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STRONGLY FILLABLE CONTACT MANIFOLDS ANDJ{HOLOMORPHIC FOLIATIONSCHRIS WENDLAbstrat. We prove that every strong sympleti �lling of a planarontat manifold admits a sympleti Lefshetz �bration over the disk,and every strong �lling of T 3 similarly admits a Lefshetz �bration overthe annulus. It follows that strongly �llable planar ontat struturesare also Stein �llable, and all strong �llings of T 3 are equivalent up tosympleti deformation and blowup. These onstrutions result from aompatness theorem for puntured J{holomorphi urves that foliatea onvex sympleti manifold. We use it also to show that the om-patly supported sympletomorphism group on T �T 2 is ontratible,and to de�ne an obstrution to strong �llability that yields a non-gauge-theoreti proof of Gay's reent non�llability result [Gay06℄ forontat manifolds with positive Giroux torsion.
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2 CHRIS WENDL1. IntrodutionLet M be a losed, onneted and oriented 3{manifold. A (positive,ooriented) ontat struture on M is a 2{plane distribution of the form� = ker �, where the ontat form � 2 
1(M) satis�es � ^ d� > 0. Itis a natural question in ontat geometry to ask whether a given ontatmanifold (M; �) is sympletially �llable, meaning the following: we saythat a ompat and onneted sympleti manifold (W;!) with boundary�W =M is a weak �lling of (M; �) if !j� > 0, and it is a strong �lling if � =ker �Y ! for some vetor �eld Y de�ned near �W whih points transverselyoutward at the boundary and satis�es LY ! = !. If Y extends globally overW , then �Y ! de�nes a global primitive of ! and thus makes (W;!) an exat�lling. A still stronger notion is a Stein �lling (W;!), whih omes withan integrable omplex struture J and admits a proper plurisubharmonifuntion ' : W ! [0;1) for whih �W is a level set, Y is the gradient and! = �ddC'. We refer to [Etn98,OS04℄ for more details on these notions.The vetor �eld Y near the boundary of a strong �lling is alled a Li-ouville vetor �eld, and it indues a ontat form � := �Y !jM . As we'llreview shortly, the existene of Y is then equivalent to the ondition thatone an smoothly glue the positive sympletization ([0;1) � M; d(ea�))to (W;!) along �W = f0g �M ; in the language of sympleti �eld the-ory (f. [BEH+03℄), this produes a sympleti obordism with a positiveylindrial end. One an also replae � by a positive multiple of any otherontat form de�ning � after attahing to (W;!) a trivial sympleti obor-dism (see (2.1) below). In either ase, the enlarged sympleti manifold isexat if (W;!) is an exat �lling.In this paper we examine some of the onsequenes for strong sympleti�llings and Stein �llings when a subset of the ontat manifold (or rather itssympletization) admits foliations by J{holomorphi urves. It turns outthat whenever a foliation with ertain properties exists, it an be extendedfrom [0;1) �M to �ll the entirety of W with embedded J{holomorphiurves, forming a sympleti Lefshetz �bration (Theorems 1 and 2), andthis deomposition is stable under deformations of the sympleti struture(Theorem 3). The existene of suh a �bration has onsequenes for thetopology of the �lling, e.g. for planar ontat strutures, it implies that thenotions \strongly �llable" and \Stein �llable" are equivalent (Corollary 1).For the 3{torus, our arguments establish a onjeture of Stipsiz [Sti02℄by showing that all minimal strong �llings are sympletially deformationequivalent, and exat �llings in partiular are sympletomorphi to starshaped domains in T �T 2 (Theorem 4); moreover, the group of ompatlysupported sympletomorphisms on T �T 2 is ontratible (Theorem 5). Inother situations, one �nds that the foliation on W produes an obviousontradition, thus implying that the ontat manifold annot be strongly
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FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 3�llable (Theorem 6)|this is the ase in partiular for any ontat manifoldwith positive Giroux torsion (Example 2.11).Aknowledgments. This work emerged originally out of disussions withKlaus Niederkr�uger and subsequently reeived muh valuable enourage-ment from John Etnyre. It was the latter in partiular who pointed outto me the questions regarding Giroux torsion and Stein �llability; I'malso grateful to both John and Paolo Ghiggini for bringing Stipsiz' paper[Sti02℄ to my attention after the �rst version of this paper was irulated.Thanks also to Dietmar Salamon, Ko Honda, Mark MLean and espeiallyRihard Hind for helpful onversations.2. Main results2.1. Existene of Lefshetz �brations and Stein strutures. Reallthat a ontat manifold (M; �) is alled planar if it admits an open bookdeomposition that supports � and has pages of genus zero. We referto [Etn06℄ or [OS04℄ for the preise de�nitions; for our purposes in thestatement of the theorem below, an open book deomposition is a �bration� : M n B ! S1 where the binding B is a link in M . Then the pages arethe preimages ��1(t) and the ondition \supports �" means essentiallythat � = ker � for some ontat form (a so-alled Giroux form) suh thatd� is sympleti on the pages and � is positive on the binding. One analways \fatten" an open book deomposition by expanding B to a tubularneighborhood N (B) and slightly shrinking the pages, thus deforming � toa nearby map ^� :M n N (B)! S1:We will use this notation onsistently in the following.Suppose W and � are ompat oriented manifolds of real dimension 4and 2 respetively, possibly with boundary. A Lefshetz �bration � : W !� is then a smooth surjetive map whih is a loally trivial �bration outsideof �nitely many ritial values q 2 int�, where eah singular �ber ��1(q)has a unique ritial point, at whih � an be modeled in some hoie ofomplex oordinates by �(z1; z2) = z21 + z22 . For (W;!) a sympleti man-ifold, we all the Lefshetz �bration sympleti if the �bers are sympletisubmanifolds. If q0 2 � is lose to a ritial value q, then there is a speialirle C � ��1(q0), alled a vanishing yle, suh that the singular �ber��1(q) an be identi�ed with ��1(q0) after ollapsing C to a point. (Again,see [OS04℄ for preise de�nitions.) One says that the Lefshetz �bration isallowable if all vanishing yles are homologially nontrivial in their �bers.Denote by D � C the losed unit disk, whose boundary �D is naturallyidenti�ed with S1 = R=Z. For any sympleti manifold (W;!) with ontatboundary (M; �), the restrition of a sympleti Lefshetz �bration � :W ! D over �D de�nes an open book deomposition supporting � (see[OS04, x10.2℄). One an see in partiular that for any Liouville vetor �eld

4 CHRIS WENDLY near �W , the indued ontat form � := �Y ! satis�es d� > 0 on eah�ber over �D . One an now ask whether the onverse holds: given an openbook ^� : M n N (B) ! S1 supporting � and a strong �lling W , does Wadmit a Lefshetz �bration over D that restrits to ^� on �W nN (B)? Thiswould be too ambitious as stated, as one annot expet that the ontatform indued on �W will de�ne positive area on the pages of ^�: this annotbe true in partiular if ker!j�W is ever tangent to a page.This problem an be avoided by enlarging the �lling so as to induedi�erent ontat forms (but the same ontat struture) on the boundary:if �Y !j�W = ef� for some ontat form � and smooth funtion f :M ! R,then for any other funtion g : M ! R with g > f one an de�ne thedomain(2.1) Sgf = f(a;m) 2 R �M j f(m) � a � g(m) g:This yields a sympleti obordism (Sgf ; d(ea�)) with Liouville vetor �eld�a, induing the ontat forms ��ad(ea�) = ef� and eg� on its negativeand positive boundaries respetively. We shall refer to suh domains astrivial sympleti obordisms, and will sometimes also onsider nonompatversions for whih f = �1 or g = +1. The following is proved by aroutine omputation.Lemma 2.1. Assume (W;!) is a strong �lling of (M; �) with Liouvillevetor �eld Y near �W , and �Y ! = �0. Suppose further that � is a ontatform on M and f : M ! R is a smooth funtion suh that �0jM = ef�.Then if 'tY denotes the ow of Y for time t, for suÆiently small � > 0,there is a sympleti embedding : �Sff��; d(ea�)� ,! (W;!) : (a;m) 7! 'a�f(m)Y (m)that maps �Sf�1 to �W and is a di�eomorphism onto a losed neighborhoodof �W in W . Moreover  ��0 = ea� and  ��a = Y .In light of this, one an smoothly glue any trivial sympleti obordismof the form (Sgf ; d(ea�)) to (W;!), and the enlarged �lling is exat if (W;!)is an exat �lling. An important simple example is the ase where f � 0and g = 1: then we are simply attahing the positive sympletization([0;1)�M; d(ea�)) where � = �Y !j�W . It will often be onvenient howeverto take nononstant f , so that the ontat form appearing in d(ea�) maybe hosen at will.Reall that an exeptional sphere in a sympleti 4{manifold (W;!) is asympletially embedded 2{sphere with self-intersetion number �1, and(W;!) is alled minimal if it ontains no exeptional spheres. We an nowstate the �rst main result.



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 5Theorem 1. Suppose (W;!) is a strong sympleti �lling of a planar on-tat manifold (M; �), and � : M n B ! S1 is a planar open book sup-porting �. Then there is an enlarged �lling (W 0; !) obtained by attahinga trivial sympleti obordism to W , suh that W 0 admits a sympletiLefshetz �bration � : W 0 ! D for whih �j�W 0nN (B) = ^�. Moreover,� : W 0 ! D is allowable if W is minimal.The following orollary was pointed out to me by John Etnyre:Corollary 1. Every strongly �llable planar ontat manifold is also Stein�llable.Proof. Suppose (W;!) is a strong �lling of (M; �) and the latter is planar.By blowing down as in [MD90℄ and then attahing a trivial sympletiobordism, we an modify W to a minimal �lling (W; ^!) that admits anallowable sympleti Lefshetz �bration due to Theorem 1. It then followsfrom Eliashberg's topologial haraterization of Stein manifolds [Eli90b℄(see also [GS99,AO01℄) that (W; ^!) is sympletially deformation equiva-lent to a Stein domain. �Reall that by a result of Giroux [Gir℄, a ontat 3{manifold is Stein �l-lable if and only if it admits a supporting open book whose monodromy isa produt of positive Dehn twists. One an understand this in the ontextof Lefshetz �brations as follows: if (W;!) is a Stein �lling of (M; �), thenit admits a Lefshetz �bration over the disk by a result of Loi-Piergallini[LP01℄ or Akbulut-Ozbagi [AO01℄. The monodromy of the resulting openbook deomposition of M an then be obtained by omposing positiveDehn twists along the vanishing yles of eah singular �ber (see for exam-ple [OS04℄). Conversely, any open book with this property an be realizedas the boundary of some Lefshetz �bration, whih admits a Stein stru-ture due to Eliashberg [Eli90b℄. Giroux asked whether it might in fat betrue that every open book of (M; �) must have this property when (M; �)is Stein �llable. Theorem 1 implies an aÆrmative answer at least for theplanar open books:Corollary 2. If (M; �) is a planar ontat manifold, then it is strongly(and thus Stein) �llable if and only if every supporting planar open bookhas monodromy isotopi to a produt of positive Dehn twists.As an immediate onsequene of Corollary 1, we also obtain a new ob-strution to the existene of planar open books:Corollary 3. If (M; �) is a ontat manifold whih is strongly �llable butnot Stein �llable, then it is not planar.Remark 2.2. It was not known until reently whether strong and Stein�llability are equivalent notions: a negative answer was provided by a on-strution due to P. Ghiggini [Ghi05℄ of strongly �llable ontat manifolds

6 CHRIS WENDLthat are not Stein �llable. It follows then from the above results thatGhiggini's ontat strutures are not planar.The reason here for the restrition to planar ontat strutures is thata planar open book an always be presented as the projetion of a 2{dimensional R{invariant family of J{holomorphi urves in the sympleti-zation R�M . This is a speial ase of a onstrution due to C. Abbas [Abb℄that relates open book deompositions on general ontat manifolds to so-lutions of a nonlinear ellipti problem, whih spei�ally in the planar asegives J{holomorphi urves. (An existene proof for the planar ase is alsogiven in [Wen℄.) For analytial reasons, J{holomorphi urves with thedesired properties and higher genus generially annot exist.1 Nonetheless,one an sometimes derive interesting results for non-planar ontat mani-folds using other kinds of deompositions with genus zero �bers, of whihthe following is an example.Let T 3 = S1 � S1 � S1 = T 2 � S1 with oordinates (q1; q2; �), and writethe standard ontat struture on T 3 as �0 = ker �0 where�0 = os(2��) dq1 + sin(2��) dq2:This an be identi�ed with the anonial ontat form on the unit otan-gent bundle S�T 2 � T �T 2 as follows: writing points in T 2 as (q1; q2), we usethe natural identi�ation of T �T 2 with T 2 � R2 3 (q1; q2; p1; p2) and writethe anonial 1{form as p1 dq1 + p2 dq2. The 3{torus is then S�T 2 =T 2 � �D , with the �{oordinate orresponding to the point (p1; p2) =(os(2��); sin(2��)) 2 �D , and �0 is the restrition of p1 dq1+p2 dq2 to thissubmanifold. The anonial sympleti form !0 := dp1 ^ dq1 + dp2 ^ dq2on T �T 2 = T 2�R2 an then be written as �ddC f for the proper plurisub-harmoni funtion f(q; p) = 12 jpj2, thus T 2 � D is a Stein domain; we shallrefer to it as the standard Stein �lling of (T 3; �0). More generally, one hasthe following onstrution:De�nition 2.3. A star shaped domain S � T �T 2 is a subset of the formf(q; tf(q; p) �p) 2 T �T 2 j t 2 [0; 1℄, (q; p) 2 S�T 2g for some smooth funtionf : S�T 2 ! (0;1).Observe that the boundary �S of a star shaped domain is always trans-verse to the radial Liouville vetor �eld p1�p1+p2�p2, thus (S; !0) is learlyan exat �lling of T 3.Eliashberg showed in [Eli96℄ that �0 is the only strongly �llable ontatstruture on T 3. It is not planar due to [Etn04, Theorem 4.1℄, as thestandard �lling has b02(T 2�D ) 6= 0, though Van Horn-Morris [VHM07℄ hasshown that it does admit a genus 1 open book. It also admits the followingdeomposition, whih one might think of as a generalization of an open1Hofer pointed out this trouble in [Hof00℄ and suggested the aforementioned ellip-ti problem as a potential remedy, but its ompatness properties are not yet fullyunderstood.



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 7book with planar pages. Let Z = f� 2 f0; 1=2gg � T 3, a union of twodisjoint pre-Lagrangian 2{tori, and de�ne� : T 3 n Z ! f0; 1g � S1(q1; q2; �) 7! ((0; q2) if � 2 (0; 1=2),(1; q2) if � 2 (1=2; 1).(2.2)This is a smooth �bration, and we an think of it intuitively as a unionof two open book deompositions with ylindrial pages, and the subsetZ playing the role of the binding. It supports the ontat struture inthe sense that d�0 is positive on eah �ber, and the �bers have naturalompati�ations with boundary in Z suh that �0 is positive on theseboundaries. As with an open book, one an \fatten" Z to a neighborhoodN (Z) and deform � to a nearby �bration^� : T 3 n N (Z)! f0; 1g � S1;whose �bers are ompat annuli.Theorem 2. Suppose (W;!) is any strong sympleti �lling of (T 3; �0).Then one an attah to W a trivial sympleti obordism, produing anenlarged �lling W 0 that admits a sympleti Lefshetz �bration � : W 0 ![0; 1℄� S1 for whih �j�W 0nN (Z) = ^�. Moreover, every singular �ber is theunion of an annulus with an exeptional sphere; in partiular, there are nosingular �bers if (W;!) is minimal.There is also a stability result for the Lefshetz �brations onsidered thusfar. Note that in the following, we don't assume the sympleti forms !tare ohomologous. This result is applied in [Wene℄ to lassify strong �llingsof various ontat manifolds up to sympleti deformation equivalene.Theorem 3. If (W;!t) for t 2 [0; 1℄ is a smooth 1{parameter family ofstrong �llings of either a planar ontat manifold (M; �) or (T 3; �0), thenby attahing a smooth family of trivial sympleti obordisms, one an on-strut a smooth family of strong �llings (W 0; !0t) for whih !0t is independentof t near �W 0, and there exists a smooth family of !0t{sympleti Lefshetz�brations �t : W 0 ! � as in Theorems 1 and 2, suh that the ritialpoints vary smoothly with t.2.2. Classifying strong �llings of T 3. Stipsiz showed using a gaugetheory argument [Sti02℄ that all Stein �llings of T 3 are homeomorphi toT 2�D , and onjetured that this result an be strengthened to a di�eomor-phism. In fat, more turns out to be true: by Theorem 2, every minimalstrong �lling W of T 3 admits a sympleti �bration over the annulus withylindrial �bers. One an now repeat this onstrution starting from adi�erent deomposition of T 3 (orresponding to a hange in the (q1; q2){oordinates), and thus show that W admits two sympleti �brations overthe annulus, with ylindrial �bers suh that any two �bers from eah

8 CHRIS WENDL�bration interset eah other one transversely. This provides a di�eomor-phism from W with an attahed ylindrial end to T �T 2, and in x5 we willuse Moser isotopy arguments to show:Theorem 4. All minimal strong �llings of T 3 are sympletially deforma-tion equivalent, and every exat �lling of T 3 is sympletomorphi to a starshaped domain in (T �T 2; !0).Corollary 4. Every minimal strong �lling of T 3, and in partiular everyStein �lling, is di�eomorphi to T 2 � D .The �rst uniqueness result of this type was obtained by Eliashberg[Eli90a℄, who showed that all Stein �llings of S3 are di�eomorphi to the4{ball. Shortly afterwards, MDu� [MD90℄ lassi�ed Stein �llings of theLens spaes L(p; 1) with their standard ontat strutures up to di�eo-morphism, showing in partiular that they are unique for all p 6= 4. M-Du� argued by ompati�ation in order to apply her lassi�ation resultsfor rational and ruled sympleti 4{manifolds, and several other unique-ness and �niteness results have sine been obtained using similar ideas,e.g. [Lis08, OO05℄. Many of these uniqueness results an be reovered,and some of them strengthened or generalized, using the puntured holo-morphi urve tehniques introdued here (f. [Wene℄). By ontrast, thereare also ontat manifolds that admit in�nitely many non-di�eomorphi ornon-homeomorphi Stein �llings: see [AEMS℄ and the referenes mentionedtherein.The aforementioned result of MDu� for L(p; 1) was strengthened touniqueness up to Stein deformation equivalene by R. Hind [Hin03℄, using aonstrution similar to ours, though the tehnial arguments are somewhatdi�erent. Hind uses a foliation by J{holomorphi planes asymptoti to amultiply overed orbit; sine planes annot undergo nodal degenerationsunless there are losed urves involved, singular �bers are ruled out andthe result is a smooth sympleti �bration outside of the asymptoti orbit.This �bration an then be used to onstrut a plurisubharmoni funtionwith ontrol over the ritial points, thus leading to a uniqueness result upto Stein homotopy. It is plausible that one ould apply Hind's idea to ouronstrution and further sharpen our lassi�ation of Stein �llings for T 3,though we will not pursue this here.Another onsequene of Theorem 4 (and also a step in its proof) is thatevery exat �lling of T 3 beomes sympletomorphi to (T �T 2; !0) afterattahing a positive ylindrial end. It is then natural to ask about thetopology of the ompatly supported sympletomorphism group. In x5 wewill prove:Theorem 5. The group Symp(T �T 2; !0) of sympletomorphisms with om-pat support is ontratible.



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 92.3. Obstrutions to �llability. The results stated so far all start withthe assumption that a �lling exists, and then use the existene of some J{holomorphi urves to dedue properties of the �lling. In other situations,the same argument an sometimes lead to a ontradition, thus de�ningan obstrution to �lling|to understand this, we must �rst reall somegeneral notions about holomorphi urves in sympletizations and �niteenergy foliations.If � is a ontat form on M , then the Reeb vetor �eld X� 2 Ve(M) isde�ned by the onditionsd�(X�; ) � 0; �(X�) � 1:The sympletization R �M then admits a natural splitting of its tangentbundle T (R�M) = R�RX���; let us denote the R{oordinate on R�Mby a and let �a denote the orresponding unit vetor �eld. There is nowa nonempty and ontratible spae J�(M) of almost omplex strutures Jon R �M having the following properties:� J is invariant under the R{ation by translation on R �M� J�a = X�� J� = � and J j� is ompatible with the sympleti struture d�j�Given J 2 J�(M), we will onsider J{holomorphi urvesu : ( _�; j)! (R �M;J)where (�; j) is a losed Riemann surfae, _� = � n � is the punturedsurfae determined by some �nite subset � � �, and u has �nite energy inthe sense de�ned in [Hof93℄. The simplest examples of suh urves are theso-alled orbit ylinders~x : R � S1 ! R �M : (s; t) 7! (Ts; x(T t));for any T{periodi orbit x : R ! M of X�. We will not need to reallthe preise de�nition of the energy here, only that its �niteness onstrainsthe behavior of u at the puntures: eah punture is either removable orrepresents a positive/negative ylindrial end, at whih u approximates anorbit ylinder, asymptotially approahing a (perhaps multiply overed)periodi orbit in f�1g �M .Reall that a T{periodi orbit is alled nondegenerate if the transversalrestrition of the linearized time T ow along the orbit does not have 1 as aneigenvalue. More generally, a Morse-Bott submanifold of T{periodi orbitsis a submanifold N � M onsisting of T{periodi orbits suh that the 1{eigenspae of the linearized ow is always preisely the tangent spae to N .We say that � isMorse-Bott if every periodi orbit belongs to a Morse-Bottsubmanifold; this will be a standing assumption throughout. Note that anondegenerate orbit is itself a (1{dimensional) Morse-Bott submanifold.

10 CHRIS WENDLNow onsider a ompat 3{dimensional submanifold M0 � M , possiblywith boundary, suh that �M0 is a Morse-Bott submanifold. The followingobjets were originally onsidered in [HWZ03℄:De�nition 2.4. A �nite energy foliation F on (M0; �; J) is a foliation ofR �M0 with the following properties:� For any leaf u 2 F , the R{translation of u by any real number isalso a leaf in F .� Every u 2 F is the image of an embedded �nite energy J{holomorphiurve satisfying a uniform energy bound.In light of the seond requirement, we shall often blur the distintionbetween leaves and the J{holomorphi urves that parametrize them. Thede�nition has several immediate onsequenes: most notably, let PF denotethe set of all simple periodi orbits that have overs ourring as asymptotiorbits for leaves of F . Then an easy positivity of intersetions argument(see e.g. [Wen05℄) implies that for eah  2 PF , the orbit ylinder R �  isa leaf in F , and every leaf that isn't one of these remains embedded underthe natural projetion � : R �M !M:In fat, abusing notation to regard PF as a subset ofM , the quotient F=Rde�nes a smooth foliation of M0 n PF by embedded surfaes transverseto X�. These projeted leaves are nonompat and have losures withboundary in PF . It is easy to see from this that �M0 � PF .As we will see in Example 2.11, it is relatively easy to onstrut �niteenergy foliations in various simple loal models of ontat manifolds, andthis will suÆe for the obstrution to �llability that we have in mind.Global onstrutions are harder but do exist, for instane on the tight3{sphere [HWZ03℄, on overtwisted ontat manifolds [Wen08℄ and moregenerally on planar ontat manifolds [Abb,Wen℄.De�nition 2.5. We will say that a �nite energy foliation F on (M0; �; J)is positive if every leaf that isn't an orbit ylinder has only positive ends.De�nition 2.6. A leaf u 2 F will be alled an interior leaf if it is not anorbit ylinder and all its ends belong to Morse-Bott submanifolds that liein the interior of M0.De�nition 2.7. A leaf u 2 F will be alled stable if it has genus 0, allits puntures are odd and ind(u) = 2 (see the appendix for the relevanttehnial de�nitions).This notion of a stable leaf is meant to ensure that u behaves well in thedeformation and intersetion theory of J{holomorphi urves. In pratie,these onditions are easy to ahieve for leaves of genus zero.De�nition 2.8. A leaf u 2 F will be alled asymptotially simple if allits asymptoti orbits are simply overed and belong to pairwise disjoint



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 11Morse-Bott families; moreover every nontrivial Morse-Bott family amongthese is a irle of orbits foliating a torus.Remark 2.9. This last ondition an very likely be relaxed, but it's satis�edby most of the interesting examples I'm aware of so far and will simplifythe ompatness argument in x3 onsiderably, partiularly in proving thatlimit urves are somewhere injetive.Theorem 6. Suppose (M; �) has a Morse-Bott ontat form �, almostomplex struture J 2 J�(M) and ompat 3{dimensional submanifold M0with Morse-Bott boundary, suh that (M0; �; J) admits a positive �niteenergy foliation F ontaining an interior, stable and asymptotially simpleleaf u0 2 F . Assume also that either of the following is true:(1) M0 (M .(2) There exists a leaf u0 2 F whih is not an orbit ylinder and isdi�erent from some interior stable leaf u0 in the following sense:either u0 and u0 are not di�eomorphi, or if they are, then there isno bijetion between the ends of u0 and u0 suh that the asymptotiorbits of u0 are all homotopi along Morse-Bott submanifolds to theorresponding asymptoti orbits of u0.Then (M; �) is not strongly �llable.The idea behind this obstrution is that if (M; �) ontains suh a foliationand is �llable, one an extend the foliation into the �lling and derive aontradition by following the family of holomorphi urves along a pathleading either outside ofM0 or to a \di�erent" leaf u0 2 F . As we'll note inRemark 4.2, a similar argument leads to a proof of the Weinstein onjeturewhenever a subset of M admits a �nite energy foliation with an interior,stable and asymptotially simple leaf.Example 2.10 (Overtwisted ontat strutures). It was shown in [Wen08℄that every overtwisted ontat manifold globally admits a �nite energyfoliation satisfying the onditions of Theorem 6, so this implies a new(admittedly muh harder) proof of the lassi Eliashberg-Gromov resultthat all strongly �llable ontat strutures are tight (see also Remark 2.12).The foliation in question is produed by starting from a planar open bookdeomposition in S3 and performing Dehn surgery and Lutz twists along atransverse link: eah omponent of the link is surrounded by a torus whihbeomes a Morse-Bott submanifold in the foliation (see Figure 1). Notethat an easier proof that strongly �llable manifolds are tight is possibleusing the result for Giroux torsion below; f. [Gay06, Corollary 5℄.Example 2.11 (Giroux torsion). Let T 2 = S1 � S1 and T = T 2 � [0; 1℄with oordinates (q1; q2; �). Given smooth funtions f; g : [0; 1℄ ! R, a1{form � = f(�) dq1 + g(�) dq2
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PSfrag replaements[0;1)�M(W;!) Figure 1. A global �nite energy foliation produed froma planar open book deomposition on S3 by surgery alonga transverse link. Any overtwisted ontat manifold an befoliated this way, giving a new proof that strongly �llableontat manifolds are tight.is a positive ontat form if and only if D(�) := f(�)g0(�)� f 0(�)g(�) > 0,meaning the path � 7! (f; g) 2 R2 winds ounterlokwise around theorigin. An important speial ase is the 1{form�1 = os(2��) dq1 + sin(2��) dq2;with ontat struture �1 := ker�1. A losed ontat manifold (M; �) issaid to have positive Giroux torsion if it admits a ontat embedding of(T; �1). Reently, D. Gay [Gay06℄ used gauge theory to show that ontatmanifolds with positive Giroux torsion are not strongly �llable, and anotherproof using the Ozsv�ath-Szab�o ontat invariant has been arried out byGhiggini, Honda and Van Horn-Morris [GHVHM℄. We shall now reprovethis result by onstruting an appropriate �nite energy foliation in T ; apitorial representation of the proof is shown in Figure 2.First note that one an always slightly expand the embedding of T andthus replae it with T 0 := T 2 � [��; 1 + �℄ for some small � > 0, with thesame ontat form �1 as above. Now multiplying the ontat form by asmooth positive funtion of �, we an replae �1 by � = f(�) dq1+g(�) dq2suh that g0(��) = g0(1 + �) = 0. Note that also g0(1=4) = g0(3=4) = 0.The result is that these four speial values of � all de�ne Morse-Bott torifoliated by losed Reeb orbits in the ��q2 diretion (with signs alternating).
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Figure 2. The reason why Giroux torsion ontraditsstrong �llability: one an onstrut a �nite energy foliationonsisting of three families of holomorphi ylinders withpositive ends. The middle family ontains interior stableleaves, whih then spread to a foliation of any �lling andmust eventually run into the other families, giving a ontra-dition.Indeed, it is easy to ompute that the Reeb vetor �eld takes the formX�(q1; q2; �) = g0(�)D(�)�q1 � f 0(�)D(�)�q2 :Now hoose J to be a omplex struture on �1 suh thatJ(C��) = � g(�)D(�)�q1 + f(�)D(�)�q2for some onstant C > 0. As shown in [Wen08, x4.2℄, it is easy to onstruta foliation by holomorphi ylinders in this setting: we simply supposethere exist ylinders u : R � S1 ! R � T 0 of the formu(s; t) = (a(s); ; t; �(s));

14 CHRIS WENDLwhere  2 S1 is a onstant, and �nd that the nonlinear Cauhy-Riemannequations redue to a pair of ODEs for a(s) and �(s); these have uniqueglobal solutions for any hoie of a0 := a(0) and �0 := �(0). In partiular,the solution �(s) is monotone and maps R bijetively onto the largestinterval (��; �+) � (��; 1 + �) ontaining �0 on whih g0 is nonvanishing.Likewise, a(s) ! +1 as s ! �1. As a result, in eah of the subsetsf� 2 (��; 1=4)g, f� 2 (1=4; 3=4)g and f� 2 (3=4; 1 + �)g, we obtain asmooth (R�S1){parametrized family of J{holomorphi urves that foliatethe orresponding region; adding in the trivial ylinders for all four of theaforementioned Morse-Bott tori yields a positive �nite energy foliation ofT 0. It is straightforward to verify that all urves in the foliation are stablein the sense de�ned here. Sine the leaves in f� 2 (1=4; 3=4)g have theirasymptoti orbits in the interior of T 0, and all other leaves have asymptotiorbits on di�erent Morse-Bott submanifolds, Theorem 6 applies, giving aompletely non-gauge-theoreti proof that no ontat manifold ontaining(T 0; �1) an be strongly �llable.Remark 2.12. Giroux torsion is not generally an obstrution to weak �lla-bility, e.g. this was demonstrated with examples on T 3 by Giroux [Gir94℄and Eliashberg [Eli96℄. Note also that overtwisted ontat manifolds arenot weakly �llable, but our method does not prove this, as Theorem 7 be-low requires the attahment of a positive ylindrial end to the boundaryof the �lling. This is an important di�erene between our tehnique andthe \disk �lling" methods used by Eliashberg in [Eli90a℄.Remark 2.13. The setup used in Example 2.11 above for Giroux torsion isalso suitable for (T 3; �0), thus the same trik yields a positive stable �niteenergy foliation whose leaves projet to the �bers of the �bration (2.2).We will make use of this foliation in the proof of Theorem 2.Example 2.14. We've generally assumed the ontat manifold (M; �) tobe onneted, but one an also drop this assumption. Theorem 6 thenapplies, for instane, to any disjoint union of ontat manifolds ontaininga planar omponent. One reovers in this way a result of Etnyre [Etn04℄,that any strong sympleti �lling with a planar boundary omponent musthave onneted boundary. This applies more generally if any boundaryomponent admits a positive stable �nite energy foliation, e.g. the stan-dard T 3. A further generalization to partially planar ontat manifolds isexplained in [ABW℄, using similar ideas.3. Holomorphi urves and ompatnessThe theorems of the previous setion are onsequenes of the ompat-ness properties of pseudoholomorphi urves belonging to a foliation ina sympleti 4{manifold with a positive ylindrial end. The setup formost of this setion will be as follows: assume (M; �) has a Morse-Bott



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 15ontat form � and almost omplex struture J+ 2 J�(M), a ompat3{dimensional submanifold M0 � M with Morse-Bott boundary and apositive �nite energy foliation F+ of (M0; �; J+) ontaining an interior sta-ble leaf that is asymptotially simple. Assume further that (W1; !) is anonompat sympleti manifold admitting a deompositionW1 = W [�W ([R;1)�M)for some R 2 R, where W is a ompat manifold with boundary �W =M and !j[R;1)�M = d(ea�), with a denoting the R{oordinate on R �M . There is a natural ompati�ation W1 of W1, de�ned by hoosingany smooth struture on [R;1℄ and replaing [R;1) �M in the abovedeomposition by [R;1℄ �M ; then W1 is a ompat smooth manifoldwith boundary �W1 =M .The open manifold (W1; !) is a natural setting for puntured pseudo-holomorphi urves. Indeed, hoose any numbera0 2 [R;1)and an almost omplex struture J on W1 that is ompatible with !and satis�es J j[a0;1)�M = J+. Just as in the sympletization R �M , onethen onsiders puntured J{holomorphi urves of �nite energy in W1,suh that eah punture is a positive end approahing a Reeb orbit atf+1g�M .Let F0 denote the olletion of leaves in F+ that lie entirely within[a0;1) �M : observe that this inludes some R{translation of every leafthat isn't an orbit ylinder. Then eah of these leaves embeds naturallyinto W1 as a �nite energy J{holomorphi urve. After a generi pertur-bation of J ompatible with ! in the region W [ ((R; a0)�M), standardtransversality arguments as in [MS04℄ imply that every somewhere inje-tive J{holomorphi urve v : _�!W1 not fully ontained in [a0;1)�Msatis�es ind(v) � 0. We will assume J satis�es this generiity onditionunless otherwise noted.Remark 3.1. Note that we are not assuming J+ 2 J�(M) is generi, whihis important beause we wish to apply the results below for foliations(M0; �; J+) as onstruted in Example 2.11, where J+ is hosen to be assymmetri as possible. We an get away with this beause of the distintly4{dimensional phenomenon of \automati" transversality: in partiular,Prop. A.1 guarantees transversality for stable leaves without any gener-iity assumption. We need generiity in the ompatness argument ofTheorem 7 only to ensure that nodal urves with omponents of negativeindex do not appear.Denote by M the moduli spae of �nite energy J{holomorphi urvesin W1, and let M denote its natural ompati�ation as in [BEH+03℄:the latter onsists of nodal J{holomorphi buildings, possibly with multiple

16 CHRIS WENDLlevels, inluding a main level in W1 and several upper levels, whih areequivalene lasses of nodal urves in R �M up to R{translation. Thereare no lower levels sine W1 has no negative end.Choose any interior stable leaf u0 2 F0 that is asymptotially simple, letM0 � M be the onneted omponent ontaining u0 and M0 � M thelosure of M0.We will now prove two ompatness results: one that gives the existeneof a global foliation with isolated singularities on W1, and another thatpreserves this foliation under generi homotopies of the data.Theorem 7. If M ontains a submanifold M0 with �nite energy foliationF+ as desribed above, then M0 = M . Moreover, the moduli spaes M0and M0 have the following properties:(1) Every urve inM0 is embedded and unobstruted (i.e. the linearizedCauhy-Riemann operator is surjetive), and no two urves in M0interset.(2) M0 nM0 onsists of the following:(a) A ompat 1{dimensional manifold of buildings that eah havean empty main level and one nontrivial upper level that is aleaf of F+ (see Remark 3.2 below),(b) A �nite set of 1{level nodal urves in W1, eah onsisting oftwo embedded index 0 omponents with self-intersetion num-ber �1 (see Remark 3.3 below), whih interset eah other ex-atly one, transversely. These are all disjoint from eah otherand from the smooth embedded urves in M0.(3) The olletion of urves inM0 plus the embedded urves inW1 thatform omponents of nodal urves in M0 forms a foliation of W1outside of a �nite set of \double points" where two leaves intersettransversely; these are the nodes of the isolated nodal urves inM0 nM0.(4) M0 is a smooth manifold di�eomorphi to either [0; 1℄ � S1 or D ;it is the latter if and only if every asymptoti orbit of the interiorstable leaf u0 is nondegenerate.Remark 3.2. Note that the urves in the upper levels of a building are teh-nially only equivalene lasses of urves up to R{translation, nonethelessit makes sense to speak of suh a urve being a leaf of F+, sine the latteris also an R{invariant foliation.Remark 3.3. The self-intersetion number here is meant to be interpretedin the sense of Siefring's intersetion theory for puntured holomorphiurves [Sie, SW℄. This is reviewed briey in the appendix, though it'smost important to onsider the ase where the urve under onsiderationis losed: then the de�nition of \self-intersetion number" redues to theusual one.



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 17Proof. As preparation, note that the stability ondition for u0 implies dueto (A.2) that its normal Chern number N (u0) vanishes, hene 2 = ind(u) >N(u) = 0 for all u 2 M0. The transversality riterion of Prop. A.1 thusguarantees that every u 2 M0 is unobstruted one we prove that it is alsoembedded; we will do this in Step 7. The proof now proeeds in severalsteps.Step 1: We laim that no urve u 2 M0 an have an isolated intersetionwith any leaf u+ 2 F0. Clearly, for any given u+ 2 F0, positivity ofintersetions implies that the subset of urves u 2 M0 that have no isolatedintersetion with u+ is losed, and we must show that it's also open. There'sa slightly subtle point here, as the nonompatness of the domain allowsa theoretial possibility for intersetions to \emerge from in�nity" underperturbations of u. To rule this out, we use the intersetion theory ofpuntured holomorphi urves de�ned in [Sie,SW℄ (a basi outline is givenin the appendix). The point is that there exists a homotopy invariantintersetion number i(u; u+) 2 Z that inludes a ount of \asymptotiintersetions", and the ondition i(u; u+) = 0 is suÆient to guaranteethat no urve homotopi to u ever has an isolated intersetion with u+.This number vanishes in the present ase due to Lemma A.3.Step 2: As an obvious onsequene of Step 1, a similar statement is truefor any omponent v of a building u 2 M0: v has no isolated intersetionwith any leaf u+ 2 F+ if v is in an upper level, or with any u+ 2 F0 if v isin the main level.Step 3: If u 2 M0 nM0, we laim that one of the following is true:(1) u has only one nontrivial upper level, onsisting of a leaf of F+ inR �M , and the main level is empty.(2) u has no upper levels.Indeed, suppose u has nontrivial upper levels and let v denote a nontrivialomponent of the topmost nontrivial level. Due to our assumptions onu0, eah positive end of v is then a simply overed orbit belonging to adistint Morse-Bott submanifold in the interior of M0, hene v is some-where injetive. The asymptoti formula of [HWZ96b℄ now implies that� Æ v is an embedding into M near eah end and is disjoint from the orre-sponding asymptoti orbit; hene it intersets some projeted leaf of F+;we onlude that v intersets some leaf u+ 2 F+. By the result of Step 2,this intersetion annot be isolated, and sine v is somewhere injetive, weonlude v 2 F+. As a result, v has no negative ends and its positive endsare in one-to-one orrespondene with those of u0, so u an have no othernonempty omponents.Step 4: Suppose u 2 M0 nM0 satis�es the seond alternative in Step 3:u is then a nodal urve in the main level. We laim that any nononstantomponent v of u either is a leaf in F0 or it is not ontained in the subset[a0;1)�M � W1. There are two ases to onsider: if v has no ends then

18 CHRIS WENDLit annot be in [a0;1)�M beause the sympleti form here is exat, sono nononstant losed holomorphi urve an exist. If on the other hand vhas positive ends and is ontained in [a0;1)�M , where J is R{invariant,then a similar argument as in Step 3 �nds an illegal isolated intersetionof v with a leaf of F0 unless v is suh a leaf.Step 5: Continuing with the assumptions of Step 4, we laim that oneof the following holds:(1) u is smooth (i.e. has no nodes).(2) u has exatly two omponents, both somewhere injetive and withindex 0.To see this, reall �rst that u0 has genus 0, thus u has arithmeti genus 0.Now suppose u has multiple omponents onneted by N � 1 nodes. Ev-ery omponent of u is then either a puntured sphere with positive ends(denoted here by vi), a nononstant losed sphere (denoted wi) or a ghostbubble, i.e. a onstant sphere (denoted gi). For a sphere vi with ends, theasymptoti behavior of u0 guarantees that vi is somewhere injetive. Thenby Step 4, it is either a leaf of F0 or it is not ontained in [a0;1) �M ,hene the generiity assumption for J implies ind(vi) � 0. Consider now anononstant losed omponent wi, whih we assume to be a ki{fold overof a somewhere injetive sphere ^wi for some ki 2 N . Again, Step 4 and thegeneriity of J guarantee that ind( ^wi) = 21([ ^wi℄)� 2 � 0, heneind(wi) = 21([wi℄)�2 = 2ki1([ ^wi℄)�2 = ki �ind( ^wi)+2(ki�1) � 2(ki�1):Ghost bubbles are now easy to rule out: we have ind(gi) = 21([gi℄)� 2 =�2, and by the stability ondition of Kontsevih (f. [BEH+03℄), gi has atleast three nodes, eah ontributing 2 to the total index of u. Sine wealready know that the nononstant omponents ontribute nonnegativelyto the index, the existene of a ghost bubble thus implies the ontraditionind(u) � 4. With this detail out of the way, we add up the indies of allomponents, ounting an additional 2 for eah node, and �nd2 = ind(u) =Xi ind(vi) +Xi ind(wi) + 2N� 2Xi (ki � 1) + 2N:Sine N � 1 by assumption, this implies that eah ki is 1 and N = 1, heneu has exatly two omponents, both somewhere injetive with index 0.Step 6: By Step 5, the nodal urves in M0 have omponents that areunobstruted and have index 0, hene they are isolated. By the ompat-ness of M0, this implies that the set of nodal urves in M0 nM0 is �nite.A standard gluing argument as in [MS04℄ now identi�es a neighborhoodof any nodal urve u in M0 with an open subset of R2 , where every urveother than u is smooth. Similarly, sine every u 2 M0 is unobstruted,



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 19the usual impliit funtion theorem in Banah spaes de�nes smooth man-ifold harts everywhere on M0. Outside a ompat subset, M0 n �M0an be identi�ed with the set of leaves in F0, and is thus di�eomorphi to[0;1)� V for some ompat 1{manifold V , so �M0 is di�eomorphi to Vitself. The spae M0 is therefore a ompat surfae with boundary, and isorientable due to arguments in [BM04℄.Step 7: We now use the intersetion theory from [Sie,SW℄ to show thatM0 foliates W1. We noted already in Step 1 that i(u; u0) = 0 for anytwo urves u; u0 2 M0, whih implies that no two of these urves an everinterset. Sine every u 2 M0 is obviously somewhere injetive due toits asymptoti behavior, the adjuntion formula (A.6) implies sing(u) = 0and thus these urves are also embedded. Consider now a nodal urveu 2 M0, with its two omponents u1 and u2, and observe that (A.2)implies N(u1) = N(u2) = �1. Applying the adjuntion formula again,we �nd0 = i(u; u) = i(u1; u1) + i(u2; u2) + 2i(u1; u2)� 2 sing(u1) + N (u1) + 2 sing(u2) + N(u2) + 2i(u1; u2)= 2 sing(u1) + 2 sing(u2) + 2 [i(u1; u2)� 1℄ :Thus sing(u1) = sing(u2) = 0, implying both omponents are embedded,and i(u1; u2) = 1, so the node is the only intersetion, and is transverse.The adjuntion formula for eah of u1 and u2 individually now also impliesi(u1; u1) = i(u2; u2) = �1. (Note that the ov1(z) terms must all vanish,as this is manifestly true for u0 and they depend only on the orbits). Bythe gluing argument mentioned in Step 6, a neighborhood of u in M0 isa smooth 2{parameter family of embedded urves from M0; these foliatea neighborhood of the union of u1 and u2. Similarly, the impliit funtiontheorem in [Wend℄ or [Wen05℄ implies that for any u 2 M0, the nearbyurves in M0 foliate a neighborhood of u. This shows thatfp 2 W1 j p is in the image of some u 2 M0gis an open subset of W1. It is also learly a losed subset sine M0 isompat. We onlude that all of W1 is �lled by the urves in M0.Step 8: It follows easily now that M0 =M , as one an take a sequeneof urves in M0 whose images approah (+1; p) for any p 2 M ; sine asubsequene onverges to a leaf of F+, we onlude that F+ �lls all of M .Step 9: Having shown already thatM0 is a ompat orientable surfaewith boundary, we prove �nally that it must be either D or [0; 1℄ � S1.De�ne a smooth map(3.1) � : W1 !M0by sending p 2 W1 to the unique urve in M0 whose image ontains p.We an extend � over W1 n PF+ by sending p 2 M n PF+ to the uniqueleaf in F+=R = �M0 ontaining p.

20 CHRIS WENDLAssume �rst that there are degenerate orbits among the asymptoti or-bits of the interior stable leaf u0 2 F+: suh an orbit belongs to a Morse-Bott 2{torus T0 � M foliated by Reeb orbits that are asymptoti limitsof leaves in F+. By the de�nition of M0, every urve u 2 M0 and thusevery leaf in F+ has a unique end asymptoti to some orbit in T0. In thisase �M0 must have two onneted omponents, and we an parametrizethem as follows. Identify a neighborhood of T0 inM with (�1; 1)�S1�S1suh that f0g � S1 � S1 = T0 and the Reeb orbits are all of the formf0g� fonstg� S1. Then we an arrange that for suÆiently small � > 0,the loop +(t) = (+1; �; t; 0) 2 W1 passes through a di�erent leaf ofF+ for eah t, thus without loss of generality, � Æ + : S1 ! �M0 is anoriented parametrization of one boundary omponent of �M0. The otherboundary omponent an be given an oriented parametrization in the form�Æ� : S1 ! �M0 where �(t) = (+1;��;�t; 0). Now moving both loopsdown slightly from1, we see that [�℄ = �[+℄ 2 �1(W1nPF+), implyingthat the two boundary omponents of M0 are homotopi, and thereforeM0 �= [0; 1℄� S1.If all orbits of u0 are nondegenerate, then �M0 must have only oneomponent, whih we an similarly parametrize by hoosing a loop  :S1 ! f+1g �M that irles one around one of these orbits and passesone transversely through eah leaf of F+. Moving  again down from+1, it is ontratible in W1 n PF+, implying �M0 is ontratible, thusM0 �= D . �To set up the seond ompatness result, assume that for � 2 [0; 1℄,!� is a smooth family of sympleti forms on W1 mathing d(ea�) on[a0;1)�M , and J� is a smooth family of almost omplex strutures om-patible with !� for eah � and mathing J+ 2 J�(M) on [a0;1) � M .Assume also that the homotopy J� is generi on W1 n ([a0;1)�M) sothat for any � 2 [0; 1℄, every somewhere injetive J�{holomorphi urve unot ontained in [a0;1) �M satis�es ind(u) � �1. Then for eah � , letM� denote the onneted moduli spae of J�{holomorphi urves ontain-ing an interior stable leaf in F0 that is asymptotially simple, and write itsompati�ation as M� .Theorem 8. The onlusions of Theorem 7 hold for the moduli spaesM�for eah � 2 [0; 1℄; in partiular they are all smooth ompat manifolds withboundary that form foliations of W1 with �nitely many singularities, andtheir boundaries an be identi�ed naturally with the set of leaves in theprojeted foliation F+=R. Moreover, there exists a smooth 1{parameterfamily of di�eomorphisms M0 !M� that maps M0 to M� and restritsto the natural identi�ation �M0 ! �M� .Proof. For eah � 2 [0; 1℄, the proof of Theorem 7 requires only a smallmodi�ation to work for the almost omplex struture J� . The di�erene



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 21is that J� is now not neessarily generi, so we have a weaker lower boundon the indies of somewhere injetive urves that are not ontained in[a0;1)�M . The only plae this makes a di�erene is in Step 5: we mustnow onsider the possibility that u is a nodal urve in W1 with severalomponents of possibly negative index. Sine none of these omponentsare ontained in [a0;1) �M and fJ�g�2[0;1℄ is a generi homotopy, theyall over somewhere injetive urves of index at least �1. We laim thatthis implies the somewhere injetive urves have nonnegative index afterall: for losed omponents the index is always even, so this is lear. Thesame turns out to be true for omponents with ends: sine u0 has onlyodd puntures, any puntured somewhere injetive urve with a over thatforms a omponent of u has all its ends asymptoti to orbits that haveodd overs, and must themselves therefore be odd. (See [Wenb, x4.2℄ forthe proof that even orbits always have even overs; this statement appliesequally well in the Morse-Bott setup desribed in the appendix.) It followsthen from the index formula that the index of suh a omponent must beeven, and in this ase therefore nonnegative. The rest of the ompatnessproof now follows just as before, with the added detail that all urves arisingin the limit (inluding omponents of nodal urves) are unobstruted dueto Prop. A.1, whih does not require generiity.By the above argument, we have moduli spaes M� that foliate W1with J�{holomorphi urves outside of a �nite set of nodes. Moreover,every urve in the foliation is unobstruted, so for any given �0 2 [0; 1℄,the index 0 urves that are omponents of nodal urves in M�0 deformuniquely to J�{holomorphi urves for � in some neighborhood of �0, andan interseting pair of suh urves forms a nodal urve. Sine the urvesin M�0 and M� near their respetive boundaries are idential, a familiarintersetion argument now shows that this nodal urve must belong toM� .Similarly, index 2 urves inM�0 deform to index 2 urves inM� , providinga loal smooth 1{parameter family of di�eomorphismsM�0 !M�for � lose to �0, whih maps nodal urves to nodal urves and leaves in F0and F+ to themselves. To extend this for all � 2 [0; 1℄, it only remains toshow that the \parametrized" moduli spaeM[0;1℄ := f(�; u) j � 2 [0; 1℄, u 2 M�gis ompat. This follows from the same arguments as above, after observingthat the energies of u 2 M� depend only on the relative homology lassde�ned by a leaf u0 2 F0 and (ontinuously) on !� , thus they are uniformlybounded. �Remark 3.4. In some important situations, one an prove the two theoremsabove without any generiity assumption at all: the point is that generiityis usually needed to ensure a lower bound on the indies of omponents in

22 CHRIS WENDLnodal urves, but is not required to show that the urves atually obtainedin the limit are unobstruted. Thus if there are topologial onditions pre-venting the appearane of nodal urves, then any ompatible J or smoothfamily J� (also for � varying in a higher-dimensional spae) will suÆe:this works in partiular for exat �llings of T 3 and will play a ruial rolein the proof of Theorem 5.4. Lefshetz fibrations and obstrutions to fillingWe are now in a position to onstrut the Lefshetz �brations that werepromised in x2. It will be onvenient to introdue the following notation.Suppose (W;!) is a strong �lling of (M; �) and Y is a Liouville vetor�eld near �W suh that �Y !jM = ef� for some ontat form � on M andsmooth funtion f : M ! R. Then for any onstant R > max f , we anuse Lemma 2.1 to attah the trivial sympleti obordism (SRf ; d(ea�)),produing an enlarged �lling(WR; !) := (W;!) [�W (SRf ; d(ea�)):This has �a as a Liouville vetor �eld near �WR, suh that ��a!j�WR = eR�.One an now attah a ylindrial end,(W1; !) := (WR; !) [�WR ([R;1)�M; d(ea�));de�ning a nonompat sympleti obordism whih admits the ompati-�ation W1 = WR [�W ([R;1℄�M) :We assign a smooth struture to [R;1℄ so that W1 may be onsidereda smooth manifold with boundary, though its sympleti struture degen-erates at �W1. It is sometimes useful however to de�ne a new symple-ti struture on W1 that does extend to in�nity. Observe �rst that forany � > 0 with R � � > max f , (W1; !) ontains the slightly extendedylindrial end ([R � �;1) � M; d(ea�)). Now hoose Æ 2 (0; �) and adi�eomorphism ' : [R � �;1℄! [eR��; eR℄with the property that '(a) = ea for a 2 [R��; R�Æ℄. Then the sympletiform !' on W1 de�ned by!' = (d('�) on [R� �;1)�M ,! everywhere elsehas a smooth extension to W1, suh that the map[R� �; R℄�M ! [R� �;1℄�M : (a;m) 7! ('�1(ea); m)extends to a sympletomorphism (WR; !)! (W1; !').We will onsider almost omplex strutures J onW1 that are ompatiblewith !, are generi in W1 n ([R � Æ;1)�M) and math some �xed J+ 2



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 23J�(M) over [R � Æ;1) � M . Observe that suh a J is also ompatiblewith the modi�ed sympleti form !' de�ned above, thus �nite energyembedded J{holomorphi urves in W1 give rise to properly embeddedsympleti submanifolds of (W1; !') �= (WR; !).Lemma 4.1. The almost omplex struture J above an be hosen so thatevery losed, nononstant J{holomorphi urve in (W1; J) is ontained inthe interior of W .Proof. It suÆes to arrange that W1 nW is foliated by J{onvex hyper-surfaes. Choose r < R � Æ, let h : [r;1) �M ! R denote any smoothfuntion satisfying(1) �ah > 0,(2) h(a;m) = a for a � R� Æ,(3) h(a;m) = a� r + f(m) for a near r,and de�ne a di�eomorphism : [r;1)�M ! S1f : (a;m) 7! (h(a;m); m):This restrits to the identify on [R�Æ;1)�M and satis�es  �(ea�) = eh�,thus it de�nes a sympletomorphism ([r;1)�M; d(eh�))! (SRf ; d(ea�)).Now for a 2 [r;1), denote by ha : M ! (0;1) the smooth 1{parameterfamily of funtions suh that eh(a;�) = eaha, and de�ne the family of ontatforms �a := ha� with orresponding Reeb vetor �elds Xa. Regarding �ain the natural way as a 1{form on R �M , we now haved(eh�) = ea da ^ �a + ea d�a;and an almost omplex struture ^J ompatible with d(eh�) an thus beonstruted as follows. Given J+ 2 J (�), hoose ^J on [r;1)�M so thatit mathes J+ on [R� Æ;1)�M , and at fag �M satis�esJ�a = Xa and J(�) = �;where J j� is ompatible with d� (and therefore also with d�a for eah a).Now the level sets fag�M are ^J{onvex, thus an almost omplex strutureof the desired form on S1f is given by J :=  � ^J , and we an extend thelatter to an !{ompatible almost omplex struture on W1 for whih thehypersurfaes  (fag � M) for a � r are J{onvex. Sine J{onvexityis an open ondition with respet to J , it is also safe to make a smallperturbation on WR so that J beomes generi outside of [R� Æ;1)�M .�Proof of Theorem 1. Assume (M; �) is a ontat manifold supported by aplanar open book � :M nB ! S1. Then using the onstrution in [Wen℄,there is a nondegenerate ontat form � with ker � = � and J+ 2 J�(M)suh that up to isotopy, the pages of � are projetions to M of embeddedJ+{holomorphi urves in R � M , with positive ends asymptoti to the

24 CHRIS WENDLorbits in B. This de�nes a positive �nite energy foliation F+ of (M;�; J+),with every leaf stable. Now if (W;!) is a strong �lling of (M; �), we de�nethe enlarged �llings WR and W1 with generi almost omplex strutureJ as desribed above, and then Theorem 7 yields a moduli spae M0 ofJ{holomorphi urves that foliate W1 outside a �nite set of transversenodes, suh that �M0 is the spae of leaves in F+ up to R{translation.Sine � is nondegenerate, M0 �= D , and the map� : W1 nB !M0de�ned as in (3.1) gives a sympleti Lefshetz �bration of (W1 nB; !') �=(WR nB; !) over the disk. We an easily modify � so that it extends overB: �rst fatten B to a tubular neighborhood N (B) � M , then extend �over this neighborhood by ontrating the disk. We observe �nally thatif any singular �ber ontains a losed omponent, this must be a holo-morphi sphere v : S2 ! W1 with i(v; v) = �1, thus an exeptionalsphere, and for an appropriate hoie of J it must be ontained in W dueto Lemma 4.1. Therefore if W is minimal, every omponent of a singular�ber has nonempty boundary, implying that the vanishing yle is homo-logially nontrivial. �Proof of Theorem 2. The argument is mostly the same as for Theorem 1,but using a spei� Morse-Bott �nite energy foliation onstruted as inExample 2.11 (see Remark 2.13). In this ase the spae of leaves in T 3 isparametrized by two disjoint irles, thus the moduli spae M0 providedby Theorem 7 has two boundary omponents, and is therefore an annulus.The argument produes a Lefshetz �bration � : W1 n Z ! [0; 1℄ � S1,whih one an extend over Z by fattening it to a neighborhood N (Z) andthen �lling in using the homotopy between omponents of �M0.It remains to show that all singular �bers onsist of a union of a ylinderwith an exeptional sphere. By Theorem 7, the only other option is a unionof two transversely interseting disks, whih would give a vanishing yleparallel to the boundary of the �ber. We an rule this out by looking at themonodromy maps of the �brations at f0g�S1 and f1g�S1: these are thetwo onneted omponents of the �bration in (2.2). Thus both monodromymaps are trivial, but they must also be related to eah other by a produtof positive Dehn twists, one for eah nontrivial vanishing yle. Sine themapping lass group of the ylinder has only one generator, there is noprodut of positive Dehn twists that gives the identity, thus there an beno nontrivial vanishing yles. �Proof of Theorem 3. For a smooth 1{parameter family of strong �llings(W;!t) of (M; �) with t 2 [0; 1℄ and a suitable Morse-Bott ontat form�, one an �nd a smooth family of funtions ft : M ! R suh thatfor R > maxfft(m) j t 2 [0; 1℄; m 2 Mg, the trivial sympleti obor-dism (SRft; d(ea�)) an be attahed to (W;!t), produing an enlarged �lling



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 25(WR; !t) whose sympleti form is �xed near the boundary. Now attahthe ylindrial end as usual and hoose a generi smooth 1{parameter fam-ily Jt of !t{ompatible almost omplex strutures that are idential on theend. If (M; �) is planar or is (T 3; �0), then the result now follows by ap-plying the same arguments as in the previous two proofs together withTheorem 8. �Proof of Theorem 6. Suppose (M; �) is a ontat manifold with a positivefoliation F of (M0; �; J) ontaining an interior stable leaf u 2 F that isasymptotially simple: then for any strong �lling (W;!), we an again �llW1 with J{holomorphi urves using Theorem 7, and we already have aontradition if M0 ( M . On the other hand if M0 = M , we an �nd apoint p that lies in some \di�erent" leaf u0 2 F , and then onsider for largen the sequene un 2 M0, where un is the unique urve passing through(n; p) 2 [R;1) �M � W1. As n ! 1, a subsequene must onvergeto u0, implying that u and u0 are di�eomorphi and have ends in the sameMorse-Bott manifolds, whih is a ontradition. �Remark 4.2. The Weinstein onjeture for a ontat manifold (M; �) as-serts that for any ontat form � with ker� = �, X� has a periodi orbit.The idea of using puntured holomorphi urves to prove this is originallydue to Hofer [Hof93℄, and works so far under a variety of assumptions on(M; �) (see also [ACH05℄). The onjeture for general ontat 3{manifoldswas proved reently by Taubes [Tau07℄, using Seiberg-Witten theory, buta general proof using only holomorphi urves is still laking.A minor modi�ation of Theorem 7 yields a new proof of the Weinsteinonjeture for any setting in whih one an onstrut a positive foliationontaining an interior stable leaf that is asymptotially simple, for instaneon the standard 3{torus, or any ontat manifold with positive Giroux tor-sion. The argument is a generalization of the one used by Abbas-Cieliebak-Hofer [ACH05℄ for planar ontat strutures: we replae the sympleti�lling W by a ylindrial sympleti obordism W , having (M; �) forsome large onstant  > 0 at the positive end and (M; f�) for any smoothpositive funtion f : M ! R with f <  at the negative end. Then thesame ompatness argument works for any sequene of urves un : _�! Wthat is bounded away from the negative end. Just as in [ACH05℄, one antherefore produe a sequene un that runs to �1 in the negative end andbreaks along a periodi orbit in (M; f�), proving the existene of suh anorbit.22The ompatness argument in [ACH05℄ ontains a minor gap, as it ignores thepossibility of nodal degenerations. Our argument �lls the gap by showing that onlyembedded index 0 urves an appear in suh degenerations, thus they are on�ned to asubset of odimension 2 and an be avoided by following a generi path to �1.

26 CHRIS WENDL5. Fillings of T 3We now proeed to the proofs of Theorems 4 and 5 on �llings of T 3. Thekey fat is that if a strong �lling of (T 3; �0) is minimal, then the Lefshetz�bration given by Theorem 2 is an honest sympleti �bration, i.e. it hasno singular �bers. In fat, it is easy to onstrut two suh �brations, whose�bers interset eah other exatly one transversely; the situation is thusanalogous to that of Gromov's haraterization of split sympleti forms onS2 � S2 ([Gro85℄, also subsequent related work by MDu� [MD90℄). Wean onstrut a simple model Stein manifold, whih is sympletomorphi toT �T 2 and arries an expliit deomposition by two �brations for whih theomplex and sympleti strutures both split. Mathing this deompositionwith the �brations onstruted for a general �lling via Theorem 7 givesa sympleti deformation equivalene, whih in the exat ase yields asympletomorphism via the Moser isotopy trik.There is one subtle point here that doesn't arise in the losed ase: sinewe intend to arry out the Moser isotopy on a nonompat manifold, it'simportant that our di�eomorphism be suÆiently well behaved near in�n-ity, and this will not generally be the ase without some e�ort. To see whynot, observe that for any strong �lling (W;!) of (T 3; �0), the asymptotis ofthe J{holomorphi urves in W1 given by Theorem 7 enode a homotopyinvariant of the foliation. Indeed, suppose f�0g�2S1 and f�1g�2S1 are thetwo Morse-Bott families of Reeb orbits that serve as the asymptoti limitsof the urves in the moduli spaeM. Then we an hoose a di�eomorphismR � S1 !M : (�; �) 7! u(�;�)suh that u(�;�) has asymptoti orbits �0 and f(�;�)1 for some ontinuousfuntion f : R � S1 ! S1;whih has the form f(�; �) = � for j�j large due to the �xed struture ofM in the ylindrial end. The map � 7! f(�; 0) thus de�nes a loop in S1whose homotopy lass in �1(S1) = Z an be shown (using Theorem 8) tobe an invariant determined by (W1; !) and J up to ompatly supporteddeformations. Now if (W1; !1) and (W2; !2) are two strong �llings that wewish to prove are sympletomorphi, we'd like to do so by hoosing a dif-feomorphism that both respets the struture of the holomorphi foliationsand is \ompatly supported" in the sense of respeting the natural identi-�ations of W11 and W12 with [R;1)�T 3 near in�nity. It is easy enoughto modify the foliations slightly so that an appropriate di�eomorphism anbe onstruted near in�nity, but this will not be globally extendable unlessthe above onstrution gives the same lass in �1(S1) for both foliations.The upshot is that it is not enough to take only T �T 2 with its standardomplex and sympleti struture as a model �lling|rather, we will need awider variety of models that ome with holomorphi foliations attaining all



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 27possible values in �1(S1). We'll onstrut suh models in x5.1 by performingLuttinger surgery along the zero setion in T �T 2. Note that unlike thesituation in a losed manifold, the manifolds obtained by surgery are allsympletomorphi, but the point is that their omplex strutures (and theresulting holomorphi foliations) behave di�erently at in�nity. With thesemodels in plae, we'll arry out the Moser deformation argument in x5.2to prove Theorem 4. Finally, x5.3 will use the stability of our �brationsunder homotopies (Theorem 8) to prove Theorem 5.5.1. Model �llings and �brations. As usual, we identify T �T 2 withT 2�R2 and use oordinates (q1; q2; p1; p2), so that the standard sympletistruture is !0 = d�0, where �0 = p1 dq1+p2 dq2. Eah pair of oordinates(pj; qj) for j = 1; 2 de�nes a ylinder Zj = R�S1 so that we have a naturaldi�eomorphism T 2 � R2 = Z1 � Z2:We de�ne on eah Zj the standard omplex struture i�pj = �qj and sym-pleti struture !0 = dpj ^ dqj, so that !0 on Z1 � Z2 is the diret sum!0 � !0, and we an similarly de�ne a ompatible omplex struture i onT 2 � R2 as i � i. This makes (T 2 � R2 ; !0; i) into a Stein manifold, withplurisubharmoni funtion f : T 2 � R2 ! [0;1) : (q; p) 7! 12 jpj2 suh that�df Æ i = �0, and the latter indues the Liouville vetor �eldrf = p1�p1 + p2�p2 ;whose ow is given by 'trf(q; p) = (q; etp). The restrition of �0 to�(T 2� D ) = T 3 gives the standard ontat form, whih we'll denote in thefollowing by �0. We will use the oordinates (q; p) on T 3 with the assump-tion that jpj = 1, and sometimes also write (p1; p2) = (os 2��; sin 2��)with � 2 S1.We an use the ow of rf to embed the sympletization of T 3 into(T 2 � R2 ; !0): expliitly,� : (R � T 3; d(ea�0)) ,! (T 2 � R2 ; !0) : (a; (q; p)) 7! (q; eap)satis�es ���0 = ea�0. Using this to identify (0;1)� T 3 with the omple-ment of T 2�D , we an now hoose a new almost omplex struture J0 withJ0�pj = g(jpj)�qj for some funtion g, so that J0 = i near the zero setionand beomes R{invariant on the end, in other words J0j[0;1)�T 3 2 J�0(T 3).This hoie of J0 has preisely the form on [0;1)�T 3 that was used in Ex-ample 2.11 (via Remark 2.13). In terms of the splitting T 2�R2 = Z1�Z2,the ylinders Z1�f�g and f�g�Z2 are now �nite energy J0{holomorphiurves, and those whih lie entirely in [0;1)� T 3 reprodue the foliationsonstruted in Example 2.11. In partiular, eah ylinder Z1 � f�g is as-ymptoti to a pair of Reeb orbits in the Morse-Bott tori f� = 0; 1=2g withthe same value of the oordinate q2 2 S1 at both ends, and a orrespondingstatement is true for f�g � Z2 with the Morse-Bott tori f� = 1=4; 3=4g.

28 CHRIS WENDLWe shall now onstrut more holomorphially foliated model �llings us-ing surgery along the zero setion in T 2�R2 . The following is a speial aseof the surgery along a Lagrangian 2{torus in a sympleti 4{manifold intro-dued by Luttinger in [Lut95℄; our formulation is borrowed from [ADK03℄.For r > 0, let Kr = T 2 � [�r; r℄ � [�r; r℄. Choose onstants � :=(; k1; k2) 2 (0;1)� Z2 and a smooth uto� funtion � : R ! [0; 1℄ suhthat � � = 0 on a neighborhood of (�1;�1℄,� � = 1 on a neighborhood of [1;1),� R 1�1 t� 0(t) dt = 0.De�ne also the funtion � : R ! R to equal 0 on (�1; 0) and 1 on [0;1).Then there is a sympletomorphism  � : (K2 n K; !0) ! (K2 n K; !0)given by �(q1; q2; p1; p2) = �q1 + k1�(p2)� �p1 � ; q2 + k2�(p1)� �p2 � ; p1; p2� :We onstrut a new sympleti manifold (W�; !�) by deleting K fromT 2 � R2 and gluing in K2 via  �:(W�; !�) = ((T 2 � R2) nK; !0) [ � (K2; !0):In the following, we shall regard both ((T 2 � R2) n K; !0) and (K2; !0)as sympleti subdomains of (W�; !�), and �x loal oordinates as follows.Let (q1; q2; p1; p2) denote the usual oordinates on (T 2 � R2) n K, nowviewed as a subset of W�, and on the glued in opy of K2 � W�, denotethe natural oordinates by (Q1; Q2; P1; P2). Thus on the region of overlap,(q; p) =  �(Q;P ) and!� = dp1 ^ dq1 + dp2 ^ dq2 = dP1 ^ dQ1 + dP2 ^ dQ2:Observe that the (Q;P ){oordinates an be extended globally so that theyde�ne a sympletomorphism (Q;P ) : (W�; !�)! (T 2 � R2 ; !0).If 2 = eR, then the part of (W�; !�) identi�ed with ((T 2�R2) nK; !0)naturally ontains a sympletization end of the form ([R;1)�T 3; d(ea�0)).Lemma 5.1. W� admits a 1{form �� suh that d�� = !� and ��j[R;1)�T 3 =ea�0.Proof. The 1{form ea�0 is the restrition to [R;1)� T 3 of �0 := p1 dq1 +p2 dq2, whih is a well de�ned primitive of !0 = !� on (T 2�R2)nK. De�nef(s) = 1 R s� t� 0(t=) dt, a smooth funtion with support in (�; ) due toour assumptions on �. Then there is a smooth funtion � : (T 2�R2)nK !R de�ned by �(q1; q2; p1; p2) = 8><>:k2f(p2) if p1 � ,k1f(p1) if p2 � ,0 otherwise,



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 29and a brief omputation shows that on (T 2 � R2) n K, �0 = P1 dQ1 +P2 dQ2 + d�. Now hoosing a smooth funtion b� : W� ! R that mathes� on [R;1)� T 3 and vanishes in K, a suitable primitive is given by�� = P1 dQ1 + P2 dQ2 + db�: �We wish to de�ne an !�{ompatible almost omplex struture J� onW� that mathes J0 on the end [R;1)� T 3, i.e. for jpj � eR, J� satis�es�J��qj = G(jpj)�pj for some positive smooth funtion G. Swithing to(Q;P ){oordinates in K2, J� is now determined in K2 \ ([R;1)� T 3)by the onditions�J��Q1 = �P1 �G(jP j)k1 �(P2)� 0(P1=) �Q1 ;�J��Q2 = �P2 �G(jP j)k2 �(P1)� 0(P2=) �Q2 :Thus if we replae � in this expression by the uto� funtion t 7! �(t=),whih equals � outside of [�; ℄, we obtain the desired extension of J� overK2. The following lemma is immediate.Lemma 5.2. For eah onstant (�; �) 2 R � S1, the surfaes Z(�;�)1 :=f(P2; Q2) = (�; �)g and Z(�;�)2 := f(P1; Q1) = (�; �)g in W� are images ofembedded �nite energy J�{holomorphi ylinders. Moreover,(1) Eah point in W� is the unique intersetion point of a unique pairZ(�;�)1 and Z(�0;�0)2 , whose tangent spaes at that point are sympletiomplements.(2) For j�j � , the ylinders Z(�;�)1 and Z(�;�)2 are idential to Z1 �f(�; �)g and f(�; �)g � Z2 respetively in T 2 � R2 = Z1 � Z2. Thisolletion therefore ontains all of the urves in [R;1) � T 3 on-struted via Example 2.11 and Remark 2.13.The essential di�erene between (W�; !�) and (T 2�R2 ; !0) is that theyeah ome with holomorphi foliations that behave di�erently at in�nity:the ylinder Z(�;�)1 for instane has one end asymptoti to the Reeb orbit atf� = 1=2; q2 = �g, while its other end approahes the orbit at f� = 0; q2 =� + k2�(�=)g. Thus the data � = (; k1; k2) determine o�sets within therespetive families of Morse-Bott orbits at one end of eah ylinder.5.2. Classi�ation up to sympletomorphism. Assume (W;!) is aminimal strong �lling of (T 3; �0). Adopting the notation from x4, (WR; !)is the enlarged �lling obtained by attahing a trivial sympleti obordismsuh that the indued ontat form at �WR is eR�0, and we an furtherattah a ylindrial end ([R;1) � T 3; d(ea�0)) to onstrut (W1; !). If(W;!) is an exat �lling with primitive �, then we an also assume � ex-tends over W1 so that �j[R;1)�T 3 = ea�0. Choosing an almost omplex

30 CHRIS WENDLstruture J that is generi in WR and has the standard form J0 2 J�0(T 3)on [R;1) � T 3, we start from a �nite energy foliation onstruted as inExample 2.11 (via Remark 2.13), onsisting of ylinders with ends asymp-toti to orbits in the two Morse-Bott tori Z = f� 2 f0; 1=2gg, then useTheorem 7 to produe a moduli spae M1 of J{holomorphi ylinders fo-liating W1. Sine (W;!) is minimal, this produes a smooth �bration�1 : W1 !M1, where both the �ber and the base are di�eomorphi toR � S1.We an now repeat the same trik starting from a di�erent foliationof T 3: let Z 0 = f� 2 f1=4; 3=4gg, a pair of Morse-Bott tori with Reeborbits pointing in the diretion orthogonal to those on Z. Then by a minormodi�ation of the onstrution in Example 2.11, the �brationT 3 n Z 0 ! f0; 1g � S1(q1; q2; �) 7! ((0; q1) if � 2 (�1=4; 1=4),(1; q1) if � 2 (1=4; 3=4)an also be presented as the projetion to T 3 of a positive �nite energy folia-tion on R�T 3 , with the same ontat form and almost omplex struture asbefore. This yields a seond moduli spae M2 of J{holomorphi ylindersfoliating W1, and a orresponding �bration �2 : W1 !M2 �= R � S1.Lemma 5.3. Any u1 2 M1 and u2 2 M2 interset eah other exatlyone, with intersetion index +1.Proof. One an verify this expliitly from the foliations on [R;1) � T 3whenever both urves are near the boundaries of their respetive modulispaes, and sine they have no asymptoti orbits in ommon, this impliesi(u1; u2) = 1. The latter is a homotopy invariant ondition, and the fatthat the two urves have separate orbits guarantees that there is never anyasymptoti ontribution, hene there is always a unique intersetion pointu1(z1) = u2(z2), ontributing +1 to the intersetion ount. �It follows that the map�1 � �2 : W1 !M1 �M2is a di�eomorphism. Our goal is to use this to identify W1 with one ofthe model �llings onstruted in x5.1.For � 2 f0; 1=4; 1=2; 3=4g, denote by P� the 1{dimensional manifold ofMorse-Bott orbits foliating the 2{torus whose �{oordinate has the givenvalue: eah of these an be naturally identi�ed with S1 using either the q1or q2{oordinate. Then as explained in the appendix, there exist real linebundles E� ! P�;where the �bers E�x are 1{dimensional eigenspaes of the asymptoti op-erators at x 2 P�, and the asymptoti formula (A.3) de�nes \asymptoti



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 31evaluation maps"M1 ev0��! E0 M1 ev1=2���! E1=2M2 ev1=4���! E1=4 M2 ev3=4���! E3=4:For any � = (; k1; k2) 2 (0;1) � Z2, let M�1 and M�2 denote themoduli spaes of J�{holomorphi ylinders Z(�;�)1 and Z(�;�)2 respetively in(W�; !�), onstruted in the previous setion: as a speial ase, M01 andM02 will denote the spaes of J0{holomorphi ylinders Z1 � f�g, f�g �Z2 in (T 2 � R2 ; !0). These last two moduli spaes are eah anoniallyidenti�ed with R � S1, and they also ome with asymptoti evaluationmaps ev0�, de�ned as above. These are manifestly di�eomorphisms andhave the property that the resulting maps(ev0�)�1 Æ ev� :M1 !M01 for � = 0; 1=2,(ev0�)�1 Æ ev� :M2 !M02 for � = 1=4; 3=4(5.1)are proper: indeed, for any u 2 Mj outside of some ompat subset, theyde�ne the natural identi�ation between urves in Mj and M0j that areontained in the ylindrial end.Lemma 5.4. The maps de�ned in (5.1) are di�eomorphisms.Proof. They are loal di�eomorphisms due to Lemma A.2. The laim thusredues to the fat that any loal di�eomorphism with ompat supporton a ylinder R � S1 is a global di�eomorphism. �By the lemma, we an ompose (5.1) with the anonial identi�ationsM0j = R � S1 and de�ne di�eomorphisms'� :M1 ! R � S1 for � = 0; 1=2,'� :M2 ! R � S1 for � = 1=4; 3=4,so that the resulting ompositions '0 Æ '�11=2 and '1=4 Æ '�13=4 are di�eomor-phisms of R � S1 with ompat support. Choose  > 0 suÆiently largeso that both of these are supported in [�; ℄ � S1 and (making R largerif neessary) 2 = eR. Now, realling the uto� funtion � from x5.1, set� = (; k1; k2) where k1; k2 are the unique integers suh that there is an iso-topy f 1t 2 Di�(R�S1)gt2[0;1℄ supported in [�; ℄�S1, with  10 = '0Æ'�11=2and  11(�; �) = (�; � + k2�(�=));and similarly there is an isotopy  2t from '1=4 Æ '�13=4 to 21(�; �) = (�; � + k1�(�=)):From now on, we will use the di�eomorphisms '1=2 and '3=4 to parametrizeM1 and M2 respetively, denotingu(�;�)1 := '�11=2(�; �); u(�;�)2 := '�13=4(�; �):

32 CHRIS WENDLThe point of this onvention is that u(�;�)1 2 M1 now approahes the Morse-Bott family f� = 1=2g at the same orbit and along the same asymptotieigenfuntion as Z(�;�)1 2 M�1 , and a orresponding statement holds forM2and M�2 .Lemma 5.5. There exist onstants R2 > R1 > R, an almost omplexstruture ^J on W1 tamed by !, and moduli spaes M1 and M2 of em-bedded �nite energy ^J{holomorphi ylinders foliating W1, whih have thefollowing properties. For j 2 f1; 2g, Mj an be parametrized by a ylinderR � S1 3 (�; �) 7! ^u(�;�)j 2 Mjsuh that(1) In the region WR [ ([R;R1℄� T 3), ^J � J and ^u(�;�)j is idential tou(�;�)j 2 Mj.(2) In [R2;1) � T 3, ^J � J� and ^u(�;�)j is idential to Z(�;�)j 2 M�j ,where we use the natural identi�ation of the ends of W1 and W�.(3) Lemma 5.3 holds also for the spaes M1 and M2.Proof. The urves u(�;�)j already have the desired properties when j�j � ,so hanges are needed only on ompat subsets of Mj, and only near theends of these urves. The idea is simply to modify the foliation de�ned byfu(�;�)j g(�;�)2[�;℄�S1 outside of a large ompat subset to a new foliation ofthe same region suh that the hange to the tangent spaes is uniformlysmall. One an then make the new foliation ^J{holomorphi for some ^J thatis uniformly lose to J and therefore also tamed by !. Lemma 5.3 is trivialto verify for the modi�ed foliations, beause adjustments to M1 happenonly in a region where M2 is unhanged, and vie versa. We proeed intwo steps.Choose R1 > 0 suÆiently large so that for j�j � , the tangent spaes ofthe urves u(�;�)j in [R1;1)� T 3 are uniformly lose to the tangent spaesof the asymptoti orbit ylinders. Then hoosing R0 muh larger than R1,a suÆiently gradual adjustment of the remainder term in the asymptotiformula (A.3) produes a new surfae ^u(�;�)j in [R1; R0℄� T 3 that looks likeu(�;�)j near fR1g � T 3 and Z(�0;�0)j 2 M0j near fR0g � T 3, where (�0; �0) isrelated to (�; �) via the di�eomorphism '0 Æ '�11=2 or '1=4 Æ '�13=4.It remains to adjust the parameters (�0; �0) so that in [R2;1) � T 3 forsome R2 > R0, ^u(�;�)j mathes Z(�;�)j 2 M�j . For this we use the isotopies jt , de�ning the surfae ^u(�;�)j so that its intersetion with fsg � T 3 fors 2 [R0; R2℄ mathes Z jf(t)(�;�)j 2 M0j for some funtion f : [R0; R2℄! [0; 1℄with suÆiently small derivative. (Of ourse, R2 must be large). �We an now arry out the deformation argument.



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 33Proposition 5.6. There exists a di�eomorphism  : W� ! W1 whihrestrits to the identity on [R2;1)� T 3, suh that the 2{forms!(t) := t �! + (1� t)!�are sympleti for all t 2 [0; 1℄.Proof. Applying Lemma 5.3 to the spaes M1 and M2 and using the givenidenti�ations of both with R � S1, we have a di�eomorphismb�1 � b�2 : W1 ! M1 � M2 = (R � S1)� (R � S1);and there is a similar di�eomorphism��1 � ��2 : W� !M�1 �M�2 = (R � S1)� (R � S1):Composing the seond with the inverse of the �rst yields a di�eomorphism : W� ! W1 whih equals the identity in [R2;1)� T 3. We laim that!(t) = t �! + (1 � t)!� is nondegenerate, and thus sympleti for everyt 2 [0; 1℄. Indeed, the almost omplex struture  � ^J tames !(1) =  �!,and it also tames !(0) = !� sine every tangent spae now splits into a sumof !�{sympleti omplements that are also  � ^J{invariant. Thus  � ^J isalso tamed by !(t) for every t 2 [0; 1℄, proving the laim. �Proposition 5.7. If (W;!) is an exat �lling, then one an arrange the dif-feomorphism of Prop. 5.6 to be a sympletomorphism (W�; !�)! (W1; !).Proof. Let  : W� !W1 be the di�eomorphism onstruted in Prop. 5.6.By Lemma 5.1, there is a 1{form �� onW� that satis�es d�� = !� globallyand mathes � =  �� = ea�0 on [R2;1) � T 3. Now !(t) = d�(t), where�(t) = t ��+ (1� t)��. De�ne a time-dependent vetor �eld Vt on W� by!(t)(Vt; �) = �� �  ��:Sine �� �  �� vanishes in [R2;1) � T 3, the ow 'tV of Vt has ompatsupport and is well de�ned for all t: the map Æ '1V : W� !W1then gives the desired sympletomorphism (W�; !�)! (W1; !). �Proof of Theorem 4. By Prop. 5.6, (W;!) is sympletially deformationequivalent to an exat �lling, so let us assume from now on that it is exat.Then by Prop. 5.7, there is a sympletomorphism  : (W1; !)! (W�; !�)whih equals the identity in [R;1) � T 3 for suÆiently large R, and weshall now use it to onstrut a sympletomorphism of (W;!) to a starshaped domain in T �T 2. Choose a global primitive � of ! whih mathesea�0 on [R;1) � T 3 and denote by Y and Y� the Liouville vetor �eldsorresponding to � and �� respetively, so!(Y; �) = �; !�(Y�; �) = ��:

34 CHRIS WENDLBoth of these math �a on [R;1) � T 3. There is also another Liouvillevetor �eld Y0 on W� de�ned by !�(Y0; �) = P1 dQ1 + P2 dQ2, thusY0 = P1 �P1 + P2 �P2 ;and by the onstrution of ��, Y0 = Y� on K. All of these have globallyde�ned ows whih dilate the respetive sympleti forms, e.g. ('tY )�! =et! for all t 2 R.By the onstrution of W1, there is a smooth funtion f : T 3 ! Rsuh that the losure of (W1 nW;!) is the trivial sympleti obordism(S1f ; d(ea�0)), and Y = �a on this region. Now hoose T > 0 suÆientlylarge so that 'TY (�W ) � [R;1)� T 3;thus 'T gives a sympletomorphism (W;!)! ('TY (W ); e�T!). Then  Æ'TYmaps (W;!) sympletomorphially to the domain in (W�; e�T!�) boundedby �Sf+T�1 � [R;1)� T 3, whih is transverse to Y�. The omposition T := '�TY� Æ  Æ 'TY : (W1; !)! (W�; !�)now maps W to a ompat domain in W� with boundary transverse to Y�.Reall next from the proof of Lemma 5.1 that �� = P1 dQ1+P2 dQ2+db�for some smooth funtion b� : W� ! R that vanishes in K, and we anassume without loss of generality that �(Q1; Q2; P1; P2) depends only onP1 and P2. It follows that Y� = Y0 + bYfor some vetor �eld bY that vanishes in K and has omponents only inthe Q1 and Q2{diretions. We an therefore hoose � > 0 suÆiently largeso that '��Y� maps  T (W ) into K and then'�Y0 Æ '��Y� : (W�; !�)! (W�; !�)is a sympletomorphism that maps  T (W ) to a ompat domain withboundary transverse to Y0. Under the sympletomorphism (W�; !�) !(T 2�R2 ; !0) de�ned by the (Q;P ){oordinates, this beomes a star shapeddomain. Sine all suh domains an be deformed sympletially to thestandard �lling (T 2 � D ; !0), the uniqueness of strong �llings follows. �5.3. Sympletomorphism groups. We now prove Theorem 5: observethat by the Whitehead theorem, it suÆes to prove that Symp(T �T 2; !0)is weakly ontratible, i.e. �n(Symp(T �T 2; !0)) = 0 for every n � 0. Themain idea of the argument goes bak to Gromov [Gro85℄ in the losedase, and was also used by Hind [Hin03℄ in a situation analogous to ours(�llings of Lens spaes). The key is to onstrut a family of foliationsby J{holomorphi ylinders for J varying in a ball whose boundary isdetermined by a given map Sn ! Symp(T �T 2). Here it is ruial to notethat sine !0 is exat and the losed Reeb orbits in T 3 = T 2��D are never



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 35ontratible in T 2 � D , there annot exist any losed or 1{puntured J{holomorphi spheres, hene the moduli spaes we onstrut have no nodaldegenerations. In this situation, Theorems 7 and 8 go through without anygeneriity assumption for J (see Remark 3.4).As in x5.1, hoose an almost omplex struture J0 whih mathes thestandard omplex struture near the zero setion and belongs to J�0(T 3)on the ylindrial end [0;1) � T 3, where it mathes the form used inExample 2.11. Let �0 denote the anonial 1{form on T �T 2, so d�0 = !0.Suppose now that Sn ! Symp(T �T 2; !0) : x 7!  xis a smooth family of sympletomorphisms whih all equal the identity on[R;1) � T 3 for some R � 0, and there is a �xed base point x0 2 Snsuh that  x0 = Id. Let Jx =  �xJ0 for eah x 2 Sn: these are all !0{ompatible almost omplex strutures that math J0 on [R;1). Now usingthe ontratibility of the spae of ompatible almost omplex strutures,the family fJxgx2Sn an be �lled in to a smooth family fJxgx2Bn+1 thatare all ompatible with !0 and equal J0 on [R;1)�T 3, where Bn denotesthe losed unit ball in Rn .Applying Theorem 8 (with Remark 3.4 in mind), there are now twounique smooth families of moduli spaesMx1 andMx2 for x 2 Bn+1, eah ofwhih onsists of embedded Jx{holomorphi ylinders foliating T �T 2, suhthat eah urve in Mx1 has one transverse intersetion with eah urve inMx2 . We have Jx0 = J0, thus the urves inMx01 andMx02 are preisely theylinders that make up the splittingT �T 2 = T 2 � R2 = (R � S1)� (R � S1);as was explained in x5.1. More generally, for x 2 �Bn+1 and j 2 f1; 2g,the urves in Mxj an be obtained by omposing urves in Mx0j with thesympletomorphism  �1x , and are thus idential on [R;1) � T 3 to theurves in Mx0j . As in the previous setion, we an now use asymptotievaluation maps to de�ne di�eomorphismsR � S1 !Mxj : (�; �) 7! u(�;�)j;x :Arguing further as in Lemma 5.5, for x 2 Bn+1 nSn, hange Jx on a regionnear in�nity to a smooth family ^Jx tamed by !0 and mathing J0 on someregion [R2;1)� T 3, suh that for every �xed parameter (�; �), the urves^u(�;�)j;x in the resulting moduli spaes Mxj are idential on [R2;1) � T 3for all x 2 Bn+1. Then the intersetion points de�ne a smooth family ofdi�eomorphisms x : T �T 2 ! Mx1 � Mx2 = (R � S1)� (R � S1) = T �T 2;whih math the original family  x 2 Symp0(T �T 2; !0) for x 2 �Bn+1 andall equal the identity on [R2;1) � T 3. We have now a smooth family of

36 CHRIS WENDLsympleti forms !x :=  �x!0 whih are all standard on [R2;1)� T 3 andmath !0 globally for x 2 �Bn+1.Lemma 5.8. There exists a smooth family of 1{forms f�xgx2Bn+1 on T �T 2suh that(1) d�x = !x,(2) �x � �0 for every x 2 �Bn+1,(3) �x = �0 on [R2;1)� T 3 for every x 2 Bn+1.Proof. For eah x 2 �Bn+1,  x is a sympletomorphism and thus �0� �x�0is a losed 1{form with ompat support. All suh 1{forms are exat:indeed, any element of H1(T �T 2) an be represented by a yle  lyingoutside the support of �0 �  �x�0, heneZ (�0 �  �x�0) = 0 for all [℄ 2 H1(T �T 2);implying [�0 �  �x�0℄ = 0 2 H1DR(T �T 2). Then for x 2 �Bn+1 there is aunique smooth family of ompatly supported funtions fx : T �T 2 ! Rsuh that �0 =  �x�0 + dfx:Extending fx to a smooth family of ompatly supported funtions forx 2 Bn+1, the desired 1{forms an be de�ned by �x =  �x�0 + dfx. �Now given the 1{forms �x from the lemma, de�ne for t 2 [0; 1℄,�(t)x := t�x + (1� t)�0; !(t)x := d�(t)x :The almost omplex struture ^Jx is tamed by !0, and using the holomorphifoliations as in the proof of Theorem 4, we see that it is also tamed by!x =  �x!0, and thus by all !(t)x for t 2 [0; 1℄, proving that the latter aresympleti. Now de�ne a smooth family of time-dependent vetor �eldsV tx by !(t)x (V tx ; �) = �0 � �x:These vanish identially when x 2 �Bn+1 and also vanish outside of aompat set for all x, thus the ows 'tVx are well de�ned and ompatlysupported for all t, and trivial if x 2 �Bn+1. Moreover, ('tVx)�!(t)x = !0. Wethus obtain a smooth family of ompatly supported sympletomorphismson (T �T 2; !0) for x 2 Bn+1 via the omposition  x Æ '1Vx, whih mathes x for x 2 �Bn+1. This shows that �n(Symp(T �T 2; !0)) = 0 for all n, andthus ompletes the proof of Theorem 5.Appendix A. Fredholm and intersetion theoryA.1. Transversality. In this appendix we reall some useful tehnialfats about �nite energy J{holomorphi urves. Adopting the notationof x3, (W1; !) = (W;!) [�W ([0;1)�M; d(ea�)) is the union of a om-pat sympleti manifold (W;!) with ontat boundary �W =M attahed



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 37smoothly to the positive ylindrial end ([0;1)�M; d(ea�)), where � is aMorse-Bott ontat form on M , de�ning the ontat struture � = ker �.Let J denote an !{ompatible almost omplex struture on W1 whihis in J�(M) at the positive end. Then any nononstant puntured J{holomorphi urve u : ( _�; j) ! (W1; J) with �nite energy is asymptotiat eah punture z 2 � to some periodi orbit of the Reeb vetor �eldX�, for whih we an hoose a parametrization xz : S1 ! M with �( _xz)identially equal to the period Tz > 0. In order to desribe the analytialinvariants of u, it is onvenient to introdue the asymptoti operatorsAz : �(x�z�)! �(x�z�) : v 7! �J(rtv � TzrvX�);where r is any symmetri onnetion on M . Morally, this is the Hessianof the ontat ation funtional on C1(S1;M), whose ritial points areperiodi orbits; in partiular one an show that Az has trivial kernel if andonly if the orbit xz is nondegenerate. Choosing a unitary trivialization �for x�z�, Az beomes identi�ed with the operatorC1(S1;R2)! C1(S1;R2) : v 7! �J0 _v � Svwhere S(t) for t 2 S1 is a smooth loop of symmetri 2{by{2 matries.Then there is a linear Hamiltonian ow 	(t) 2 Sp(1) de�ned by solu-tions to the equation �J0 _v � Sv = 0, and 1 is in the spetrum of 	(1) ifand only if kerAz is nontrivial. When this is not the ase, we de�ne theConley-Zehnder index ��CZ(Az) in the standard way in terms of this pathof sympleti matries for t 2 [0; 1℄ (f. the disussion of the \�{index" in[HWZ95, x3℄). Note that the index depends on � up to an even integer, soits even/odd parity in partiular is independent of �. In the Morse-Bottontext, Az may have nontrivial kernel, but one an generally pik a realnumber � 6= 0 and de�ne ��CZ(Az + �), whih depends only on the sign of� if the latter is suÆiently lose to zero.The Fredholm index of u an now be written as(A.1) ind(u) = ��( _�) + 2�1 (u�TW1) +Xz2� ��CZ(Az � �);where � > 0 is an arbitrary small number, and �1 (u�TW1) is the relative�rst Chern number of the omplex vetor bundle (u�TW1; J) with respetto the trivialization at the ends de�ned by ombining � on � with theobvious trivialization of R � RX� . It is straightforward to show fromproperties of the Conley-Zehnder index and relative Chern number thatthis sum doesn't depend on either � or �. It de�nes the virtual dimensionof the moduli spae of J{holomorphi urves lose to u. We say that uis unobstruted whenever the linearized Cauhy-Riemann operator at uis surjetive: then the moduli spae lose to u is a smooth orbifold (ormanifold if u is somewhere injetive) of dimension ind(u). In the asewhere all orbits are nondegenerate, this follows from the Fredholm theorydeveloped in [Dra04℄; see [Wen05℄ or [Wend℄ for the Morse-Bott ase.

38 CHRIS WENDLThe puntures � � � an be divided into even puntures �0 and oddpuntures �1 aording to the parity of ��CZ(Az � �), whih is independentof � and � > 0 as noted above.3 Now one an easily use the index formulato show that ind(u) and �0 are either both even or both odd, so if � hasgenus g, there is an integer N(u) 2 Z de�ned by the formula(A.2) 2N(u) = ind(u)� 2 + 2g +#�0:We all this the normal Chern number of u, for reasons that are easyto see in the ase where W is a losed manifold: then the ombination of(A.1) and (A.2) yields the alternative de�nition N(u) = 1(u�TW )��(�),whih is preisely the �rst Chern number of the normal bundle whenever uis immersed. As shown in [Wenb℄, this is also the appropriate interpretationof N (u) in the puntured ase. The following transversality riterion is aspeial ase of a result proved in [Wenb℄:Proposition A.1. If u : _� ! W1 is an immersed �nite energy J{holomorphi urve with ind(u) > N(u), then u is unobstruted.A stronger statement holds in the ase where u is embedded with allasymptoti orbits distint and simply overed, ind(u) = 2 and N(u) =0. Then a result in [Wen05,Wend℄ shows that the smooth 2{dimensionalmoduli spae of urves near u foliates a neighborhood of u( _�) in W1.The reason is that tangent vetors to the moduli spae an be identi�edwith setions of the normal bundle Nu ! _� that satisfy a linear Cauhy-Riemann type equation, and the ondition N(u) = 0 onstrains thesesetions to be nowhere zero. It follows that if we add one marked pointand onsider the resulting evaluation map from the moduli spae intoW1,this map is a loal di�eomorphism.A.2. Asymptoti evaluation maps. For the arguments in x5, it is on-venient to have an asymptoti version of the above statement about theevaluation map. Consider a onneted moduli spaeM of �nite energy J{holomorphi urves u : _�! W1 that eah have an odd punture asymp-toti to an orbit x : S1 !M belonging to a 1{parameter family P of simplyovered Morse-Bott orbits of period T > 0. To simplify the notation, we'llassume this is the only punture, though the disussion an be generalizedto multiple puntures in an obvious way. LetAx denote the asymptoti op-erator for any x 2 P; sine it is a 1{parameter family, dimkerAx = 1. Wewill use ertain fats about the spetrum �(Ax) of Ax that are proved in[HWZ95℄: in partiular, for any nontrivial eigenfuntion e� 2 �(x��) witheigenvalue �, the winding number wind�(�) := wind�(e�) 2 Z depends3Note that we're assuming all puntures are positive here; if there were negativeMorse-Bott puntures, both this de�nition of parity and the Fredholm index formulawould need Az + � instead of Az � �.



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 39only on �, so that the resulting funtion�(Ax)! Z : � 7! wind�(�)is monotone and attains every integer value exatly twie (ounting multi-pliity of eigenvalues). If 0 62 �(Ax), then one an also dedue the parityof ��CZ(Ax) from these winding numbers: it is even if and only if �(Ax)ontains a positive and negative eigenvalue for whih the winding numbersmath. It follows that if ��CZ(Ax � �) is odd and �x < 0 is the largestnegative eigenvalue of Ax, then the orresponding eigenspae Ex � �(x��)is 1{dimensional and its eigenfuntions have zero winding relative to anynonzero element of kerAx. The union of these eigenspaes for all x 2 Pde�nes a real line bundle E ! P:The eigenfuntions ofAx appear naturally in the asymptoti formula provedin [HWZ96b℄ (see also [Sie08℄ for a fuller disussion) for a map u 2 Masymptoti to xu 2 P. Choose oordinates (s; t) 2 [0;1)�S1 for a neigh-borhood of the punture in _�, and assume without loss of generality thatu maps this neighborhood into [0;1) �M . Then using any R{invariantonnetion to de�ne the exponential map, one an hoose the oordinates(s; t) so that for suÆiently large s, u satis�es(A.3) u(s; t) = exp(Ts;xu(t)) �e�xs (fu(t) + ru(s; t))� ;where fu 2 Ex and ru(s; t) 2 �xu(t) is smooth and onverges to 0 uniformlyin t as s!1. This formula de�nes an \asymptoti evaluation map"ev :M! E : u 7! (xu; fu):Lemma A.2. In the situation desribed above, if u 2 M is immersed withind(u) = 2 and N(u) = 0, then ev : M ! E is a loal di�eomorphismnear u.Proof. We will use the analytial setup in [Wenb℄ to show that under theseonditions, d ev(u) : TuM! T(xu;fu)E is nonsingular. If Nu ! _� denotesthe normal bundle of u, p > 2 and � > 0 is small, we have TuM = kerDNu ,where DNu : W 1;p;��(Nu)! Lp;��(HomC (T _�; Nu))is the normal Cauhy-Riemann operator, de�ned on exponentially weightedSobolev spaesW k;p;�� := fv 2 W k;plo j e��sv(s; t) 2 W k;p([0;1)� S1)gfor k = f0; 1g. Note that by Prop. A.1, u is unobstruted and thusdimkerDNu = 2. By an asymptoti version of loal ellipti regularity (see[HWZ96a, Sie08℄), any setion v 2 kerDNu satis�es a linearized version of(A.3) in the form(A.4) v(s; t) = e�s(fv(t) + r(s; t));

40 CHRIS WENDLwhere fv 2 �(x�u�) is an eigenfuntion of Axu with eigenvalue � < �, andr(s; t)! 0 as s!1. In the present situation, the largest eigenvalue lessthan � is 0, thus if v is nontrivial then wind�(fv) � wind�(0). The zeroes ofv are then isolated and positive, and an be ounted by the normal Chernnumber: we have(A.5) Z(v) + Z1(v) = N(u);where Z(v) is the algebrai ount of zeros of v, and Z1(v) is a orrespond-ing asymptoti ontribution de�ned as wind�(0)� wind�(fv), and is thusalso nonnegative. So the ondition N (u) = 0 implies that fv has windingnumber zero relative to any nontrivial setion in kerAxu.We an onsider also the restrition ofDNu to a smaller weighted domain,D0 : W 1;p;�(Nu)! Lp;�(HomC (T _�; Nu));whih amounts to linearizing the J{holomorphi urve problem with anadded onstraint �xing the asymptoti orbit at the punture. This operatorhas index 1 and is also surjetive, by the results in [Wenb℄. It followsthat there is a unique one-dimensional subspae Vu � TuM onsisting ofsetions v 2 kerDNu for whih the eigenvalue � in (A.4) is negative. For allv 2 kerDNu n Vu, this eigenvalue is zero, and we thus have v(s; �) ! fv 2kerAxu as s!1, implying that the derivative of the mapM! P : u 7!xu in this diretion is nonzero.Now �x an orbit x 2 P and let Mx = fu 2 M j xu = xg. By theremarks above, this is a 1{dimensional submanifold with TuMx = Vu. Therestrition of ev toMx de�nes a mapMx ! Ex, and we laim �nally thatfor any nontrivial v 2 Vu, the diretional derivative of this map is nonzero.This follows from (A.4) and the fat that Z1(v) = 0, as the nontrivialeigenfuntion in (A.4) must have the same winding as a setion in kerAxu,and therefore belongs to Exu. �A.3. Intersetion numbers. We disuss next the puntured generaliza-tion of the adjuntion formula. These results are the topologial on-sequenes of the relative asymptoti analysis arried out by Siefring in[Sie08℄; omplete details are explained in [Sie℄ for urves with nondegener-ate orbits and [SW℄ for the Morse-Bott ase, and a summary with preisede�nitions may also be found in the last setion of [Wenb℄. We shall onlyneed a few details, whih we now state without proof. For any two �niteenergy urves u1; u2, there exists an intersetion numberi(u1; u2) 2 Zwhih algebraially ounts atual intersetions plus a ertain \asymptotiontribution," whih vanishes generially. The asymptoti ontributionvanishes in partiular whenever u1 and u2 have no asymptoti orbits inommon, and it is otherwise analogous to the term Z1(v) in (A.5): itis a nonnegative measure of the winding numbers of ertain asymptoti



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 41eigenfuntions that desribe the relative approah of two distint urvesto the same orbit, and it vanishes if and only if these winding numbersattain the extremal values determined by the spetrum. Thus if u1 and u2do not over the same somewhere injetive urve, both the atual interse-tion ount and the asymptoti ontribution are nonnegative, and moreover,their sum is invariant under deformations of both urves through the mod-uli spae. The ondition i(u1; u2) = 0 then suÆes to ensure that u1 andu2 never have isolated intersetions. For any somewhere injetive urve u,there is also a singularity number sing(u) 2 Z, whih ounts double points,ritial points and \asymptoti singularities," eah ontributing nonnega-tively. This sum is also invariant under deformations, and the onditionsing(u) = 0 suÆes to ensure that a somewhere injetive urve is embed-ded. The standard adjuntion formula for losed holomorphi urves nowgeneralizes to(A.6) i(u; u) = 2 sing(u) + N (u) +Xz2� ov1(z);where the terms ov1(z) are nonnegative integers that vanish wheneverertain asymptoti eigenfuntions are simply overed, so they depend onlyon the asymptoti orbit and sign of the respetive punture z 2 �.Finally, we observe one relevant situation where the left hand side of(A.6) is guaranteed to be zero. The proof below is only a sketh; we referto [Sie℄ for details.Lemma A.3. Suppose that u : _� ! W1 and u0 : _�0 ! W1 are �niteenergy J{holomorphi urves that are both ontained in [0;1) �M andhave embedded projetions to M that are either idential or disjoint. If alsoN(u) = 0, then i(u; u0) = 0.Proof. The almost omplex struture is R{invariant in the region ontain-ing u and u0, thus after translating u0 upwards, we an assume withoutloss of generality that u and u0 have no intersetions. This R-translationhanges the asymptoti eigenfuntions at the ends of u0 by multipliationwith a positive number, thus we an also assume these eigenfuntions arenot idential at any ommon asymptoti orbit of u and u0. Now the van-ishing of N(u) implies due to R{invariane that u has no asymptoti defet(f. [Wena℄): this means its asymptoti eigenfuntions all attain the largestallowed winding number. The asymptoti analysis of [Sie08℄ then impliesthat the same is true for the eigenfuntions ontrolling the relative behaviorof u and u0 at in�nity, so the asymptoti ontribution to i(u; u0) is zero. �Referenes[Abb℄ C. Abbas, Holomorphi open book deompositions. In preparation.[ACH05℄ C. Abbas, K. Cieliebak, and H. Hofer, The Weinstein onjeture for planarontat strutures in dimension three, Comment. Math. Helv. 80 (2005), no. 4, 771{793.
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