the fat that regularity gives M thestruture of a smooth orbifold of dimension ind(u; ) near u.Proof of Theorem 0. Assume (j0; u0) 2 ���1J (0) is regular and let G =Aut( _�; j0). By Lemma 3.11, the regularity ondition is independent ofthe hoie of Teihm�uller slie, so if _� is stable, then using Lemma 3.3we an pik a slie T through j0 that is invariant under the natural G{ation. Similarly if _� is A or T2, then without loss of generality we anompose with a di�eomorphism suh that j0 belongs to one of the speialTeihm�uller slies TA or TT onstruted in x3.1 (whih also admit a natu-ral G{ation), and hoose this for T . There is now a G{ation on T � Bde�ned by ' � (j; u) = ('�j; u Æ '):This learly preserves ���1J (0), and the stabilizer of any (j; u) 2 ���1J (0) isthe �nite subgroup f' 2 Aut( _�; j0)j '�j = j, u Æ ' = ug � Aut(u). SineD ��J(j0; u0) is surjetive, Remark 3.10 implies that the same is true for all(j; u) in the G{orbit of (j0; u0), thus by the impliit funtion theorem, aneighborhood U � ���1J (0) of this orbit admits a natural smooth manifoldstruture, with dimension ind(u0; )+dimAut( _�; j0). Starting from a smallneighborhood of (j0; u0) in ���1J (0) and extending this under the G{ation,we may assume U to be G{invariant. The quotient U=G then inherits the

30 CHRIS WENDLstruture of a smooth orbifold of dimension ind(u0; ), with isotropy groupAut(u0) at (j0; u0) and a natural isormorphismT(j0;u0) (U=G) = kerD ��J(j0; u0)=aut( _�; j0):One an adapt the argument in [Dra04℄ to show that harts onstruted inthis way are always smoothly ompatible.To omplete the proof, we show that U=G is homeomorphi to a neigh-borhood of (�; j0;�; u0) in M. Clearly U ontains a representative ofevery J-holomorphi urve near (j0; u0), so the point is to show that anytwo suh urves (j; u) and (j 0; u0) that are equivalent inM are related bythe G{ation.Suppose �rst that _� is non-stable and is not A or T2: then T ontainsonly j0, and (j0; u) � (j0; u0) if and only if u0 = u Æ ' for some ' 2Aut( _�; j0) = G, so we are done. The ase A is hardly more ompliated:now T is 1{dimensional andM( _�) is trivial, soM( _�) = T ( _�) and j; j 0 2 Tare equivalent in M( _�) if and only if j = j 0. Thus (j; u) � (j 0; u0) impliesj = j 0 and u0 = u Æ ' for some ' 2 Aut( _�; j). But our onstrution of TAidenti�es Aut( _�; j) with Aut( _�; j0) = G, so again we are done.Consider now the stable ases and T2, for whih M( _�) is nontrivial. Forthese, the groups Aut0( _�; j) := Aut( _�; j)\Di�0(�;�) for every j 2 T areidenti�ed with Aut0( _�; j0); this is a nontrivial statement only for _� = T2,where our expliit onstrution of T = TT2 identi�es every Aut0(T2; j)with T2, ating by translations. Meanwhile, for eah j 2 T there is a �nitesubgroup Gj � Aut( _�; j) (Gj = Aut( _�; j) in the stable ases) naturallyisomorphi to the stabilizer of [j℄ 2 T ( _�) under the M( _�){ation, suhthat Aut( _�; j) is the semidiret produt of Gj with Aut0( _�; j0). Now if(j; u) and (j 0; u0) are two elements of U that represent equivalent urves,so j 0 =  �j and u0 = u Æ  for some  2 Di�+(�;�), we need to showthat  2 G. In terms of the M( _�){ation on T ( _�), [ ℄ � [j℄ = [j 0℄ impliesthat if j and j 0 are both suÆiently lose to j0, then [ ℄ belongs to thestabilizer of [j0℄, i.e. [ ℄ � [j0℄ = [j0℄. Thus there is a unique ' 2 Gj0 suhthat ['℄ = [ ℄ 2 M( _�), and by onstrution, '�j = j 0. It follows that( Æ '�1)�j = j, so  Æ '�1 2 Aut0( _�; j) = Aut0( _�; j0), and  is thus aprodut of two maps in Aut( _�; j0). �3.3. The generalized normal bundle. For the remainder of this setion,we shall onsider a �xed non-onstant holomorphi urve (j; u) 2 ���1J (0) �T �B and examine the operator D ��J(j; u) = Gu+Du more losely. Whenwe refer to _� or � as a Riemann surfae, we will always mean with omplexstruture j.As was observed in [IS99℄, the operatorDu de�nes a natural holomorphistruture on the bundle u�TW ! _�: indeed, the omplex linear part of



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 31Du is also a Cauhy-Riemann type operator, so there is a unique holomor-phi struture whose loal holomorphi setions vanish under this operator.This indues a holomorphi struture on HomC (T _�; u�TW ), and one anthen show (f. [IS99℄) thatdu 2 �(HomC (T _�; u�TW ))is a holomorphi setion. Thus if z0 is an interior ritial point of u, wean hoose a holomorphi trivialization of HomC (T _�; u�TW ) near z0 andexpress du as a C n{valued funtion of the form(3.13) (z � z0)kF (z)for some k 2 N and C n{valued holomorphi funtion F with F (z0) 6= 0. Inthis ase we de�ne the order of the ritial point byord(du; z0) = k:A similar de�nition is possible for z0 2 Crit(u) \ �� sine du satis�es thetotally real boundary ondition du(��) � L, whereL = fA 2 HomC (T _�; u�TW )j�� j A(T (��)) � �g:Indeed, one an then hoose a trivialization near z0 suh that du satis�esthe Shwartz reetion prinipal, and de�ne ord(du; z0) again via (3.13)after reetion. De�ne the 12Z{valued algebrai ount of ritial points by(3.14) Z(du) = Xz2du�1(0)\int _� ord(du; z) + 12 Xz2du�1(0)\�� ord(du; z):The expression (3.13) has a seond important purpose: the omplexsubspae of Tu(z)W spanned in the trivialization by F (z) 2 C n nf0g allowsus to de�ne a smooth rank 1 subbundleTu � u�TWsuh that for any z 2 _� n Crit(u), (Tu)z = imdu(z). We will all this thegeneralized tangent bundle to u.Lemma 3.12. The intersetion (Tu)z\�z is 1{dimensional for all z 2 ��.Proof. It an never be 2{dimensional sine (Tu)z is a omplex subspae and�z is totally real. Moreover it is learly at least 1{dimensional wheneverdu(z) 6= 0, as then Tu(Y ) 2 Tu(z)L = �z for any Y 2 Tz��. Sine ritialpoints are isolated and the ondition dim(Tu)z \�z = 0 is open, the resultfollows. �By the lemma, we an de�ne a totally real subbundle`T = � \ Tuj�� � Tuj��;and by onstrution du now de�nes a setion of the omplex line bundleHomC (T _�; Tu)! _�

32 CHRIS WENDLwith totally real boundary ondition du(��) � LT , whereLT = fA 2 HomC (T _�; Tu)j�� j A(T (��)) � `Tg:As de�ned in the appendix, the algebrai ount of zeroes for this setionis preisely Z(du).Observe that both T _� and Tu admit natural extensions over the om-pati�ed surfae �; we de�ne this extension for Tu via its natural iden-ti�ation with T _� under du sine u is immersed near in�nity. There isalso a natural trivialization � of T _� at in�nity de�ned by the ylindrialoordinates (s; t) 2 Z�, and we an de�ne � also over �� suh that theMaslov index ��(T _�; T (��)) vanishes. Then�1(T _�) = �( _�):Now hoose any trivialization � of Tu over �� and de�ne it at in�nity tobe the same as � . The ombination of � and � indues a trivializationof HomC (T _�; Tu) over �� and at in�nity, whih we will also denote by �.Then we an apply Prop. A.2, noting that the winding terms are zero byonstrution, and obtain(3.15) Z(du) = �1 (HomC (T _�; Tu)) + 12��(HomC (T _�; Tu);LT ):To break this down further, note that the natural bundle isomorphismT _�
 HomC (T _�; Tu)! Tu : v 
 A 7! Av sends T (��)
 LT to `T , thus�1 (Tu) = �1(T _�) + �1 (HomC (T _�; Tu)) = �( _�) + �1 (HomC (T _�; Tu));and ��(Tu; `T ) = �� (T _�; T (��)) + ��(HomC (T _�; Tu);LT )= ��(HomC (T _�; Tu);LT );so (3.15) implies(3.16) �1 (Tu) = �( _�)� 12��(Tu; `T ) + Z(du):We next hoose a generalized normal bundle Nu ! _�, whih we de�neto be any rank n� 1 subbundle of u�TW suh thatu�TW = Tu �Nu;and the following onditions are satis�ed:(1) On the ylindrial neighborhoods Uz for z 2 ��, Nu mathes thehyperplane distributions ��, and thus extends to in�nity as NujÆz =��jz .(2) For z 2 ��, there is always a real (n� 1){dimensional intersetion`Nz := (Nu)z \ �z, thus de�ning a totally real subbundle`N � Nuj��suh that `T � `N = �.



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 333.4. Splitting the linearization. The splitting u�TW = Tu�Nu de�nesprojetion maps �T 2 �(HomC (u�TW; Tu)) and �N 2 �(HomC (u�TW;Nu)),both of whih are smooth and satisfy exponential deay onditions due tothe asymptoti behavior of u. It follows that these de�ne bounded linearprojetion operatorsW 1;p;Æ� (u�TW )� V� �X� �T�!W 1;p;Æ`T (Tu)� V T� ;W 1;p;Æ� (u�TW )� V� �X� �N�!W 1;p;Æ`N (Nu)�X�;where V T� � �(Tu) is the isomorphi image of V �� � �(T _�) under themap du : �(T _�) ! �(Tu) : v 7! Tu Æ v, and without loss of generalityX� 2 �(Nu). There is thus a Banah spae splittingW 1;p;Æ� (u�TW )� V� �X� = �W 1;p;Æ`T (Tu)� V T� �� �W 1;p;Æ`N (Nu)�X�� ;and a similar splittingLp;Æ(HomC (T _�; u�TW )) = Lp;Æ(HomC (T _�; Tu))� Lp;Æ(HomC (T _�; Nu));so that with respet to these splittings, the operatorDu : W 1;p;Æ� (u�TW )� V� �X� ! Lp;Æ(HomC (T _�; u�TW ))an be written in matrix form asDu = � DTu DNTuDTNu DNu � :It is trivial to show thatDTu :W 1;p;Æ`T (Tu)� V T� ! Lp;Æ(HomC (T _�; Tu))and DNu : W 1;p;Æ`N (Nu)�X� ! Lp;Æ(HomC (T _�; Nu))eah satisfy the appropriate Leibnitz rule for a Cauhy-Riemann type op-erator. The former is asymptoti at eah punture z 2 �� to the degener-ate asymptoti operator �J0 ddt on a trivial omplex line bundle; removingthe exponential weight as in x2.1, this operator beomes �J0 ddt � Æ, giv-ing Conley-Zehnder index �1 with respet to the natural trivialization � .Thus the restrition of DTu to W 1;p;Æ`T (Tu) has index�( _�) + 2�1 (Tu) + ��(Tu; `T )�#�and adding the dimension of V T� we �ndind(DTu ) = �( _�) + 2�1 (Tu) + ��(Tu; `T ) + #�= 3�( _�) + #� + 2Z(du)= dimAut( _�; j)� dimT ( _�) + 2Z(du);(3.17)where the seond line follows from (3.16).

34 CHRIS WENDLWe all DNu the normal Cauhy-Riemann operator at u. It is alsoFredholm; from the asymptoti identi�ation of Nu with �� along orbits,we see that DNu is asymptoti to Az at eah punture z 2 �. We anuse (3.16) to relate its index to ind(u; ). Abbreviate ��CZ(� � �) =Pz2�+ ��CZ(z+ z)�Pz2�� ��CZ(z� z). Then removing the exponentialweights as in x2.1, we apply the Riemann-Roh formula (2.1) and repeatthe alulation in (3.11) to �ndind(DNu ) = (n� 1)�( _�) + 2�1 (Nu) + ��(Nu; `N)+ Xz2�+ ��CZ(Az + Æ)� Xz2�� ��CZ(Az � Æ) + dimX�= (n� 1)�( _�) + 2�1 (Nu) + ��(Nu; `N) + ��CZ(� � z)= (n� 1)�( _�) + 2 ��1 (u�TW )� �1 (Tu)�+ ���(u�TW;�)� ��(Tu; `T )�+ ��CZ(� � �)= (n� 1)�( _�) + 2�1 (u�TW )� 2�( _�)� 2Z(du) + ��(u; )= ind(u; )� 2Z(du):

(3.18)
The main goal for this setion is the following:Theorem 3. Assume (�; j;�; u) 2 M is a non-onstant urve with Morse-Bott asymptoti orbits and T is any Teihm�uller slie through j. ThenkerD ��J(j; u) ontains a subspae ker(Gu +DTu ) � TjT �W 1;p;Æ`T (Tu)� V T�of dimension 2Z(du) + dimAut( _�; j) suh that the normal projetion in-dues a natural isomorphismkerD ��J(j; u)= ker(Gu +DTu ) = kerDNu ;and imD ��J(j; u) = Lp;Æ(HomC (T _�; Tu))� imDNu :In partiular, we havedimkerD ��J(j; u) = 2Z(du) + dimAut( _�; j) + dimkerDNu ;dimokerD ��J(j; u) = dimokerDNu :Corollary 3.13. (�; j;�; u) 2 M is regular if and only if DNu is surje-tive.The reason for this result is essentially that the analysis of the map(y; v) 7! Guy +Duv when v is a setion of Tu an be redued to Lemma3.5, whih one an regard as an analytial statement about the smooth-ness of Teihm�uller spae. To ahieve this redution, we introdue ertainspeial Banah spaes of setions: for eah z0 2 Crit(u), hoose holomor-phi oordinates and orresponding trivializations of T _� and Tu near z0 sothat the bundle map du : T _� ! Tu loally takes the form z 7! zk, where



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 35k = ord(du; z0). Now for any funtion d : Crit(u)! Z, de�ne the Banahspae W k;p;Æ;d(T _�)to onsist of setions v that are of lass W k;plo on _� n Crit(u), lass W k;p;Ænear in�nity, and suh that near eah z0 2 Crit(u), using the oordinatesand trivialization hosen above, the mapzd(z0)v(z)is of lassW k;p. Note that v(z0) may or may not be well de�ned: if d(z0) >0 then v is allowed to blow up at z0, e.g. it ould be meromorphi with apole of order � d(z0). A suitable Banah spae norm an be de�ned usingweighting funtions supported near Crit(u), and the subspae W k;p;Æ;dT (��) (T _�)is de�ned by adding the usual boundary ondition; similarly we an de�nesuh spaes on the bundles Tu, EndC (T _�) and HomC (T _�; Tu). These arenaturally isomorphi to our original Banah spaes if d(z) = 0 for allz 2 Crit(u).The usefulness of this notion lies in the fat that if we hoose d(z) :=ord(du; z), then the orrespondene v 7! Tu Æ v de�nes Banah spae iso-morphisms W 1;p;Æ;dT (��) (T _�) du�!W 1;p;Æ`T (Tu);V �� du�! V T� ;Lp;Æ;d(EndC (T _�)) du�! Lp;Æ(HomC (T _�; Tu)):We will stik with this hoie of d heneforward.Using the fat that zk is holomorphi on the puntured disk for anyk 2 Z, it's easy to show that the natural linear Cauhy-Riemann operatoron �(T _�) de�nes a bounded linear mapD�d : W 1;p;Æ;dT (��) (T _�)� V �� ! Lp;Æ;d(EndC (T _�)):The next result then follows from Lemma 3.8 by a density argument.Lemma 3.14. For any v 2 W 1;p;Æ;dT (��) (T _�)� V �� , Du(du(v)) = du(D�d v).Lemma 3.15. The operatorLd : TjT � �W 1;p;Æ;dT (��) (T _�)� V �� �! Lp;Æ;d(EndC (T _�))(y; v) 7! jy +D�d vis surjetive and has kernel of dimensiondimker(Ld) = 2Z(du) + dimAut( _�; j):Proof. We laim �rst that the result doesn't depend on the hoie of Te-ihm�uller slie T . Indeed, in light of the splitting Lp;Æ(EndC (T _�)) =im(D�)�TjT and the natural inlusion of this spae in Lp;Æ;d(EndC (T _�)),

36 CHRIS WENDLan argument analogous to that in the proof of Lemma 3.11 shows thatLd has the same image as its natural extension to Lp;Æ(EndC (T _�)) ��W 1;p;Æ;dT (��) (T _�)� V �� �. We are thus free to hange T : in partiular, weshall use Lemma 3.4 to assume in the following that all y 2 TjT vanish onsome �xed neighborhood of Crit(u) [ �.The subsript d is meant to distinguish Ld and D�d from the operatorsthat appeared in Lemma 3.5; we'll ontinue to denote the latter simply byL : TjT � �W 1;p;ÆT (��)(T _�)� V �� �! Lp;Æ(EndC (T _�));withD� denoting the restrition toW 1;p;ÆT (��)(T _�)�V �� . The latter has indexind(D�) = dimAut( _�; j) � dimT , whereas Lemma 3.14 implies that D�dis onjugate to DTu , heneind(D�d ) = ind(DTu ) = dimAut( _�; j)� dimT + 2Z(du)= ind(D�) + 2Z(du)and ind(Ld) = ind(L) + 2Z(du) = 2Z(du)+ dimAut( _�; j). The result willfollow if we an show that dimker(Ld) � ind(L) + 2Z(du).To this end, de�ne a 2Z(du){dimensional subspae P � W 1;p;Æ;dT (��) (T _�) asfollows: P shall onsist of smooth setions on _� n Crit(u), supported nearCrit(u), whih in our hosen holomorphi trivializations near any givenz0 2 Crit(u) take the form(3.19) 1z + 2z2 + : : :+ d(z0)zd(z0)for i 2 C if z0 2 int�, or i 2 R if z0 2 ��. Sine every setion in P isholomorphi near Crit(u), there is an obvious extension of L,L0 : TjT � �W 1;p;ÆT (��)(T _�)� V �� � P�! Lp;Æ(EndC (T _�));whih has ind(L0) = ind(L) + dimP = ind(L) + 2Z(du) = ind(Ld). Nowsine L is surjetive by Lemma 3.5, so is L0, and thus dimker(L0) = ind(L)+2Z(du).To �nish, we laim that ker(Ld) � ker(L0). Indeed, suppose y 2 TjTand v 2 W 1;p;Æ;d(T _�)� V �� suh thatD�v = �j Æ y:Then by our assumption on T , y vanishes near Crit(u) and v is thereforea holomorphi setion in this neighborhood, exept possibly at points ofCrit(u). Near z0 2 Crit(u), the prinipal part of v in our holomorphitrivialization must have the form of (3.19): in partiular there annot bean essential singularity or pole of order higher than d(z0) sine zd(z0)v(z)is of lass W 1;p. There is thus a unique setion in P that equals the



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 37prinipal part near Crit(u), and subtrating this o� we obtain a setion inW 1;p;ÆT (��)(T _�)� V �� , showing that v belongs to the domain of L0. �Proof of Theorem 3. Any v 2 TuB an be deomposed uniquely as v =du(v�) + vN where v� 2 W 1;p;Æ;dT (��) (T _�) � V �� and vN 2 W 1;p;Æ`N (Nu) � X�.Then for y 2 TjT , Lemma 3.14 impliesD ��J(j; u)(y; v) = J Æ Tu Æ y + du(D�d v�) +DNTu vN +DNu vN= du �j Æ y +D�d v��+DNTu vN +DNu vN :The �rst term is Guy + DTudu(v�), and by Lemma 3.15 this maps ontoLp;Æ(HomC (T _�; Tu)) with dimker(Gu + DTu ) = 2Z(du) + dimAut( _�; j).The desired desription of kerD ��J(j; u) and imD ��J(j; u) now follows easilyfrom this expression sine DNTu vN 2 Lp;Æ(HomC (T _�; Tu)). �Example 3.16. Though we've generally assumed n � 2, Theorem 3 alsoapplies to the ase n = 1: then the normal bundle has rank zero andD ��J(j; u) = Gu +DTu , so the theorem says that D ��J(j; u) is a surjetiveoperator of index 2Z(du)+dimAut( _�; j). One an apply this to understandthe moduli spaeM( _�; _�0) of asymptotially ylindrial holomorphi maps' : ( _�; j)! ( _�0; j 0)between two puntured Riemann surfaes � n � and �0 n �0, up to equiv-alene by automorphisms on the domain. Suh maps are equivalent toholomorphi maps (�; j) ! (�0; j 0) that send � to �0. Combining Theo-rem 3 and Theorem 0, we see that for any ' 2 M( _�; _�0), the onnetedomponent M'( _�; _�0) ontaining ' is a smooth orbifold withdimM'( _�; _�0) = 2Z(d');where of ourse the right hand side an be omputed from the Riemann-Hurwitz formula. This fat is lassial, but it will be useful in the proof ofTheorem 2 to view it in our partiular analytial setup.Before restriting to the four-dimensional ase, we mention one moresimple appliation of Theorem 3. It gives namely an upper bound on thealgebrai number of ritial points in terms of the dimension of the kernel.For somewhere injetive urves in the generi ase this is simply the index,and we obtain:Corollary 3.17. For generi J, all somewhere injetive urves u 2 Msatisfy 2Z(du) � ind(u; ):So for instane, if �� = ; then somewhere injetive urves of index 0or 1 are neessarily immersed for generi J . This is a simple version ofthe folk theorem that generially, spaes of urves with at least a ertainnumber of ritial points have positive odimension.

38 CHRIS WENDL3.5. The transversality riterion in dimension four. We will nowshow that Theorem 3 implies Theorem 1 in the ase dimW = 4. Thekey is the fat that Nu ! _� is now a omplex line bundle, so DNu will besubjet to the onstraints of Prop. 2.2.Reall from (1.2) the de�nition of the normal �rst Chern number N(u; ).An easy exerise ombining the index formula with the relations (2.3) be-tween winding numbers and Conley-Zehnder indies yields the followingalternative de�nition, reminisent of (2.4):(3.20) N (u; ) = �1 (u�TW )� �( _�) + 12��(u�TW;�)+ Xz2�+ ���(z + z)� Xz2�� ��+(z � z):Proposition 3.18. If u 2 M is not onstant, then1(Nu; `N ;A� � �) = N (u; )� Z(du):Proof. Choosing appropriate trivializations �, the relation follows by asimple alulation using the de�nitions (3.20) and1(Nu; `N ;A� � �) = �1 (Nu) + 12��(Nu; `N)+ Xz2�+ ���(Az + z)� Xz2�� ��+(Az � z)and plugging in (3.16). �To �nish the proof of Theorem 1, we relate DNu to a similar operator ona larger weighted domain: for z 2 �, regard the numbers z = �Æ nowas exponential weights and, realling the notation for weighted Sobolevspaes from x2, extend DNu to a new operatoreDNu : W 1;p;�(Nu)! Lp;�(HomC (T _�; Nu)):The extended operator is onjugate to an operator on non-weighted spaesasymptoti to A� � �, so (2.1) gives ind(eDNu ) = ind(DNu ). MoreoverProp. 2.2 together with Prop. 3.18 above implies for eDNu preisely thetransversality riterion and kernel bound that we would desire for DNu .The result then follows beause the domain of eDNu ontains that of DNu ,hene kerDNu � ker eDNu .4. Appliation to spaes of embedded urvesAs an appliation of the transversality theory, we shall in this setionstate and prove a stronger version of Theorem 2. For preparation, we re-view in x4.1 some basi fats from the intersetion theory of asymptotiallyylindrial holomorphi urves in four dimensions. This theory has been



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 39developed by R. Siefring [Sie℄ for urves with �xed asymptoti orbits, andis generalized to the Morse-Bott ase in [SW℄. We expand on this in x4.2 byproving some useful formulas involving the intersetion theory for multipleovers of orbits and holomorphi urves. The proof of Theorem 2 thenappears in x4.3.For the remainder of this paper we onsider only pseudoholomorphiurves without boundary.Notation. In the following, we will often abbreviate the notation by print-ing summations with �{signs in their index sets, e.g.X(z1;z2)2��1 ���2 F�(z1; z2):The intended meaning is then literally,X(z1;z2)2�+1 ��+2 F+(z1; z2) + X(z1;z2)2��1 ���2 F�(z1; z2):Several variations on this sheme will appear.4.1. Intersetion theory for puntured holomorphi urves. Thissetion will onsist only of de�nitions and statements; we refer to [Sie,SW℄for all proofs.Throughout the following, (W;J) is a 4{dimensional almost omplexmanifold with ylindrial ends (M�;H�), whose vetor �eldsX� are Morse-Bott. Suppose u : _�! W and u0 : _�0 ! W are asymptotially ylindrialholomorphi urves belonging to moduli spaes M and M0 respetivelyfor some hoies , 0 of asymptoti onstraints. One of the goals of theintersetion theory is to de�ne an integer i(u;  j u0; 0) that is invariantas u and u0 move ontinuously through M and M0 respetively, andan be interpreted as an algebrai intersetion ount for the two urves.One an show (see [Sie08℄) that if u and u0 are geometrially distint,meaning they do not both over the same somewhere injetive urve, thentheir intersetions our only within some ompat subset, so the algebraiintersetion ount u �u0 is indeed �nite and nonnegative. It is not howeverhomotopy invariant in general, as intersetions an run out to in�nity underhomotopies. There is nonetheless a well de�ned notion of an asymptotiintersetion number i1(u;  j u0; 0) 2 Zwhih is also nonnegative, suh that the sum(4.1) i(u;  j u0; 0) := u � u0 + i1(u;  j u0; 0)depends only on the respetive onneted omponentsMu andM0u0. Withsome additional e�ort and (as yet unpublished) analysis, one an show thati1(u;  j u0; 0) = 0 for generi somewhere injetive urves and generi J :more preisely, the spaes of urves for whih i1(u;  j u0; 0) > 0 have

40 CHRIS WENDLpositive odimension, and so u � u0 attains the maximal possible valuei(u;  j u0; 0) generially.It is useful to phrase the de�nition of i(u;  j u0; 0) in terms of the relativeintersetion number u�� u0, where � is an arbitrary hoie of trivializationfor �� along the asymptoti orbits of u and u0. One omputes u �� u0 byounting the intersetions of u0 with a small perturbation of u that is o�setin the �{diretion at in�nity: the resulting integer is homotopy invariantand depends on � up to homotopy. Then as shown in [Sie, SW℄, for eahpair of orbits ; 0 and numbers �; �0 2 R, there are integers 
��(+�; 0+�0)suh that(4.2) i(u;  j u0; 0) = u �� u0 � X(z;z0)2���(�0)� 
��(z � z; z0 � 0z0);with the dependene on � aneling out on the right hand side. The atualde�nitions of 
��(+�; 0+�0) are as follows. We set 
��(+�; 0+�0) = 0if  and 0 are geometrially distint orbits, and for any simply overedorbit  and m;n 2 N , if m and n denote the orresponding overs of ,let(4.3) 
��(m + �; n + �0) = mn �min�����(m + �)m ; ����(n + �0)n � :We'll use the abbreviated notation 
��(; 0) when � = �0 = 0. Observethat the right hand side of (4.2) makes sense even when u and u0 are notgeometrially distint; in partiular, we an use it to de�ne i(u;  j u; ),whih is the appropriate generalization of a \self-intersetion number" forpuntured holomorphi urves.If u and u0 are geometrially distint, then the asymptoti ontributioni1(u;  j u0; 0) an be de�ned diretly, thus giving a more oneptuallyrevealing de�nition of i(u;  j u0; 0) via (4.1). Indeed, any pair of punturesfor u and u0 that have the same sign and indistint orbits o�ers a potentialfor intersetions to be \hidden at in�nity". For two suh puntures z 2 ��and z0 2 (�0)�, denote by i�1(uz; u0z0)the relative asymptoti intersetion: this is omputed by restriting bothurves to suitably small ylindrial neighborhoods of the respetive pun-tures and ounting any intersetions that appear near in�nity after per-turbing u in the �{diretion. It turns out that whenever both urves areJ{holomorphi, i�1(uz; u0z0) is a priori bounded from below by 
��(z; z0):thus the integer i1(uz; u0z0) := i�1(uz; u0z0)� 
��(z; z0)is nonnegative and independent of �. Intuitively, it ounts the poten-tial intersetions of these two ends that an \emerge from in�nity" under



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 41homotopies of u and u0 that �x their asymptoti orbits. Additional inter-setions may appear if either orbit is unonstrained and allowed to movein a Morse-Bott family: the number of these is also nonnegative and turnsout to depend only on the orbits and their onstraints. Thus for any orbits; 0 and numbers �; �0 2 R, de�nei�MB( + �; 0 + �0) = 
��(; 0)� 
��( + �; 0 + �0):We will interpret i�MB(z � z; z0 � 0z0) as the number of \extra" hid-den intersetions not ounted by i1(uz; u0z0) that an emerge as these twoends move generially aording to their respetive onstraints, potentiallyshifting the asymptoti orbits. The total asymptoti intersetion numberis then(4.4)i1(u;  j u0; 0) := X(z;z0)2���(�0)� �i1(uz; u0z0) + i�MB(z � z; z0 � 0z0)� :Eah individual term in this sum is nonnegative, and an be expeted tovanish under generi perturbations of u and u0 as \potential" intersetionsbeome real.If u : _� ! W is somewhere injetive, we reall from [MW95℄ that uadmits a loal desription near any ritial point allowing one to de�nea nonnegative singularity index Æ(u): it gives an algebrai ount of self-intersetions u(z) = u(z0) for z 6= z0 after making loal perturbations sothat u beomes immersed. As shown in [Sie08℄, this still makes sense in thepuntured ase beause u is neessarily embedded outside of some ompatsubset: then Æ(u) � 0, with equality if and only if u is embedded. It is how-ever possible for self-intersetions to esape to in�nity under homotopies,thus Æ(u) is not homotopy invariant, but as with the intersetion number,one an add a nonnegative asymptoti singularity index Æ1(u; ) so thatthe sum(4.5) sing(u; ) := Æ(u) + Æ1(u; )depends only on the onneted omponentMu, and equals Æ(u) generiallybut not always. The ondition sing(u; ) = 0 is then neessary and suÆ-ient so that all somewhere injetive urves inMu should be embedded forgeneri J ; note that one still may have u embedded if sing(u; ) > 0, butthen generi urves lose to u will not be. The asymptoti ontribution isa sum of the form(4.6) 2Æ1(u; ) = Xz 6=z02�� �i1(uz; uz0) + i�MB(z � z; z0 � z0)�+ Xz2�� �2Æ1(uz) + 2Æ�MB(z � z)� ;

42 CHRIS WENDLin whih every term is nonnegative if u is J{holomorphi. We interpretÆ1(uz) as the number of self-intersetions near the punture z that mayemerge from in�nity under generi homotopies �xing the orbit z; thisan happen if z is multiply overed, as distint branhes of the ylinderapproahing z run into eah other under perturbation. De�ne2Æ1(uz) = i�1(uz; uz)� 
��(z);where 
��() 2 Z is the \self-intersetion analogue" of 
��(; 0), giving adi�erent theoretial minimum for i�1(uz; uz) sine the two ends are iden-tial. To write it down expliitly for the k{fold over of a simple orbit, hoose any nontrivial eigenfuntion e� of Ak whose winding about kequals ���(k), and note that its overing number ov(e�) 2 N depends onk and ���(k) but not on the hoie e� (f. Lemma 4.2). Thus we denoteov�(k) := ov(e�);and then de�ne(4.7) 
��(k) = �(k � 1)���(k) + �ov�(k)� 1� :Similarly, Æ�MB(z�z) ounts further self-intersetions that may emergeif z is allowed to move in a Morse-Bott family. This doesn't happen ifevery orbit in the family has the same minimal period, but if z onvergesto an orbit with smaller minimal period (and thus higher overing number),the existene of additional branhes an hide extra intersetions at in�nity.The following haraterization of Morse-Bott manifolds will be useful.Proposition 4.1. If M is a 3{manifold with a Morse-Bott vetor �eld X,then every Morse-Bott submanifold P � M an be desribed as follows.There exists a number � > 0 suh that all but a disrete set of orbits in Phave minimal period � ; we shall all these generi orbits. The other orbitswill be alled exeptional: any suh orbit with period � is an m{fold overof a simply overed orbit  for some m � 2 (alled the isotropy), and k isnondegenerate for all k 2 f1; : : : ; m � 1g. The isotropy of an exeptionalorbit is always 2 if dimP = 2.Now, de�ne Æ�MB( � Æ) = 0 if Æ > 0; reall this ase is assoiated witha onstraint that �xes z, thus there an be no \extra" self-intersetionsappearing due to Morse-Bott onsiderations. The de�nition is as follows ifÆ < 0: given an orbit , set � =  if it's nondegenerate, otherwise let �denote any nearby generi orbit in the same Morse-Bott family as . If �is simply overed, k 2 N , and  has isotropy m 2 N , then set(4.8) 2Æ�MB(k � Æ) = k(m� 1)��(k) + ov�(k)� ov�(k� );where ��() 2 f0; 1g is de�ned in (3.4). Observe that the two overingterms refer to homotopi eigenfuntions e ofAk and e� ofAk� , so if e� is ann{fold over then e is as well, hene ov�(k) � ov�(k� ). The inequalitymay sometimes be strit, beause e is attahed to a km{overed orbit,



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 43while the orbit of e� is only k{overed. In any ase, learly Æ�MB(k�Æ) � 0in general, and it vanishes whenever  is a generi orbit.For the urve u 2 M, hoose for eah z 2 � a generi perturbation �zof the orbit z, setting �z = z if either z is nondegenerate or z 2 �C .Then let ov1(�; ) = Xz2�� [ov�(�z)� 1℄ ;and ovMB(�; ) = Xz2��U [ov(�z)� 1℄ � ��(z);with ov(�z) denoting the overing number of �z.Theorem (Adjuntion formula [Sie, SW℄). For any somewhere injetiveurve u 2 M,i(u;  j u; ) = 2 sing(u; ) + N(u; ) + ov1(�; ) + ovMB(�; ):4.2. Some overing relations. It will be useful to have formulas relatingthe intersetion invariants of holomorphi urves and their multiple ov-ers. A prerequisite for this is to have orresponding overing formulas forperiodi orbits, so to start with, assume M is a 3{manifold with stableHamiltonian struture H = (X; �; !; J). Given an orbit , we shall denotethe orresponding asymptoti operator by A and the k{fold over of by k. Then if Ae = �e, the eigenfuntion has a k{fold over ek suhthat Akek = k�ek. In general, we say that an eigenfuntion f of Ak is ak{fold over if there exists an eigenfuntion e of A suh that f = ek.In the following, whenever a trivialization � along an orbit  appears, wewill use the same notation � to denote the resulting indued trivializationsalong all overs of .Lemma 4.2 ([Wena, Lemma 3.5℄). Suppose � is a trivialization along .Then a nontrivial eigenfuntion e of Ak is a k{fold over if and only ifwind�(e) 2 kZ.Lemma 4.3. Suppose  is a periodi orbit of X and � 2 R. If A + �is nondegenerate and p( + �) = 0, then Ak + k� is nondegenerate andp(k + k�) = 0 for all k 2 N.Proof. If p( + �) = 0, then �(A + �) ontains a pair of neighboringeigenvalues with opposite signs and eigenfuntions of the same windingnumber. The k{fold overs of these are eigenfuntions of Ak+k� with thesame properties, thus Ak + k� is nondegenerate and has even parity. �Remark 4.4. If � 2 R is suÆiently lose but not equal to zero, then wemay always assume that for all k 2 N up to some arbitrarily large (but�nite) bound, Ak+� is nondegenerate and ���(k+k�) = ���(k+�). Wean thus replae k� with � in the statement above whenever � is assumedlose to zero, and the same applies to several statements below.

44 CHRIS WENDLCorollary 4.5. For any exeptional orbit in a Morse-Bott family, the un-derlying simple orbit and all of its nondegenerate overs are odd.Proposition 4.6. For any periodi orbit  of X, k 2 N and � 2 R, thereexist integers q�( + �; k) 2 f0; : : : ; k � 1g suh that(4.9) ���(k + k�) = k���( + �)� q�( + �; k):Proof. The integer q�( + �; k) := � ����(k + �)� k���( + �)� is wellde�ned after observing that all dependene on � in the right hand sideanels, so it remains only to show that this number is between 0 and k�1. Consider �rst the ase � = 0, and hoose a trivialization �0 along suh that ��0� () = 0. Then there exists an eigenfuntion e� of A withnegative eigenvalue and wind�0(e�) = 0, and another eigenfuntion e+with nonnegative eigenvalue and wind�0(e+) = 1; moreover there are noeigenfuntions with eigenvalue stritly between that of e� and 0. Movingto the k{fold over, we obtain eigenfuntions ek� and ek+ of Ak withwind�0(ek�) = 0 eigenvalue < 0,wind�0(ek+) = k eigenvalue � 0,and there is no k{fold overed eigenfuntion with eigenvalue stritly be-tween that of ek� and 0. Then by Lemma 4.2, this range of the spetrum ofAk ontains no eigenfuntions with winding k. Sine the winding dependsmonotonially on the eigenvalue, this implies ��0� (k) 2 f0; : : : ; k� 1g. Ananalogous argument gives the orresponding result for �+. Finally if � 6= 0,the arguments above give the same relation between the eigenfuntions ofA + � and Ak + k�. �In preparation for the next lemma, for any orbit , numbers m;n; k 2 Nand Æ; � 2 R, de�ne the nonnegative integers(4.10)~q�(m + Æ; n + �; k) = kmn �min�����(m + Æ)m ; ���(n + �)n �� kmn �min�����(m + Æ)m � q�(m + Æ; k)km ; ���(n + �)n � :Then a simple omputation using the de�nitions of 
��( + �; 0 + �0) andq�( + �; k) implies:Lemma 4.7. For any simply overed orbit , m;n; k 2 N and Æ; � 2 R,
��(km + kÆ; n + �) = k � 
��(m + Æ; n + �)� ~q�(m + Æ; n + �; k):Returning now to the ontext of a 4{manifoldW with Morse-Bott ylin-drial ends (M�;H�), let us �x the following notation: u 2 M is aholomorphi urve with domain (� n�; j), (�; j) and (e�; ~|) are losed Rie-mann surfaes, and ' : (e�; ~|) ! (�; j) is a holomorphi branhed over



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 45of degree deg(') 2 N . This restrits to a branhed over of punturedsurfaes _' : e� n e�! � n �;where e� := '�1(�), and there is a resulting holomorphi urve u Æ ' :e� n e�!W . Its asymptoti orbits are related to those of u byz = kz'(z)at eah z 2 e�, where kz := ord(d'; z)+1, so that ' is kz{to{1 near z. Theonstraints  on � an then be pulled bak to onstraints '� on e� like so:for any � 2 � onstrained to the orbit �, de�ne '� by �xing the orbit kz�at eah z 2 '�1(�). Then u Æ ' 2 M'�.Proposition 4.8. For u 2 M and the over u Æ' 2 M'� de�ned above,N(u Æ ';'�) = deg(') � N(u; ) + Z(d _') +Qwhere Q is a nonnegative integer. Spei�ally,Q = Xz2e�� q�('(z) � '(z); kz):Proof. Denote ~u := u Æ ', ~ := '� and observe that for eah � 2 �,Pz2'�1(�) kz = k := deg('). Note also that by extending _' to the irleompati�ations of e� n e� and � n �, one an apply the Riemann-Hurwitzformula and obtain Z(d _') = ��(e� n e�) + k�(� n �):Then using (4.9) and Remark 4.4,N(~u; ~) = �1 ('�u�TW )� �(e� n e�) + X�2�� Xz2'�1(�)����(kz� � ~z)= k�1 (u�TW )� k�(� n �) + Z(d _') + k X�2������(� � �)+ X�2�� Xz2'�1(�)� ����(kz� � ~z)� kz���(� � �)�= k � N(u; ) + Z(d _') + Xz2e�� q�('(z) � '(z); kz): �Proposition 4.9. For the over u Æ ' 2 M'� as in Prop. 4.8 and anyother urve v 2 M0,i(u Æ ';'� j v; 0) � deg(') � i(u;  j v; 0):

46 CHRIS WENDLProof. Again denote k := deg('), kz := ord(d'; z) + 1 2 N for eah z 2 e�,~u := uÆ' and ~ := '�. The relative intersetion number satis�es ~u�� v =k(u �� v). Writing the punture set of v as �0, we apply Lemma 4.7 withRemark 4.4 in mind and �ndi(~u; ~ j v; 0) = ~u �� v � X(z;z0)2e���(�0)� 
��(z � ~z; z0 � 0z0)= k � (u �� v)� X(�;z0)2���(�0)�0� Xz2'�1(�)
��(kz� � ~z; z0 � 0z0)1A= k � (u �� v)� X(�;z0)2���(�0)� Xz2'�1(�) hkz
��(� � � ; z0 � 0z0)� ~q�(� � �; z0 � 0z0; kz)i!= k � (u �� v)� k X(�;z0)2���(�0)� 
��(� � � j z0 � 0z0)+ X(z;z0)2e���(�0)� ~q�('(z) � '(z) j z0 � 0z0 j kz)= k � i(u;  j v; 0) + X(z;z0)2e���(�0)� ~q�('(z) � ~'(z) j z0 � 0z0 j kz):The last term is nonnegative. �De�nition 4.10. For a given set of puntures �, the set of all hoiesof asymptoti onstraints on � admits a partial order de�ned as follows.We say � � + if for every z 2 � at whih the asymptoti orbit z isonstrained by �, it is also onstrained by + to the same orbit.Observe that if � � +, then M+ � M� and �z � +z for eahz 2 �. One expets in general that weaker onstraints should lead tolarger intersetion numbers, as intersetions an more easily emerge fromin�nity under more general homotopies. Indeed, using �z � +z togetherwith the fat that ���( + �) always has monotone dereasing dependeneon �, we easily derive the following:Proposition 4.11. If � � + and u 2 M+, thenN(u; �) � N(u; +):Moreover for any other urve v 2 M,i(u; � j v; ) � i(u; + j v; ):



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 474.3. Multiply overed limits are immersed. We shall now state andprove a parametrized version of Theorem 2.De�nition 4.12. We will say that u 2 M is a stable, niely embeddedurve (with respet to the onstraints ) if it is somewhere injetive andsatis�es the following relations:(1) i(u;  j u; ) � 0,(2) ind(u; ) � 0,(3) ind(u; ) > N(u; ).Before going further, let us onsider the properties of suh urves andthe motivation for the de�nition. Observe �rst that the ombination ofind(u; ) � 0 and the relation(4.11) 2N(u; ) = ind(u; )� 2 + 2g +#�0()gives the lower bound N(u; ) � �1. Then the adjuntion formula to-gether with i(u;  j u; ) � 0 implies sing(u; ) = 0, so every somewhereinjetive urve in Mu is embedded. We an also dedue from the adjun-tion formula that N (u; ) � 0, and then (4.11) implies ind(u; ) � 2. Theindex 1 and 2 ases are of partiular interest: sine #�0() and ind(u; )always have the same parity due to the index formula, it follows from (4.11)that urves of index 1 or 2 satisfying our onditions have N(u; ) = 0 andthus i(u;  j u; ) = 0. The transversality riterion ind(u; ) > N(u; ) islearly satis�ed, and thus u lives in a 1 or 2{dimensional family of embed-ded urves that never interset eah other. These are preisely the urvesthat appear in J{holomorphi foliations of W , or in the ase where W isa sympletization R �M , the �nite energy foliations of Hofer, Wysokiand Zehnder [HWZ03℄. Isolated urves with ind(u; ) = 0 an also ourin suh foliations (surrounded by families of larger index): we'll show forinstane that stable, niely embedded index 0 urves appear as the under-lying somewhere injetive urves when families of larger index degenerateto multiple overs.It will be useful to note that due to (4.11), all stable niely embeddedurves also have the following properties:(1) g = 0,(2) #�0() = 1 if ind(u; ) = 1, and otherwise #�0() = 0.In the ases ind(u; ) = 1 or 2, we've observed that N (u; ) = 0 and thusthe adjuntion formula also implies ov1(�; ) = ovMB(�; ) = 0. Wewill use this shortly to prove the following onsequene for the unique evenpunture z 2 �0() in the index 1 ase:Proposition 4.13. If u 2 M is a stable, niely embedded urve withind(u; ) = 1, then the unique even punture z 2 ��0 () satis�es one of thefollowing:(1) z is nondegenerate and even,

48 CHRIS WENDL(2) z belongs to a 2{dimensional Morse-Bott manifold, and ��(z) = 0if and only if z 2 �C.Moreover, z is either simply overed, or is doubly overed suh that theunderlying simple orbit is nondegenerate and odd.De�nition 4.14. Adapting some terminology from Sympleti Field The-ory [EGH00℄, we will all z 2 �� a bad punture if z 2 �0() and z = 2for some nondegenerate odd orbit .Remark 4.15. In this terminology, Prop. 4.13 says that the unique evenpunture has an orbit of overing number 1 or 2, and is bad in the latterase. In SFT of ourse, \bad" also means \to be ignored": moduli spaesof urves with suh puntures annot be oriented, but they also need notbe ounted in onstruting the algebra of the theory.This is enough preparation to state the strong version of Theorem 2.In the following, we use expressions suh as \for generi J . . . " or \Jis generi" to mean more preisely: \there exists a Baire subset J �J!(W;H+;H�) suh that the following is true if J 2 J ." Similarly, \forgeneri homotopies. . . " means that there exists a Baire subset in the spaeof smooth homotopies in J!(W;H+;H�) for whih the statement is true.Theorem 4. Assume fJ�g�2[0;1℄ is a smooth 1{parameter family of almostomplex strutures in J!(W;H+;H�) suh that either(1) the homotopy � 7! J� is generi, or(2) J� = J is independent of � and is generi.Suppose �n ! �1 2 [0; 1℄ and un : _� ! W is a sequene of asymp-totially ylindrial J�n{holomorphi urves, whih are stable and nielyembedded with respet to some �xed asymptoti onstraints  and onvergeto a smooth J�1{holomorphi urve u : _�! W . Then:� If ind(u; ) = 0 or ind(u; ) = 1 with z simply overed for theunique even punture z 2 �0(), then u is a stable, niely embeddedurve.� If ind(u; ) = 1 and the unique even punture z 2 �0() is bad (withz doubly overed), or ind(u; ) = 2, then u is either a stable, nielyembedded urve or an unbranhed multiple over of a stable, nielyembedded index 0 urve.In all ases, u is regular.Note that sine sing(u; ) = 0 for all stable, niely embedded urves, theMorse-Bott ontribution Æ�MB(z) also vanishes at eah punture. Pluggingin (4.8) leads immediately to the following onsequene:Lemma 4.16. For any stable, niely embedded urve u, if z 2 ��U is anunonstrained punture with a degenerate orbit z whih is exeptional inthe sense of Prop. 4.1, then ��(z) = 0 and ov�(z) = ov�(�z).



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 49Proof of Prop. 4.13. The �rst alternative follows easily from the formulap(z � z) = ��+(z � z) � ���(z � z) and the de�nition of ��(z). Wehave also ov�(�z) = 1 and [ov(�z)� 1℄ � ��(z) = 0, implying the samestatements for z due to Lemma 4.16.If z is nondegenerate, we laim now that it annot be a multiple overof any even orbit 0. Otherwise there are eigenfuntions e� of A0 withidential winding numbers and eigenvalues of opposite sign, so the orre-sponding overs give a pair of neighboring eigenfuntions in the spetrumof Az ; their eigenvalues are therefore the largest negative and smallestpositive elements of �(Az), implying ov�(z) > 1, a ontradition. Thisleaves two possibilities for the simply overed orbit underlying z: it iseither even (and thus is z itself) or is odd but hyperboli, in whih asez an only be its double over.In the Morse-Bott ase, suppose �rst that ��(z) = 0. Then any setionwhose overing number is ounted by ov�(�z) has the same winding andhene the same overing number as a setion in kerA�z , thus also the sameovering number as �z itself. We onlude that �z is simply overed, soeither z is as well or it is an exeptional orbit with isotropy 2 as desribedin Prop. 4.1. The same result follows if ��(z) = 1 beause [ov(z)� 1℄ ���(z). �In the proof of Theorem 4, we'll need the following small variation onthe usual impliit funtion theorem:Lemma 4.17. Suppose f : X ! Y is a smooth Fredholm map betweenBanah spaes with f(0) = 0, and Q � X is a smooth �nite dimensionalsubmanifold of X that ontains 0, is ontained in f�1(0) and satis�esdimker df(0) = dimQ:Then Q also ontains a neighborhood of 0 in f�1(0); in partiular thisneighborhood is a smooth manifold of dimension dimker df(0).Proof. Let V = imdf(0) � Y and hoose a linear projetion map �V : Y !V along some losed omplement. Then �V Æ f : X ! V is also Fredholmand is regular at 0, so the impliit funtion theorem gives (�V Æ f)�1(0)near 0 the struture of a smooth manifold of dimension dimker df(0). NowQ � f�1(0) � (�V Æ f)�1(0);where the spaes on the left and right are manifolds of the same dimensionontaining 0; the result follows. �To every onneted omponent of the moduli spae M, one an asso-iate the data (�;�; P�), where � n � is the domain of any urve in theomponent (well de�ned up to di�eomorphism) and P� is the olletion

50 CHRIS WENDLof orbits and/or Morse-Bott submanifolds fPzgz2� that determine the as-ymptoti behavior of suh a urve. Let us introdue the notationM(�;�; P�) �Mto indiate the union of all onneted omponents of M that have thispartiular domain and asymptoti behavior.Lemma 4.18. For any omponent M(�;�; P�) � M, there exists a �-nite set C ontaining tuples (�0;�0; P�0; 0) suh that the following is true:if u = v Æ ' 2 M(�;�; P�) is a multiple over and v is the underlyingsomewhere injetive urve, then there exists (�0;�0; P�0; 0) 2 C suh thatv 2 M(�0;�0; P�0) �M0 and  � '�0 in the sense of Def. 4.10.Proof. The Riemann-Hurwitz formula onstrains the genus of �0 to be lessthan or equal to that of �, allowing only �nitely many di�erent losedsurfaes. Having hosen �0, the relation z = kz'(z) for z 2 � and kz :=ord(d'; z)+ 1 allows kz to vary between 1 and ov(z), thus giving a �niterange of hoies for eah punture. After making this hoie, we an alsodeide whih puntures z; z0 2 � might have the same image under ': this isallowed only when Pz and Pz0 belong to the same Morse-Bott manifold, andagain presents a �nite range of hoies. The number of puntures �0 andtheir asymptoti limits P�0 are uniquely determined by this hoie. Finally,the onstraints 0 an be de�ned as follows: for any onstrained z 2 �,de�ne � := '(z) to be a onstrained punture, �xed at the unique orbit �suh that z = kz� . Any punture � 2 �0 not touhed by this algorithmwill be onsidered unonstrained. By onstrution now,  � '�0. �Proof of Theorem 4. We will arry out the proof in several steps assumingfJ�g�2[0;1℄ is a generi homotopy; the proof for a �xed generi J is the samebut slightly simpler in a few details.If u is somewhere injetive there's nothing to prove, so assume u = v Æ'for a somewhere injetive urve v : _�0 ! W and a holomorphi branhedover ' : �! �0 of degree k � 2. By Lemma 4.18, the domain of v is oneout of a �nite set of hoies and satis�es onstraints 0 with  � '�0. Foreah suh hoie, there exists a generi set of homotopies fJ�g suh that wean assume ind(v; 0) � �1, and the intersetion of all these generi sets isalso generi, hene the generiity assumption implies ind(v; 0) � �1. By(4.11) then, N(v; 0) � �1.Step 1: We show that N(v; 0) = �1. Combining Prop. 4.8 andProp. 4.11 yields0 � N (u; ) � N (u;'�0) = kN (v; 0) + Z(d _') +Q;so the only other alternative is N(v; 0) = 0, in whih ase N(u; ) =Z(d _') = Q = 0. Then all ritial points of ' : � ! �0 are at pun-tures, and the Riemann-Hurwitz formula gives 2k � 2 of them (ountingmultipliity) sine both � and �0 neessarily have genus zero. Denote



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 51kz = ord(d'; z) + 1 2 N for eah z 2 �. Now Q = 0 implies that for eahz 2 ��, if � = '(z),���(z � ('�0)z) = ���(kz� � ('�0)z) = kz���(� � 0�);so depending on the onstraints, we have either ���(z) 2 kzZ or ���(z �Æ) 2 kzZ, the latter only if � 2 �0U , whih implies z 2 �U . In eitherase, Lemma 4.2 then implies that a ertain eigenfuntion e of Az is akz{fold over. If it's the �rst ase, then ov�(z) � kz, and this equalsov�(�z) by Lemma 4.16. In the seond ase, we have ov(z) � kz ande 2 kerAz . If ��(z) = 0, then wind�(e) = ���(z) 2 kzZ, so Lemmas 4.2and 4.16 again imply ov�(�z) = ov�(z) � kz. Otherwise ��(z) = 1,so Lemma 4.16 implies that z is generi and thus ��(z) � [ov(�z)� 1℄ =��(z) � [ov(z)� 1℄ � kz � 1. Putting all of these ases together andsumming over z 2 �, we �ndov1(�; ) + ovMB(�; ) �Xz2�(kz � 1) = 2k � 2 � 2:Thus for large n, i(un;  j un; ) = 2 sing(un; )+ N(un; )+ ov1(�; )+ovMB(�; ) � 2, a ontradition.In light of this result and (4.11), we have either ind(v; 0) = 0 with allpuntures odd or ind(v; 0) = �1 with exatly one even punture.Step 2: Claim ind(v; 0) = 0. If not, then ind(v; 0) = �1 and #�00(0) =1, and sine overs of even orbits are always even (Lemma 4.3), #�0() � 1,implying ind(u; ) = 1. In this ase u also has exatly one even punturez 2 �0(), so z = k� with � := '(z) 2 �00(0). There are now three asesto onsider:(1) If � is nondegenerate, then so is z and its extremal eigenfuntionsare the k{fold overs of those of � , giving ov�(�z) � k.(2) If � is Morse-Bott with ��(�) = 0, then the extremal eigenfuntionof a generi perturbation �� has the same winding and thus sameovering number as a setion in kerA�� , and the same is true forthe k{fold over. Moreover the Morse-Bott family ontaining �zis at least k{fold overed, whih implies the same for setions inkerA�z . So again, ov�(�z) = ov(�z) � k.(3) If ��(�) = 1, then Lemma 4.16 implies z is generi, so we antake �z = z without loss of generality and onlude [ov(�z)� 1℄ ���(z) � k.The onlusion from all of these ases is that ov1(�; )+ ovMB(�; ) �k � 1 � 1, and sine N (u; ) = 0 for the index 1 ase, a ontraditionarises again from the adjuntion formula: i(un;  j un; ) = 2 sing(un; ) +N(un; ) + ov1(�; ) + ovMB(�; ) � 1.Step 3: Sine 0 = ind(v; 0) > N (v; 0) = �1, it now follows immedi-ately from Prop. 4.9 and Prop. 4.11 that v is a stable, niely embedded

52 CHRIS WENDLurve, as0 � i(u;  j u; ) � i(u;'�0 j u;'�0) � k2 � i(v; 0 j v; 0):Step 4: If ind(u; ) = 1, then its unique even orbit annot be simplyovered sine v has only odd orbits. Thus the even orbit must be a doublyovered orbit at a bad punture.Step 5: We laim u is immersed and has ind(u; ) > 0. Suppose not,i.e. that either Z(du) > 0 or ind(u; ) = 0. Then ind(u; ) � 2Z(du), soTheorem 1 gives2Z(du) � dimker�D ��J�1 (j; u)=aut( _�; j)�� 2Z(du) +K(N (u; )� Z(du);#�0()) = 2Z(du)(4.12)sine N(u; )�Z(du) < 0. Extending the usual bundle on T �B to allowparametrized J , we an now onsider a nonlinear operator�� : [0; 1℄� T � B ! E : (�; j 0; u0) 7! ��J� (j 0; u0):Sine v is embedded, every ritial point of u arises as a branh point of_' : _�! _�0, thus Z(du) = Z(d _'), and (4.12) now implies(4.13) dimkerD ��(�1; j; u) � 2Z(d _') + dimAut( _�; j) + 1:To apply Lemma 4.17, we shall now �nd a smooth manifold of preiselythis dimension that is ontained in ���1(0). The key is to look at the spaeof holomorphi branhed overs _� ! _�0 lose to _'. Observe that sinev is embedded and satis�es the transversality riterion 0 = ind(v; 0) >N(v; 0) = �1, for � lose to �1 we obtain from the impliit funtiontheorem a smooth 1{parameter family of asymptotially ylindrial pseu-doholomorphi maps v� : ( _�0; j� )! (W;J� )satisfying the onstraints 0, with v�1 = v. The holomorphi maps from _�to ( _�0; j� ) an then be identi�ed with the zero-set of a setion���0 : [0; 1℄� T � B�0 ! E�0 : (�; j 0; '0) 7! T'0 + j� Æ T'0 Æ j 0;and by the remarks in Example 3.16, a neighborhood of _' in ���1�0 (0) is asmooth manifold of dimension 2Z( _') +Aut( _�; j) + 1. Now for (�; j 0; '0) 2���1�0 (0), we have (�; j 0; v� Æ'0) 2 ���1(0), thus embedding ���1�0 (0) as a smoothsubmanifold of dimension 2Z(d _')+dimAut( _�; j)+ 1 in ���1(0). It followsthat (4.13) is an equality, and Lemma 4.17 now implies that every elementof ���1(0) near (�1; j; u) belongs to this submanifold; this is a ontradition,as it implies that for large n, un must also be a multiple over.Step 6: Sine we now know that u is immersed, it is immediate fromTheorem 1 that u is regular. �



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 53Corollary 4.19. For generi J, if u 2 M is a stable, niely embeddedJ{holomorphi urve then Mu is a smooth orbifold of dimension ind(u; )with only isolated singularities. Moreover, the images of any two urves inMu are either idential or disjoint, and they are all stable and niely em-bedded exept for a disrete set of unbranhed multiple overs of embeddedurves.Proof. The statement about the images follows from positivity of interse-tions and the ondition i(u;  j u; ) � 0. The only remaining part notimmediate from Theorem 4 is that the multiple overs are isolated; thisis related to the fat that the orbifold singularities must be isolated fororientation reasons (see Remark 4.21 below), but doesn't follow from it.So, we laim that for any multiple over u = v Æ' arising as a limit in thetheorem, every other urve lose to u is somewhere injetive. Here we anassume ind(u; ) is 1 or 2, so N(u; ) = ov1(�; ) = ovMB(�; ) = 0.Now note that Theorem 3 and the impliit funtion theorem give a naturalisomorphism TuM = kerDNu sine u is immersed, and it will thus suÆeto show that nontrivial setions � 2 kerDNu � �(Nu) are not multiply ov-ered. Otherwise, using the natural identi�ation Nu = '�Nv, there existsa nonzero � 2 kerDNu and a setion �0 2 �(Nv) suh that � = �0 Æ '. Weknow that � is zero free (also at in�nity), sine using (2.7), Prop. 3.18 andthe usual identi�ation of DNu with an operator on non-weighted spaes,Z(�) + Z1(�) = 1(Nu; `N ;A� � �) = N (u; ) = 0:This implies that the winding of � near eah punture z 2 �� attains theextremal value ���(z�z). But this is impossible if � = �0 Æ': indeed, thefat that _' : _�! _�0 is immersed but both surfaes have genus zero impliesthat there exists a punture z 2 � at whih ' has nontrivial branhingorder kz := ord(d'; z) > 1, so the asymptoti winding wind�z (�) of � nearz satis�es�wind�z (�) � �kz���('(z) � 0'(z))= ����(z � ('�0)'(z))� q�('(z) � 0'(z); kz)� ����(z � z)� q�('(z) � 0'(z); kz);implying q�('(z) � 0'(z); kz) = 0 and thus ���(z � z) 2 kzZ. Thenrepeating an argument that is by now familiar from the proof of Theorem 4,we �nd a ontradition in the form ov1(�; ) + ovMB(�; ) > 0. �Remark 4.20. It is shown in [Wenb℄ that if u : _� ! W is a stable nielyembedded index 2 urve, then the nearby urves inMu foliate a neighbor-hood of u( _�) in W . Now suppose u is a multiply overed index 2 urvethat is a limit of stable niely embedded urves. Then sine u is immersedand TuM onsists of zero-free setions of its normal bundle, the same ar-gument shows that the nearby urves in Mu again foliate a neighborhood

54 CHRIS WENDLof u( _�). In this foliation, u( _�) is an exeptional leaf, being the embeddedimage of an isolated index 0 urve. An expliit example is onstrutedbelow.Remark 4.21. The fat that singularities in a 1{dimensional orbifold areisolated is obvious, and in two dimensions it's true if the orbifold is oriented,as an oriented orbifold an only have singularities of odimension at leasttwo. By results in [BM04℄, Mu does admit an orientation if u is a stable,niely embedded urve of index 2, and the same is true for index 1 if andonly if the unique even punture is not a \bad" punture. This exludessingularities in the index 1 ase entirely unless the even punture is bad,and indeed, we've shown that multiple overs don't appear in this ase.These remarks are not quite enough to prove Cor. 4.19 however, as ingeneral there an be multiple overs with trivial automorphism groups,whih therefore do not ause singularities.Example 4.22. We now onsider a onrete situation in whih nielyembedded urves of index 2 are seen to onverge to an isolated, unbranhedmultiple over.Identify S2 with the extended omplex plane and let W = (S2 � S2) nf(0; 0); (1;1); (1; 1)g, hoosing the standard omplex struture J = i� i.This an be regarded as a manifold with three negative ylindrial endsasymptoti to the standard ontat 3{sphere, whose Reeb orbits are the�bers of the Hopf �bration. The asymptotis are therefore Morse-Bott:there is a 2{dimensional family of losed orbits at eah end. Now for� 2 C n f0;�1; 1g, onsider the 2{dimensional family of J{holomorphifour-puntured spheresu� : S2 n f0; 1;�1;1g!W : z 7! �z3 z + ��z + 1 ; z2� :These are all proper and embedded, with asymptoti behavior as follows:� At 0, u� is asymptoti to a �xed doubly overed orbit in the end(0; 0).� At 1, u� is asymptoti to a �xed doubly overed orbit in the end(1;1).� At 1 and �1, u� is asymptoti to an arbitrary (not �xed) simplyovered orbit in the end (1; 1).One an use the setup we've desribed to show that the moduli spae ofembedded holomorphi urves satisfying preisely these asymptoti on-straints and representing the same relative homology lass is indeed asmooth 2{dimensional manifold: indeed, ind(u; ) = 2 and i(u;  j u; ) =N(u; ) = ov1(�; ) = ovMB(�; ) = 0. Now as � ! 0, the familyonverges to the urve u0(z) = (z4; z2) =: v(z2), an unbranhed doubleover of the embedded 3{puntured spherev : S2 n f0; 1;1g! W : z 7! (z2; z);



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 55and with the appropriate asymptoti onstraints 0 one an indeed showthat ind(v; 0) = 0 and i(v; 0 j v; 0) = N(v; 0) = �1. Observe thatthe images of u� for � near zero together with the image of v foliate aneighborhood of v in W . Due to the ordering of the puntures, Aut(u0) isthe trivial group, so the moduli spae remains a smooth manifold even withu0 inluded. If we take the quotient of this spae by forgetting the orderof the puntures, it beomes a smooth orbifold in whih u0 has isotropygroup Z2.Remark 4.23. It's also interesting to see what happens to the family u� as� ! �1 or � !1: here it turns out that u� breaks into a J{holomorphibuilding (in the sense of the SFT ompatness theorem [BEH+03℄). At � !1 in partiular, the building inludes a omponent that is an unbranhedmultiple over of index �2 over a niely embedded index 0 urve. It iswork in progress by the author to generalize Theorem 4 in light of SFTompatness and show that suh behavior is quite general: indeed, thatonly unbranhed multiple overs an arise in suh limits, and that thereexists a well behaved gluing theory for buildings of this type.Appendix A. Counting boundary zerosIn this appendix we de�ne a 12Z{valued ount of zeroes for setions of aomplex line bundle with totally real boundary ondition. Let (E; J)! Sbe a topologial omplex line bundle over a ompat, onneted and ori-ented surfae with boundary. Partition the boundary into disjoint subsets�S = �0S t �1S, either of whih may be empty. Now hoose a totallyreal subbundle ` � Ej�0S ! �0S, and onsider the spae of all ontinuoussetions � : S ! E suh that �(�0S) � ` and � 6= 0 on �1S. We willall suh setions admissible. Suppose � is an admissible setion with adisrete zero set ��1(0) � S. If z0 2 ��1(0) \ intS, then it is standard tode�ne the order of the zero ord(�; z0) as the winding number of � over asmall loop around z0, omputed in any loal trivialization. The boundaryondition makes it possible to extend this de�nition to isolated zeros on�0S as well: for z0 2 Z(�) \ �0S, hoose oordinates identifying a neigh-borhood U of z0 with D + = fz 2 C j jzj � 1 and Im z � 0g, suh thatz0 = 0 and U \�S = D + \R. Choose also a loal trivialization over U thatidenti�es ` with (D + \ R) � R � D + � C . Then � is represented on thisneighborhood by a ontinuous funtion f : D + ! C , satisfying the bound-ary ondition f(D + \ R) � R. We an therefore extend f to a ontinuousfuntion fD : D ! C on the full disk, satisfying fD(�z) = fD(z). The orderord(�; z0) is then the order of the isolated zero of fD at 0, i.e. the windingnumber of fD for a small irle about 0. This de�nition doesn't depend onthe hoies.

56 CHRIS WENDLFor an admissible setion � with disrete zero set ��1(0), we now de�nethe algebrai ount of zeros byZ(�) = Xz2��1(0)\int S ord(�; z) + 12 Xz2��1(0)\�0S ord(�; z):Proposition A.1. Suppose �0 and �1 are admissible setions with isolatedzeros, and are homotopi through a family of admissible setions. ThenZ(�0) = Z(�1).Proof. This is lear if �0S = ;: then Z(�) is the Euler number of E if�1S = ;, or more generally the homotopy invariant winding number about�1S with respet to any global trivialization.We redue the general ase to this by a doubling argument: de�ne theonjugate surfae SC := S with the opposite orientation, and the onjugatebundle (EC ; JC) := (E;�J)! SC . Then we an glue S to SC along �0S tode�ne the doubled surfae SD, and similarly form a bundle (ED; JD)! SDby gluing (E; J) to (EC ; JC) via the unique omplex bundle isomorphismEj�0S ! EC j�0S that restrits to the identity on `. Now �SD = �1SD =�1S [ �1SC . Any admissible setion � of E de�nes an admissible setion�D of ED, and the same statement applies to homotopies, thus it suÆesto prove the following formula relating Z(�) to Z(�D):Z(�D) = Xz2(�D)�1(0) ord(�D; z)= 2 Xz2��1(0)\int S ord(�; z) + Xz2��1(0)\�0S ord(�; z)= 2Z(�):This follows from two important fats whih are easy to hek: �rst, if zis a zero of � in intS, its order is the same as that of the orrespondingzero in SC. Seondly, if z is a boundary zero of �, then its order equals itsorder as an interior zero of �D. �The doubling formula Z(�D) = 2Z(�) whih emerged from this proof isa useful fat in itself; we shall apply it now to express Z(�) in terms of therelative �rst Chern number of E and the boundary Maslov index of thepair (Ej�0S; `).Proposition A.2. For any hoie of trivialization � along �S,Z(�) = �1 (E) + 12��(E; `) + wind��1S(�):Proof. Label the right hand side bZ(�) and observe that it does not dependon � and depends on � only up to homotopy through admissible setions.Moreover it is lear that Z(�) = bZ(�) if �0S = ;, so it will suÆe to provethe doubling formula bZ(�D) = 2 bZ(�). Sine the orientations of both EC



TRANSVERSALITY AND ORBIFOLDS OF HOLOMORPHIC CURVES 57and SC are reversed, we have wind�D�1SD(�D) = 2wind��1S(�) for the naturaltrivialization �D indued by �. We laim also that�D1 (ED) = 2�1 (E) + ��(E; `);whih will prove the result. This an be redued to the standard additivityof the Maslov index under gluing. Construt a new surfae �S � S by gluinga disk to eah omponent of �1S, and glue in trivial bundles along � overthese disks to produe a new bundle ( �E; �J) ! �S, suh that �EjS = E and�1 ( �E) = �1 (E). Now � �S = �0S, and 2�1 (E) + ��(E; `) is by de�nitionthe absolute Maslov index �( �E; `). (Alternatively, one an de�ne the latteras ��( �E; `) where � is any trivialization along � �S that extends globallyover �S.) Now the gluing property for �( �E; `) gives2�( �E; `) = � � �ED� = 21 � �ED�sine �SD is losed. But the latter is also equal to 2�D1 �ED�, proving thelaim. �Referenes[Bar00℄ J.-F. Barraud, Courbes pseudo-holomorphes �equisinguli�eres en dimension 4,Bull. So. Math. Frane 128 (2000), no. 2, 179{206 (Frenh, with Englishand Frenh summaries).[Bou02℄ F. Bourgeois, A Morse-Bott approah to ontat homology, Ph.D. Thesis,Stanford University, 2002.[BEH+03℄ F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysoki, and E. Zehnder, Com-patness results in sympleti �eld theory, Geom. Topol. 7 (2003), 799{888(eletroni).[BM04℄ F. Bourgeois and K. Mohnke, Coherent orientations in sympleti �eld the-ory, Math. Z. 248 (2004), no. 1, 123{146.[Dra04℄ D. L. Dragnev, Fredholm theory and transversality for nonompat pseudo-holomorphi maps in sympletizations, Comm. Pure Appl. Math. 57 (2004),no. 6, 726{763.[EGH00℄ Y. Eliashberg, A. Givental, and H. Hofer, Introdution to sympleti �eldtheory, Geom. Funt. Anal., Speial Volume (2000), 560{673.[EKP06℄ Y. Eliashberg, S. S. Kim, and L. Polterovih, Geometry of ontat transfor-mations and domains: orderability versus squeezing, Geom. Topol. 10 (2006),1635{1747 (eletroni).[Fra05℄ S. Franiso, Sympleti isotopy for uspidal urves, Ph.D. Thesis, MIT,2005.[Gro85℄ M. Gromov, Pseudoholomorphi urves in sympleti manifolds, Invent.Math. 82 (1985), no. 2, 307{347.[Hof93℄ H. Hofer, Pseudoholomorphi urves in sympletizations with appliationsto the Weinstein onjeture in dimension three, Invent. Math. 114 (1993),no. 3, 515{563.[HLS97℄ H. Hofer, V. Lizan, and J.-C. Sikorav, On generiity for holomorphi urvesin four-dimensional almost-omplex manifolds, J. Geom. Anal. 7 (1997),no. 1, 149{159.
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