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A HIERARCHY OF LOCAL SYMPLECTIC FILLING OBSTRUCTIONSFOR CONTACT 3-MANIFOLDSCHRIS WENDLAbstrat. We generalize the familiar notions of overtwistedness and Giroux torsion in3-dimensional ontat manifolds, de�ning an in�nite hierarhy of loal �lling obstrutionsalled planar torsion, whose integer-valued order k � 0 an be interpreted as measuring agradation in \degrees of tightness" of ontat manifolds. We show in partiular that anyontat manifold with planar torsion admits no ontat type embeddings into any losedsympleti 4-manifold, and has vanishing ontat invariant in Embedded Contat Homology,and we give examples of ontat manifolds that have planar k-torsion for any k � 2 butno Giroux torsion. We also show that the omplement of the binding of a supporting openbook never has planar torsion. The unifying idea in the bakground is a deomposition ofontat manifolds in terms of ontat �ber sums of open books along their binding. As thetehnial basis of these results, we establish existene, uniqueness and ompatness theoremsfor ertain lasses of J-holomorphi urves in blown up summed open books; these also implyalgebrai obstrutions to planarity and embeddings of partially planar domains.Contents1. Introdution 21.1. Obstrutions to sympleti �llings 51.2. Obstrutions to non-separating embeddings and planarity 121.3. Holomorphi urves and open book deompositions 131.4. Open questions and reent progress 152. The de�nition of planar torsion 162.1. Blown up summed open books 162.2. Partially planar domains and planar torsion 223. Holomorphi summed open books 273.1. Tehnial bakground 273.2. An existene and uniqueness theorem 333.3. Deformation and ompatness 474. Proofs of the main results 544.1. Non-�llability 544.2. Embedded Contat Homology 56Aknowledgments 62Referenes 62
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2 CHRIS WENDL1. IntrodutionContat strutures for odd-dimensional manifolds arise naturally on boundaries of sym-pleti manifolds via the notion of onvexity. A sympleti manifold (W;!) is said to haveonvex boundary if, on a neighborhood of �W , there exists a vetor �eld Y that pointstransversely outward at �W and whose ow is a sympleti dilation, i.e. LY ! = !. WritingM = �W , the o-oriented hyperplane �eld � = ker (�Y !jTM ) � TM then satis�es a ertain\maximal nonintegrability" ondition whih makes it a ontat struture, and up to isotopy,it depends only on the sympleti struture of (W;!) near M , not on the hoie of vetor�eld Y .Given the above relationship, it is interesting to ask whih isomorphism lasses of ontatmanifolds (M; �) do not arise as boundaries of ompat sympleti manifolds, i.e. whih onesare not sympletially �llable. A variety of obstrutions to sympleti �lling are known, andthe following two examples give some hint as to the diversity of suh results:� Lisa [Lis98, Lis99℄ used the Seiberg-Witten monopole invariants of Kronheimer andMrowka [KM97℄ together with Donaldson's theorem on the intersetion forms ofsmooth 4-manifolds [Don86℄ to �nd examples of oriented 3-manifolds that admit nosympletially �llable ontat strutures.� The author [Wen10b℄ used puntured holomorphi urve tehniques to show that aontat 3-manifold has no sympleti �lling if it is supported by a planar open bookwhose monodromy is not a produt of right-handed Dehn twists. (See [PV10,Pla12℄for some appliations of this result.)One ommon feature of the above examples is that they depend fundamentally on the globalproperties of the manifolds involved. In ontrast, one an also onsider �lling obstrutionswhih are loal, in the sense that they answer the following question:What kinds of ontat subdomains an never exist in the onvex boundary ofa ompat sympleti manifold?The �rst known example of a sympleti �lling obstrution was essentially loal in this sense:Gromov [Gro85℄ and Eliashberg [Eli90℄ established that ontat type boundaries of sympleti4-manifolds an never ontain an overtwisted disk, and signi�antly, the related distintion be-tween so-alled \overtwisted" and \tight" ontat strutures, disovered by Eliashberg [Eli89℄,has played a pivotal role in lassi�ation questions for ontat strutures in dimension three.This non-�llability result an be rephrased in terms of a ertain 3-dimensional ontat domainwith boundary that we all a Lutz tube: this is a solid torus S1 � D with a radially symmet-ri ontat struture that makes a half-twist along radii from the enter to the boundary(see Figure 1 and De�nition 2.17). One an show (e.g. using [Eli89℄) that a losed ontat3-manifold ontains an overtwisted disk if and only if it ontains a Lutz tube, thus the lattermay be regarded as the prototypial example of a loal �lling obstrution.A more general loal �lling obstrution is furnished by the so-alled Giroux torsion domain,a thikened torus [0; 1℄ � T 2 with a T 2-invariant ontat struture that makes one full twistfrom one end of the interval to the other (see Figure 2 and De�nition 2.18). Contat manifoldsontaining suh an objet are said to have Giroux torsion, and the fat that they are not �llablein general is a omparatively reent result, due to Gay [Gay06℄. Giroux torsion domains havealso played an important role in the lassi�ation of ontat strutures, most notably throughthe work of Colin, Giroux and Honda [CGH03,CGH09℄.
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4 CHRIS WENDLThese two examples of loal �lling obstrutions reate the intuitive impression that ontatmanifolds tend to beome non-�llable whenever they ontain regions where the ontat planesexhibit some threshold amount of twisting. In this paper we shall introdue a geometri for-malism that makes this notion preise, and in so doing, greatly expands the known repertoireof loal �lling obstrutions. We will demonstrate in partiular that the examples above oupythe �rst two levels in an in�nite hierarhy : for eah integer k � 0, we shall de�ne a speiallass of ompat ontat 3-manifolds, possibly with boundary, whih we all planar k-torsiondomains, suh that the Lutz tube and Giroux torsion domain are speial ases with k = 0and 1 respetively. Our use of the word \hierarhy" is not inidental, as it turns out that aplanar torsion domain yields quanti�ably striter or less strit �lling obstrutions dependingon its order, i.e. the integer k. In partiular, the overtwisted ontat manifolds are preiselythose whih have planar 0-torsion, and these an be thought of as the \most non-�llable"among all ontat 3-manifolds, while the �llable ontat manifolds are the \tightest," andthose whih have only higher orders of planar torsion are non-�llable but are in some sense\tighter" than their lower order ounterparts.The de�nition of planar torsion, whih will be given in a preise form in x2, ombines thefundamental ontat topologial notion of a supporting open book deomposition, as introduedby Giroux [Gir℄, with a simple topologial operation known as the ontat �ber sum alongodimension 2 ontat submanifolds, originally due to Gromov [Gro86℄ and Geiges [Gei97℄.Roughly speaking, a planar k-torsion domain is a ompat ontat 3-manifold (M; �), possiblywith boundary, that ontains a non-empty set of disjoint pre-Lagrangian tori dividing it intotwo piees:� A planar piee MP , whih is disjoint from �M and looks like a onneted open bookwith some binding omponents blown up and/or attahed to eah other by ontat�ber sums. The pages must have genus zero and k + 1 boundary omponents.� The padding M nMP , whih ontains �M and onsists of one or more arbitrary openbooks, again with some binding omponents blown up or �ber summed together.Planar torsion domains are thus examples of what are alled partially planar domains, anotion that was �rst hinted at in [ABW10℄. The interior of suh a domainM always ontainsa speial set I � M of pre-Lagrangian tori whih arise by blowing up binding omponentsof open books: we refer to these tori all together as the interfae of (M; �). Postponing theexat de�nitions until x2, let us for now merely point out that in a Lutz tube M = S1 � D(Figure 1), the planar piee is some smaller solid torus MP = S1 � D r for 0 < r < 1,and the pages of the blown up open book in MP are the disks f�g � D r . Likewise, theplanar piee in a Giroux torsion domain M = [0; 1℄ � T 2 (Figure 2) is a smaller thikenedtorus MP = [r1; r2℄ � T 2 for 0 < r1 < r2 < 1, foliated by ylindrial pages of the form[r1; r2℄ � S1 � f�g, and for both examples I = �MP . We will see that in the more generalde�nition, the topology of the planar piee and the whole domain may di�er from eah otheronsiderably, and interfae tori may also be found in the interior of the planar piee or thepadding. Some simple examples of the form S1 � � are shown in Figure 3. We should alsomention that the idea of deomposing ontat manifolds in this way via �ber sums of openbooks has further appliations beyond �lling obstrutions, e.g. it is used in [Wen℄ to de�nea \blown up" version of Eliashberg's apping onstrution [Eli04℄, produing a wide range ofexistene results for non-exat sympleti obordisms.Let us now reall some basi de�nitions in preparation for stating the main results. Aontat struture on an oriented 3-dimensional manifold is a hyperplane distribution �



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 5that an be written loally as the kernel of a smooth 1-form � with � ^ d� 6= 0. We all �positive if � ^ d� > 0. Every ontat struture in this paper will be assumed to be positiveand to arry a o-orientation, whih an be de�ned via a global hoie of 1-form �; any �with ker� = � that is ompatible with the hosen o-orientation is alled a ontat form for(M; �). Note that a o-oriented ontat struture also inherits a natural orientation. Giventwo ontat 3-manifolds (M0; �0) and (M; �), a ontat embedding of (M0; �0) into (M; �)is an orientation preserving embedding � : M0 ,! M suh that �� : TM0 ,! TM de�nes anorientation preserving map of �0 to �.Suppose (W;!) is a ompat 4-dimensional sympleti manifold (oriented by ! ^ !) and(M; �) is a losed ontat 3-manifold. A weak ontat type embedding of (M; �) into(W;!) is an embedding � :M ,!W for whih ��!j� > 0. It is alled a (strong) ontat typeembedding if a neighborhood of �(M) � W admits a 1-form � suh that d� = ! and ���de�nes a ontat form for (M; �); note that in this ase, the vetor �eld !-dual to � de�nesa sympleti dilation positively transverse to �(M). The image of a (weak or strong) ontattype embedding is alled a (weak or strong) ontat type hypersurfae in (W;!). If theimage is �W and � maps the orientation of M to the natural boundary orientation, then wesay (W;!) is a (weak or strong) sympleti �lling of (M; �).1.1. Obstrutions to sympleti �llings. Given the notion of a planar k-torsion domainwhih was skethed above and will be explained fully in x2, it is natural to de�ne the following.De�nition 1.1. A ontat 3-manifold is said to have planar torsion of order k (or planark-torsion) if it admits a ontat embedding of a planar k-torsion domain (see De�nition 2.13).Theorem 1. If (M; �) is a losed ontat 3-manifold with planar torsion of any order, then itdoes not admit a ontat type embedding into any losed sympleti 4-manifold. In partiular,it is not strongly �llable.Though our proof of non-�llability will not depend on it, the impliation that (M; �) is notstrongly �llable follows from the above statement due to a result of Etnyre and Honda [EH02℄,that every ontat 3-manifold is onave �llable: this means that strong �llings an always beapped o� to produe losed sympleti 4-manifolds ontaining ontat type hypersurfaes.We will also prove an algebrai ounterpart to the above result in terms of EmbeddedContat Homology, or \ECH" for short (see e.g. [Hut10℄). The de�nition of ECH will bereviewed in x4.2; for now it suÆes to reall that given a losed ontat 3-manifold (M; �)with nondegenerate ontat form � and generi ompatible omplex struture J : � ! �, onean de�ne a hain omplex generated by so-alled orbit sets, = ((1;m1); : : : ; (n;mn));where 1; : : : ; n are distint simply overed periodi Reeb orbits and m1; : : : ;mn are positiveintegers, alled multipliities. A di�erential operator is then de�ned by ounting a ertainlass of embedded rigid J -holomorphi urves in the sympletization of (M; �), whih an beviewed as obordisms between orbit sets. The homology of the resulting hain omplex is theEmbedded Contat Homology ECH�(M;�; J). Though the omplex obviously depends on �and J , Taubes has shown [Tau10a,Tau10b℄ that ECH�(M;�; J) is isomorphi to a version ofSeiberg-Witten Floer homology, and thus atually only depends (up to natural isomorphisms)on the ontat manifold (M; �), so we an writeECH�(M; �) := ECH(M;�; J):
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A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 7ommonalities with the proof of the latter skethed by Eliashberg in the appendix of [Yau06℄.The result implies another proof that planar torsion is a �lling obstrution, albeit a very indi-ret one: under the isomorphism of Taubes [Tau10b℄, the ECH ontat invariant orrespondsto a similar invariant in Seiberg-Witten theory, whose vanishing gives a �lling obstrution dueto results of Kronheimer and Mrowka [KM97℄. We will however give a proof of Theorem 1 thatuses only holomorphi urve methods, requiring no assistane from Seiberg-Witten theory.Remark 1.2. Aside from the diret holomorphi urve proof of Theorem 1 that we will givein x4.1, there are at least two alternative approahes/generalizations one an imagine:(a) Algebrai: �nd a ontat invariant whose vanishing ontradits sympleti �lling, andwhih must always vanish in the presene of planar torsion.(b) Topologial: given (M; �) with planar torsion, �nd a sympleti obordism with neg-ative boundary (M; �) whose positive boundary is already known to be not �llable.The �rst approah is pursued in the present artile and in the related paper [LW11℄, howeverthe seond approah also works. Indeed, after the �rst version of this paper was ompleted, theauthor de�ned in [Wen℄ a generalized handle attahing onstrution whih yields sympletiobordisms from any ontat manifold with planar torsion to another that is overtwisted. Thedeomposition of ontat manifolds via blown up summed open books that we will explainin x2.1 is a ruial ingredient in this onstrution, whih also yields alternative proofs ofTheorem 5 and the weak �lling obstrutions of [NW11℄ mentioned below.Under stronger geometri assumptions one also obtains stronger results in terms of ECHwith twisted oeÆients, whih gives orrespondingly striter obstrutions to sympleti �ll-ings. As we will review in x4.2, a twisted version of the ECH hain omplex an be de�nedas a module over the group ring Z[H2(M ;R)℄, so that the di�erential keeps trak of the 2-dimensional relative homology lasses of the holomorphi urves it ounts. We shall denotethis twisted version of ECH by ℄ECH�(M; �). It also ontains a preferred homology lass~(�) 2 ℄ECH�(M; �) represented by the empty orbit set, alled the twisted ECH ontatinvariant.De�nition 1.3. A ontat 3-manifold is said to have fully separating planar k-torsionif it ontains a planar k-torsion domain with a planar piee MP �M that has the followingproperties:(1) There are no interfae tori in the interior of MP .(2) Every onneted omponent of �MP separates M .We will see that the fully separating ondition is always satis�ed if k = 0, and for the aseof a Giroux torsion domain, it is satis�ed if and only if the domain separates M .Theorem 20. If (M; �) is a losed ontat 3-manifold with fully separating planar torsion,then its twisted ECH ontat invariant ~(�) vanishes.Appealing again to the isomorphism of [Tau10b℄ together with results from Seiberg-Wittentheory [KM97℄ on weak sympleti �llings, we obtain the following onsequene, whih is alsoproved by a more diret holomorphi urve argument in joint work of the author with KlausNiederkr�uger [NW11℄.Corollary 1. If (M; �) is a losed ontat 3-manifold with fully separating planar torsion,then it is not weakly �llable.

8 CHRIS WENDLAs we will show shortly, Theorem 1 and Corollary 1 yield many previously unknown exam-ples of non-�llable ontat manifolds. Observe that the fully separating ondition in Corol-lary 1 annot be removed in general, as for instane, there are in�nitely many tight 3-toriwhih have non-separating Giroux torsion (and hene planar 1-torsion by Theorem 3 be-low) but are weakly �llable by a onstrution of Giroux [Gir94℄. Further examples of thisphenomenon are onstruted in [NW11℄ for planar k-torsion with any k � 1.Remark 1.4. One an re�ne the above vanishing result with twisted oeÆients as follows: fora given losed 2-form 
 onM , de�ne (M; �) to have 
-separating planar torsion if it ontainsa planar torsion domain suh that every interfae torus T lying in the planar piee satis�esRT 
 = 0 (f. De�nition 2.12). Under this ondition, our omputation implies a similar vanish-ing result for the ECH ontat invariant with twisted oeÆients in Z[H2(M ;R)= ker 
℄, withthe onsequene that (M; �) admits no weak �lling (W;!) for whih !jTM is ohomologousto 
. A diret proof of the latter is given in [NW11℄.We now onsider examples of ontat manifolds with planar torsion. We will show in x2.2that the previously known loal �lling obstrutions �t into the �rst two levels of the hierarhy,i.e. k = 0 and 1.Theorem 3. A losed ontat 3-manifold has planar 0-torsion if and only if it is overtwisted,and every losed ontat manifold with Giroux torsion also has planar 1-torsion.For this reason, Theorems 2 and 20 imply ECH versions of the vanishing results of Ghiggini,Honda and Van Horn-Morris [GHV,GH℄ for the Ozsv�ath-Szab�o ontat invariant in the pres-ene of Giroux torsion. We'll see below that it is also easy to onstrut examples of ontatmanifolds that have planar torsion of any order greater than 1 but no Giroux torsion. It isnot lear whether there exist ontat manifolds with planar 1-torsion but no Giroux torsion.To �nd examples for k � 2, suppose � is a losed oriented surfae ontaining a non-emptymultiurve � � � that divides it into two (possibly disonneted) piees �+ and ��. Wede�ne the ontat manifold (M�; ��), whereM� := S1 � �and �� is the (up to isotopy) unique S1-invariant ontat struture that makes fonstg�� intoa onvex surfae with dividing set �. The existene and uniqueness of suh a ontat struturefollows from a result of Lutz [Lut77℄. We will see in Examples 2.10 and 2.15 that (M�; ��)is a partially planar domain whenever any onneted omponent �0 of � n � has genus zero:indeed, the surfaes f�g ��0 are then the pages of a blown up planar open book. Moreover,(M�; ��) is then a planar torsion domain unless � n� has exatly two onneted omponentsand they are di�eomorphi, and it is fully separating if every onneted omponent of ��0separates �.Corollary 2. Suppose �n� has a onneted omponent �0 of genus zero, and either �n� hasmore than two onneted omponents or � n �0 is not di�eomorphi to �0. Then (M�; ��)has vanishing (untwisted) ECH ontat invariant and is not strongly �llable. Moreover, ifevery onneted omponent of ��0 separates �, then the invariant with twisted oeÆientsalso vanishes and (M�; ��) is not weakly �llable.Note that (M�; ��) is always universally tight whenever � ontains no ontratible on-neted omponents. This follows from [Gir01, Prop. 4.1(b)℄, and an also be dedued (via[Hof93℄) from the observation that (M�; ��) then admits ontat forms with no ontratible



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 9Reeb orbits (e.g. any Giroux form in the sense of De�nition 2.8 will have this property).Whenever this is true, an argument due to Giroux (see [Mas12, Theorem 3℄) implies that(M�; ��) also has no Giroux torsion if no two onneted omponents of � are isotopi. Wethus obtain in�nitely many examples of ontat manifolds that have planar torsion of anyorder greater than 1 but no Giroux torsion:Corollary 3. For any integers g � k � 1, let (Vg; �k) denote the S1-invariant ontat man-ifold (M�; ��) desribed above for the ase where � � � has k onneted omponents anddivides � into two onneted omponents, one with genus zero and the other with genusg � k + 1 > 0. Then (Vg; �k) has no Giroux torsion if k � 3, but for any k � 1 it has planartorsion of order k� 1. In partiular (Vg; �k) always has vanishing ECH ontat invariant andis not strongly �llable.Some more examples of planar torsion without Giroux torsion are shown in Figure 4.Remark 1.5. In many ases, one an easily generalize the above results from produts S1��to general Seifert �brations over �. In partiular, whenever � has genus at least four, onean �nd dividing sets on � suh that (S1 � �; ��) has no Giroux torsion but ontains aproper subset that is a planar torsion domain (see Figure 4). Then modi�ations outside ofthe torsion domain an hange the trivial �bration into arbitrary nontrivial Seifert �brationswith planar torsion but no Giroux torsion. This trik reprodues many (though not all) ofthe Seifert �bered 3-manifolds for whih [Mas12℄ proves the vanishing of the Ozsv�ath-Szab�oontat invariant.Remark 1.6. There is a signi�ant overlap between our ECH vanishing results and the Hee-gaard vanishing results proved by Massot in [Mas12℄ (see also [HKM,Mat11℄), but neitherset of results ontains the other. In partiular, the examples (Vg; �k) in Corollary 3 withplanar torsion of order greater than 1 seem thus far to be beyond the reah of Heegaard Floerhomology.By a reent result of Etnyre and Vela-Vik [EVV10℄, the omplement of the binding ofa supporting open book never ontains a Giroux torsion domain. We will prove a naturalgeneralization of this:Theorem 4. Suppose (M; �) is a ontat 3-manifold supported by an open book � :M nB !S1. Then any planar torsion domain in (M; �) must interset the binding B.In order to explain our hoie of terminology and the use of the word \hierarhy," we nowmention some related joint results with Janko Latshev whih are proved in [LW11℄. Theseare most easily expressed by de�ning a ontat invariantPT(M; �) := sup�k � 0 �� (M; �) has no planar `-torsion for any ` < k	 ;whih takes values in N [ f0;1g and is in�nite if and only if (M; �) has no planar torsion.Then the results stated above show that PT(M; �) <1 always implies (M; �) is not strongly�llable; moreover PT(M; �) � 1 whenever (M; �) has Giroux torsion, PT(M; �) = 0 if andonly if (M; �) is overtwisted, and there exist ontat manifolds without Giroux torsion suhthat PT(M; �) < 1. We laim now that ontat manifolds with larger values of PT(M; �)not only exist but are, in some quanti�able sense, \loser" to being �llable. This statementan be made preise by onsidering the existene or non-existene of sympleti obordismsbetween ontat manifolds with di�erent values of PT(M; �), as in the following result.
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PSfrag replaementsS1fg0�01 + ����1�2� = 0jslopej = 1� + �0�=3231r � Æ02r=3�0�r=3�(1� �0)'RT0T0MBM0u�;�T1T2e1h1e2h2v+1v�1v+2v�2u0BIS1 � D(T 3=Z2) n N (K)12321222vkv1�v2�Figure 4. Some ontat manifolds of the form S1 � � that have no Girouxtorsion but have planar torsion of orders 2, 2, 3 and 2 respetively. In eahase the ontat struture is S1-invariant and indues the dividing set shownon � in the piture. For the example at the upper right, Theorem 20 impliesthat the twisted ECH ontat invariant also vanishes, so this one is not weakly�llable. In the bottom example, the planar torsion domain is a proper subset,thus one an make modi�ations outside of this subset to produe arbitrarynontrivial Seifert �brations (see Remark 1.5).Theorem ([LW11℄). For the ontat manifold (Vg; �k) in Corollary 3, PT(Vg; �k) = k � 1.Moreover, if (M; �) is any ontat manifold that appears as the positive boundary of an exatsympleti obordism whose negative boundary is (Vg; �k), then PT(M; �) � k � 1.Sine a ontat 3-manifold (M; �) is tight if and only if PT(M; �) � 1, the above resultan be regarded as demonstrating a \higher order" variant of the well-known onjeture thatontat (�1)-surgery on a Legendrian in a losed tight ontat manifold always produessomething tight. Indeed, sine ontat surgery gives rise to a Stein obordism, the aboveimplies that ontat surgery (or for that matter, ontat onneted sums) on (Vg; �k) alwaysprodues examples with PT(M; �) � k � 1.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 11Remark 1.7. It should be emphasized here that the sale de�ned by the invariant PT(M; �)measures something ompletely di�erent from the standard quantitative measurement ofGiroux torsion; the latter ounts the maximum number of adjaent Giroux torsion domainsthat an be embedded in (M; �), and an take arbitrarily large values while PT(M; �) � 1.Likewise, (M; �) has Giroux torsion zero whenever PT(M; �) � 2.The theorem above follows from some results proved in [LW11℄ using notions from Sym-pleti Field Theory, whih also lie in the bakground of our hoie of terminology. Reallthat SFT is a generalization of ontat homology introdued by Eliashberg, Givental andHofer [EGH00℄ (see also [CL09℄ for the reformulation disussed here), that de�nes ontatinvariants by ounting J -holomorphi urves with arbitrary genus and positive and negativeends in sympletizations of arbitrary dimension. The hain omplex of SFT is a graded alge-bra of the form A[[~℄℄, where ~ is an even variable and A is a graded unital algebra generatedby symbols q orresponding to losed Reeb orbits . There is then a di�erential operatorDSFT : A[[~℄℄ ! A[[~℄℄ whih ounts holomorphi urves and vanishes by de�nition on the\onstant" elements R[[~℄℄ � A[[~℄℄, hene de�ning prefered homology lasses inHSFT� (M; �) := H�(A[[~℄℄;DSFT):One then de�nes (M; �) to have algebrai k-torsion if the homology satis�es the relation[~k℄ = 0 2 HSFT� (M; �):For k = 0, this means [1℄ = 0 and oinides with the notion of algebrai overtwistedness(f. [BN10℄). It follows easily from the formalism2 of SFT that algebrai torsion of any ordergives an obstrution to strong sympleti �lling, but in fat it is stronger, as it also impliesobstrutions to the existene of exat sympleti obordisms between ertain ontat mani-folds. To state this suintly, one an de�ne an algebrai ousin of the invariant PT(M; �)by AT(M; �) := sup�k � 0 �� (M; �) has no algebrai `-torsion for any ` < k	 :The above result is then a onsequene of the following set of results, whih serve as our mainmotivation for keeping trak of the integer k � 0 in planar k-torsion.Theorem ([LW11℄). The invariant AT(M; �) has the following properties.(1) Any ontat manifold (M; �) with AT(M; �) <1 is not strongly �llable.(2) If there is an exat sympleti obordism with positive boundary (M+; �+) and negativeboundary (M�; ��), then AT(M�; ��) � AT(M+; �+).(3) Every ontat 3-manifold (M; �) satis�es AT(M; �) � PT(M; �).(4) For the examples (Vg; �k) in Corollary 3, AT(Vg; �k) = k � 1.In partiular, the omputation AT(M; �) � PT(M; �) follows from a variation on our proofof Theorems 2 and 20, and thus makes essential use of the holomorphi urve results in thepresent artile.2For this informal disussion we are taking it for granted that SFT is well de�ned, whih was not provedin [EGH00℄ and is quite far from obvious. The rigorous de�nition of SFT, inluding the neessary abstratperturbations to ahieve transversality, is a large projet in progress by Hofer-Wysoki-Zehnder, see for example[Hof06℄. The appliation stated above however does not depend on this, as it an also be proved using theECH methods in Huthings's appendix to [LW11℄.

12 CHRIS WENDL1.2. Obstrutions to non-separating embeddings and planarity. We now disuss aparallel stream of results that apply to a wider lass of ontat manifolds, some of whihare �llable. Observe that in addition to ruling out sympleti �llings, Theorem 1 impliesthat ontat manifolds with planar torsion an never appear as non-separating ontat typehypersurfaes in any losed sympleti 4-manifold. This is atually a onsequene of thefollowing generalization of a result proved in [ABW10℄:Theorem 5. Suppose (M; �) is a losed ontat 3-manifold that ontains a partially planardomain (see De�nition 2.11) and admits a ontat type embedding � : (M; �) ,! (W;!) intosome losed sympleti 4-manifold (W;!). Then � separates W .Corollary 4. If (M; �) is a losed ontat 3-manifold ontaining a partially planar domain,then it does not admit any strong sympleti semi�lling with disonneted boundary.Reall that a semi�lling of a ontat manifold (M; �) is de�ned to be a �lling of (M; �) t(M 0; �0) for any (perhaps empty) losed ontat manifold (M 0; �0). The orollary follows froman observation due to Etnyre (f. [ABW10, Example 1.3℄), that given a �lling of (M; �) t(M 0; �0) with M 0 non-empty, one an attah a sympleti 1-handle to onnet M and M 0 andthen ap o� the resulting boundary in order to realize (M; �) as a non-separating ontattype hypersurfae. Corollary 4 also generalizes similar results proved by MDu� for the tight3-sphere [MD91℄ and Etnyre for all planar ontat manifolds [Etn04℄.The algebrai ounterpart to Corollary 4 involves the so-alled U -map in Embedded Con-tat Homology. This is a natural endomorphismU : ECH�(M; �)! ECH��2(M; �)de�ned at the hain level by ounting embedded index 2 holomorphi urves through a generipoint in the sympletization. The same de�nition also gives a map on ECH with twistedoeÆients, eU : ℄ECH�(M; �)! ℄ECH��2(M; �):Theorem 6. If (M; �) is a losed ontat 3-manifold ontaining a partially planar domain,then for all integers d � 1, the image of Ud : ECH�(M; �)! ECH�(M; �) ontains (�).This implies Corollary 4 due to some reent results involving maps on ECH indued byobordisms (f. [HT℄), though again, those results depend on Seiberg-Witten theory, and ourproof of Theorem 5 will not.Theorem 6 applies in partiular to all planar ontat manifolds and an thus be viewed asan obstrution to planarity. The orresponding obstrution in Heegaard Floer homology isa known result of Ozsv�ath, Stipsiz and Szab�o [OSS05℄. Our version of the obstrution aneasily be strengthened by observing that a planar open book is also a fully separating partiallyplanar domain, so analogously to Theorem 20, it yields a result with twisted oeÆients|theHeegaard Floer theoreti analogue of this result is apparently not known.Theorem 60. If (M; �) is a planar ontat manifold, then for all integers d � 1, the imageof eUd : ℄ECH�(M; �)! ℄ECH�(M; �) ontains ~(�).Remark 1.8. Similarly to Remark 1.4, one an generalize the above by de�ning (f. De�ni-tion 2.12) the notion of an 
-separating embedding of a partially planar domain, where 
 is alosed 2-form onM . Then suh an embedding produes a version of Theorem 60 for ECH withoeÆients in Z[H2(M ;R)= ker 
℄, and implies orresponding generalizations of Corollary 4.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 13Remark 1.9. Note that by Theorem 6 above, there are also many non-planar examples forwhih (�) is in the image of Ud, but the orresponding statement with twisted oeÆients isnot true. The most obvious example is the standard T 3, whih is a partially planar domain(see Example 2.5) but also admits weak semi�llings with disonneted boundary (due toGiroux [Gir94℄).1.3. Holomorphi urves and open book deompositions. The tehnial work in thebakground of the above results is a set of theorems that we will prove in x3 relating holomor-phi urves and a suitably generalized notion of open book deompositions. For illustrationpurposes, we now state some simpli�ed versions of these results.Reall that if M is a losed and oriented 3-manifold, an open book deomposition is a�bration � :M n B ! S1;where B �M is an oriented link alled the binding, and the losures of the �bers are alledpages: these are ompat, oriented and embedded surfaes with oriented boundary equalto B. An open book is alled planar if the pages are onneted and have genus zero, and itis said to support a ontat struture � if the latter an be written as ker� for some ontatform � (alled a Giroux form) whose indued Reeb vetor �eld X� is positively transverseto the interiors of the pages and positively tangent to the binding. The latter de�nition isdue to Giroux [Gir℄, who established a groundbreaking one-to-one orrespondene betweenisomorphism lasses of ontat manifolds and their supporting open books up to right-handedstabilization.We refer to x3.1 for all the tehnial de�nitions needed to understand the following state-ment. A substantial generalization will appear in x3.2 as Theorem 7.Proposition 1.10. Suppose (M; �) is a losed onneted ontat 3-manifold with a supportingopen book deomposition � :MnB ! S1 whose pages have genus g � 0. Then for any numbers�0 > 0 and m0 2 N, (M; �) admits a nondegenerate Giroux form � and generi ompatiblealmost omplex struture J on its sympletization suh that the following onditions hold:(1) The Reeb orbits in B have minimal period less than �0, and their overs up to multi-pliity m0 all have Conley-Zehnder index 1 with respet to the framing determined bythe open book. All Reeb orbits in M nB have period at least 1.(2) If g = 0, then after a small isotopy of � �xing the binding, there is an (R � S1)-parametrized family of embedded �nite energy puntured J-holomorphi urvesu(�;�) : _�! R �M; (�; �) 2 R � S1whih are Fredholm regular and have index 2 and have only positive ends, suh that foreah (�; �) 2 R � S1, the projetion of u(�;�) to M is an embedding that parametrizes��1(�).(3) If g = 0, then every somewhere injetive �nite energy puntured J-holomorphi urvein R � M whose positive ends all approah orbits in B of overing multipliity upto m0 is part of the (R � S1)-family desribed above.(4) If g > 0, then there is no J-holomorphi urve in R � M whose positive ends allapproah distint simply overed orbits in B.The (R � S1)-parametrized family of J -holomorphi urves in this theorem is alled aholomorphi open book ; suh objets have appeared previously in the work of Hofer-Wysoki-Zehnder [HWZ95b, HWZ98℄ and Abbas [Abb11℄. Their existene for the ase g = 0 was

14 CHRIS WENDLalready established in [Wen10℄ and generalized in [Abb11℄, and lies in the bakground ofvarious ontat topologial results on planar ontat manifolds, suh as the proof of the We-instein onjeture by Abbas-Cieliebak-Hofer [ACH05℄ and the author's proof that strong andStein �llability are equivalent [Wen10b℄. Given existene, the uniqueness statement for theg = 0 ase follows from a straightforward but surprisingly powerful intersetion theoreti ar-gument, using the homotopy invariant intersetion number for puntured holomorphi urvesdeveloped by Siefring [Sie11℄. The non-existene result for g > 0 relies on this same argumentbut is muh subtler, beause for analytial reasons, the existene part of the above theoremfails in the ase g > 0.3 The situation is saved by the observation, explained in [Wen10℄, thatone an �nd a highly non-generi hoie of data for whih higher genus holomorphi openbooks exist, and this data is ompatible with an exat stable Hamiltonian struture, whihadmits a well behaved perturbation to a suitable ontat form.In x3.2, we will state and prove a generalization of Proposition 1.10 in the ontext of blownup and summed open books, whih gives us existene and uniqueness for ertain holomorphiurves in partially planar domains that have only positive ends. Suh results make it easyto �nd orbit sets in the ECH hain omplex that satisfy � = ; or Ud = ;, thus provingTheorems 2, 20, 6 and 60.As already mentioned, our main results on �llability and embeddability (Theorems 1, 4and 5) an also be proved without reourse to ECH and Seiberg-Witten theory, and we shalldo this in x4.1. The main idea behind suh arguments appeared already in [Wen10b℄: givena strong �lling whose boundary ontains a planar torsion domain, we an attah a ylindrialend and use the above orrespondene between open books and holomorphi urves to �nda region near in�nity that is foliated by a stable 2-dimensional family of holomorphi urves.This family an then be expanded into the �lling and, due to the analytial properties of theholomorphi urves in question, must foliate it. But the latter produes a ontradition, asone an then follow the family bak into a di�erent region of the ylindrial end where ouruniqueness statement in fat exludes the existene of suh holomorphi urves.To make this type of argument work, we need ompatness and deformation results forfamilies of urves in a sympleti �lling that arise from the pages of a holomorphi openbook. An example of suh a result is the following. Suppose (M; �) is supported by aplanar open book � : M n B ! S1, and � and J+ are the ontat form and almost omplexstruture respetively provided by Proposition 1.10. Assume also that (M; �) is the ontattype boundary of a ompat sympleti manifold (W;!) suh that near �W , ! = d� fora 1-form � that mathes � at M = �W . We an then omplete (W;!) to a nonompatsympleti manifold by attahing a ylindrial end(W1; !) := (W;!) [M �[0;1)�M;d(et�)� :Let u+ : _�! R�M denote one of the holomorphi planar pages provided by Proposition 1.10;applying a suitable R-translation to u+, we may assume without loss of generality that it liesin [0;1) �M � W1. Now hoose an open neighborhood N (B) � M of the binding B and3Holomorphi open books with pages of positive genus annot be expeted to exist in general beausethe neessary moduli spaes of holomorphi urves have negative virtual dimension. Hofer [Hof00℄ suggestedthat this problem might be solved by introduing a \ohomologial perturbation" into the nonlinear Cauhy-Riemann equation in order to raise the Fredholm index. This program has reently been arried out by CasimAbbas [Abb11℄ (see also [vB℄), though appliations to problems suh as the Weinstein onjeture are as yetelusive, as the ompatness theory for the modi�ed nonlinear Cauhy-Riemann equation is quite diÆult.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 15an open subset U �M suh that u+( _�) � [0;1) �U :Finally, hoose any set of data �0, !0, J 0+ and J 0 with the following properties:� �0 is a nondegenerate ontat form on M that mathes � in U [ N (B) and has onlyReeb orbits of period at least 1 outside of N (B)� !0 is a sympleti form on W1 that mathes d(et�0) on [0;1) �M� J 0+ is a generi almost omplex struture on R �M ompatible with �0 that mathesJ+ on R � (U [N (B))� J 0 is an !0-ompatible almost omplex struture on W1 whih is generi in W andmathes J 0+ in [0;1) �MWe then denote byM(J 0) the moduli spae of all unparametrized �nite energy J 0-holomorphiurves in W1, and let M0(J 0) denote the onneted omponent of this spae ontaining u+.A standard appliation of the impliit funtion theorem (see e.g. [ABW10, Theorem 4.7℄)shows thatM0(J 0) is a smooth 2-dimensional manifold whose elements are all embedded anddo not interset eah other; in partiular they foliate an open subset of W1. The key to theproofs in x4.1 as well as various other appliations in [NW11,LVW℄ is to show that the urvesin M0(J 0) also �ll a losed subset outside of some harmless subvariety of odimension two.That is the main point of the following result, whih is a simpli�ed version of Theorem 8proved in x3.3.Proposition 1.11. M0(J 0) is ompat exept for onvergene in the sense of [BEH+03℄ toholomorphi buildings of the following types:(1) Buildings with empty main level and a single non-empty upper level urve in R �Mwhose projetion to M is embedded,(2) Finitely many nodal urves in W1 onsisting of two embedded index 0 omponentsthat interset eah other transversely.It is instrutive perhaps to ompare this with the results of MDu� [MD90℄: in partiular,the role of MDu�'s sympleti sphere with nonnegative self-intersetion is played by ourholomorphi urve u+, whih generates a smooth 2-dimensional family of urves that, due tothe above ompatness result and the aforementioned impliit funtion theorem, must �ll theentirety of W1. In the form stated above, this result follows from [ABW10, Theorem 4.8℄.The version we will prove in x3.3 for a general partially planar domain is more ompliatedbeause one annot generally avoid holomorphi buildings with multiply overed omponents,nonetheless one an still show that only �nitely many suh buildings an appear.1.4. Open questions and reent progress. Let us now disuss a few questions that arisefrom the above results, some of whih have been partially answered sine the �rst versionof this paper appeared. In light of the equivalene between the ECH and Ozsv�ath-Szab�oontat invariants, reently established in independent work of Colin-Ghiggini-Honda [CGHb℄and Kutluhan-Lee-Taubes [KLT℄, our vanishing results for the ECH ontat invariants implyorresponding results in Heegaard Floer homology. Some of these were already known fromthe work of various authors [GHV,GH,HKM,Mas12,Mat11℄, but their results appear thusfar to reognize planar torsion only up to order 1.Question. Can one prove within the ontext of Heegaard Floer homology (i.e. without usingECH) that the ontat invariant vanishes in the presene of planar k-torsion for k � 2?

16 CHRIS WENDLAs we skethed in the above disussion of related results in [LW11℄, the hierarhial stru-ture enoded by the order k � 0 of planar k-torsion an be deteted algebraially via Sym-pleti Field Theory, and it also an be deteted by a re�nement of the ECH ontat invariantexplained in Huthings's appendix to [LW11℄. The latter raises the question of what struturein Heegaard Floer homology might also be able to see this hierarhy, but apparently nothingis yet known about this.Question. Can Heegaard Floer homology distinguish between two ontat manifolds withvanishing Ozsv�ath-Szab�o invariant but di�ering minimal orders of planar torsion? Does thisimply obstrutions to the existene of exat or Stein obordisms?It should be mentioned that in presenting this introdution to planar torsion, we neitherlaim nor believe it to be the most general soure of vanishing results for the various invari-ants under disussion. For the Ozsv�ath-Szab�o invariant, [Mas12℄ produes vanishing resultson some Seifert �bered 3-manifolds that fall under the umbrella of our Corollary 2 and Re-mark 1.5, but also some that do not sine there is no ondition requiring the existene of aplanar piee. This phenomenon appears to be related to a generalization of planar torsionthat has reently emerged from joint work of the author with Lisi and Van Horn-Morris: theidea is to replae the ontat �ber sum with a more general \plumbing" onstrution thatprodues a notion of \higher genus binding." Among its appliations, this allows a substantialgeneralization of Corollary 2 that enompasses all of the examples in [Mas12℄ and many more;details of this will appear in the forthoming paper [LVW℄.And now the obvious question: what an be done in higher dimensions? There has beensigni�ant ativity in this area in the last few years. Atsuhide Mori [Mor℄ showed that ertainblown up open books in dimension 5 produe a �lling obstrution that strongly resemblesthe Lutz tube and is related to Niederkr�uger's speulative notion of higher-dimensional over-twistedness [Nie06℄. After the preprint version of the present artile �rst appeared, Mori'sonstrution was generalized to all dimensions in a joint paper of the author with Massotand Niederkr�uger [MNW℄ whih also de�ned a higher-dimensional notion of Giroux torsion,giving the �rst examples of non-�llable ontat manifolds in all dimensions that annot bealled \overtwisted" in any reasonable sense. The onstrutions in [MNW℄ also give somehints as to how one might de�ne something analogous to higher-order planar torsion thatould be deteted algebraially via SFT in all dimensions. This subjet is still in its infany,but it now at least seems safe to state the following onjeture:Conjeture. For all n � 1 and k � 0, there exist (2n + 1)-dimensional ontat manifolds(M; �) with AT(M; �) = k. In partiular, there exists in every dimension greater than onea sequene of non-�llable ontat manifolds f(Mk; �k)gk�0 suh that (Mk; �k) admits exatsympleti obordisms to (M`; �`) if and only if k � `.2. The definition of planar torsion2.1. Blown up summed open books. We now explain the deomposition of a ontatmanifold into \binding sums" of supporting open books, whih underlies the notion of aplanar torsion domain.Assume M is an oriented smooth manifold ontaining two disjoint oriented submanifoldsN1; N2 � M of real odimension 2, whih admit an orientation preserving di�eomorphism' : N1 ! N2 overed by an orientation reversing isomorphism � : �N1 ! �N2 of their normalbundles. Then we an de�ne a new smooth manifoldM�, the normal sum ofM along �, by



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 17removing neighborhoods N (N1) and N (N2) of N1 and N2 respetively, then gluing togetherthe resulting manifolds with boundary along an orientation reversing di�eomorphism�N (N1)! �N (N2)determined by �. This operation determinesM� up to di�eomorphism, and is also well de�nedin the ontat ateogory: if (M; �) is a ontat manifold and N1; N2 are ontat submanifoldswith ' : N1 ! N2 a ontatomorphism, then M� admits a ontat struture ��, whihagrees with � away from N1 and N2 (f. [Gei08, x7.4℄). Although the issue of uniqueness isnot disussed in [Gei08, x7.4℄, one an show that the onstrution of �� explained there isanonial up to isotopy; in the spei� setting that we will be onerned with below, this is anobvious onsequene of the uniqueness of \supported" ontat strutures (f. De�nition 2.8and the ensuing disussion).We will onsider the speial ase of the ontat �ber sum where N1 and N2 are disjointomponents4 of the binding of an open book deomposition� :M nB ! S1that supports �. Then N1 and N2 are automatially ontat submanifolds, whose normalbundles ome with distinguished trivializations determined by the open book. In the follow-ing, we shall always assume that M is oriented and the pages and binding are assigned thenatural orientations determined by the open book, so in partiular the binding is the orientedboundary of the pages.De�nition 2.1. Assume � :M nB ! S1 is an open book deomposition onM . By a bindingsum of the open book, we mean any normal sum M� along an orientation reversing bundleisomorphism � : �N1 ! �N2 overing a di�eomorphism ' : N1 ! N2, where N1; N2 � Bare disjoint omponents of the binding and � is onstant with respet to the distinguishedtrivialization determined by �. The resulting smooth manifold will be denoted byM(�;') :=M�;and we denote by I(�;') � M(�;') the losed hypersurfae obtained by the identi�ation of�N (N1) with �N (N2), whih we'll also all the interfae. We will then refer to the data(�; ') as a summed open book deomposition of M(�;'), whose binding is the (possiblyempty) odimension 2 submanifoldB' := B n (N1 [N2) �M(�;'):The pages of (�; ') are the onneted omponents of the �bers of the naturally indued�bration �' :M(�;') n (B' [ I(�;'))! S1;if dimM = 3, then these are naturally oriented open surfaes whose losures are generallyimmersed (distint boundary omponents may sometimes oinide).If � is a ontat struture on M supported by �, we will denote the indued ontatstruture on M(�;') by �(�;') := ��and say that �(�;') is supported by the summed open book (�; ').4We use the word omponent throughout to mean any open and losed subset, i.e. a disjoint union ofonneted omponents.

18 CHRIS WENDLIt follows from the orresponding fat for ordinary open books that every summed openbook deomposition supports a ontat struture, whih is unique up to isotopy: in fat itdepends only on the isotopy lass of the open book � : M n B ! S1, the hoie of bindingomponents N1; N2 � B and isotopy lass of di�eomorphism ' : N1 ! N2.Throughout this disussion,M , N1, N2 and the pages of � are all allowed to be disonneted(note that � : M n B ! S1 will have disonneted pages if M itself is disonneted). In thisway, we an inorporate the notion of a binding sum of multiple, separate (perhaps summed)open books, e.g. given (Mi; �i) supported by �i :Mi nBi ! S1 with omponents Ni � Bi fori = 1; 2, and a di�eomorphism ' : N1 ! N2, a binding sum of (M1; �1) with (M2; �2) an bede�ned by applying the above onstrution to the disjoint union M1 tM2. We will generallyuse the shorthand notation M1 �M2to indiate manifolds onstruted by binding sums of this type, where it is understood thatM1and M2 both ome with ontat strutures and supporting summed open books, whih om-bine to determine a summed open book and supported ontat struture on M1 �M2.Example 2.2. Consider the tight ontat struture on M := S1 � S2 with its supportingopen book deomposition � :M n (0 [ 1)! S1 : (t; z) 7! z=jzj;where S2 = C [ f1g, 0 := S1 � f0g, 1 := S1 � f1g and S1 is identi�ed with the unitirle in C . This open book has ylindrial pages and trivial monodromy. Now let M 0 denotea seond opy of the same manifold and�0 :M 0 n (00 [ 01)! S1the same open book. De�ning the binding sum M �M 0 by pairing 0 with 00 and 1 with01, we obtain the standard ontat T 3. In fat, eah of the tight ontat tori (T 3; �n), where�n = ker [os(2�n�) dx+ sin(2�n�) dy℄in oordinates (x; y; �) 2 S1 � S1 � S1, an be obtained as a binding sum of 2n opies of thetight S1 � S2; see Figure 5.Example 2.3. Using the same open book deomposition on the tight S1 � S2 as in Exam-ple 2.2, one an take only a single opy and perform a binding sum along the two bindingomponents 0 and 1. The ontat manifold produed by this operation is the quotient of(T 3; �1) by the ontat involution (x; y; �) 7! (�x;�y; � + 1=2), and is thus the torus bundleover S1 with monodromy �1. The resulting summed open book on T 3=Z2 has onnetedylindrial pages, empty binding and a single interfae torus of the form I(�;') = f2� = 0g,induing a �bration�' : (T 3=Z2) n I(�;') ! S1 : [(x; y; �)℄ 7! (y if � 2 (0; 1=2),�y if � 2 (1=2; 1).The following two speial ases of summed open books are of ruial importane.Example 2.4. An ordinary open book an also be regarded as a summed open book: wesimply take N1 and N2 to be empty.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 19

PSfrag replaementsS1fg0�01 + ����1�2� = 0jslopej = 1� + �0�=3231r � Æ02r=3�0�r=3�(1� �0)'RT0T0MBM0u�;�T1T2e1h1e2h2v+1v�1v+2v�2u0BIS1 � D(T 3=Z2) n N (K)12321222vkv1�v2�Figure 5. Two ways of produing tight ontat tori from 2n opies of thetight S1 � S2. At left, opies of S1 � S2 are represented by open bookswith two binding omponents (depited here through the page) and ylindrialpages. For eah dotted oval surrounding two binding omponents, we onstrutthe binding sum to produe the manifold at right, ontaining 2n speial pre-Lagrangian tori (the blak line segments) that separate regions foliated byylinders. The results are (T 3; �n) for n = 1; 2.Example 2.5. Suppose (Mi; �i) for i = 1; 2 are losed onneted ontat 3-manifolds withsupporting open books �i whose pages are di�eomorphi. Then we an set N1 = B1 and N2 =B2, hoose a di�eomorphism B1 ! B2 and de�ne M = M1 �M2 aordingly. The resultingsummed open book is alled symmetri; observe that it has empty binding, sine everybinding omponent of �1 and �2 has been summed. A simple example of this onstrutionis (T 3; �1) as explained in Example 2.2, and for an even simpler example, summing two openbooks with disk-like pages produes the tight S1 � S2.Remark 2.6. There is a lose relationship between summed open books and the notion of openbooks with quasi-ompatible ontat strutures, introdued by Etnyre and Van Horn-Morris[EV11℄. A ontat struture � is said to be quasi-ompatible with an open book if it admitsa ontat vetor �eld that is positively transverse to the pages and positively tangent to thebinding; if the ontat vetor �eld is also positively transverse to �, then this is preisely

20 CHRIS WENDLthe supporting ondition, but quasi-ompatibility is quite a bit more general, and an allowe.g. open books with empty binding. A summed open book on a 3-manifold gives rise to anopen book with quasi-ompatible ontat struture whenever a ertain orientation onditionis satis�ed: this is the result in partiular whenever we onstrut binding sums of separateopen books that are labeled with signs in suh a way that every interfae torus separatesa positive piee from a negative piee. Thus the tight 3-tori in Figure 5 are examples, inthis ase produing an open book with empty binding (i.e. a �bration over S1) that is quasi-ompatible with all of the ontat strutures �n. However, it is easy to onstrut bindingsums for whih this is not possible, e.g. Example 2.3.We now generalize the disussion to inlude manifolds with boundary. SupposeM(�;') is alosed 3-manifold with summed open book (�; '), whih has binding B' and interfae I(�;'),and N � B' is a omponent of its binding. For eah onneted omponent  � N , identify atubular neighborhoodN () of  with a solid torus S1�D , de�ning oordinates (�; �; �) 2 S1�D , where (�; �) denote polar oordinates5 on the disk D and  is the subset S1�f0g = f� = 0g.Assume also that these oordinates are adapted to the summed open book, in the sense thatthe orientation of  as a binding omponent agrees with the natural orientation of S1 � f0g,and the intersetions of the pages with N () are of the form f� = onstg. This onditiondetermines the oordinates up to isotopy. Then we de�ne the blown up manifoldM(�;';) fromM(�;') by replaingN () = S1�D with S1�[0; 1℄�S1, using the same oordinates (�; �; �) onthe latter, i.e. the binding irle  is replaed by a 2-torus, whih now forms the boundary ofM(�;';). If �(�;') is a ontat struture on M(�;') supported by (�; '), then we an de�ne anappropriate ontat struture �(�;';) on M(�;';) as follows. Sine  is a positively transverseknot, the ontat neighborhood theorem allows us to hoose the oordinates (�; �; �) so that�(�;') = ker �d� + �2d��in a neighborhood of . This formula also gives a well de�ned distribution on M(�;';), butthe ontat ondition fails at the boundary f� = 0g. We �x this by making a C0-small hangein �(�;') to de�ne a ontat struture of the form�(�;';) = ker [d� + g(�) d�℄ ;where g(�) = �2 for � outside a neighborhood of zero, g0(�) > 0 everywhere and g(0) = 0.Performing the above operation at all onneted omponents  � N � B' yields a om-pat manifoldM(�;';N), generally with boundary, arrying a still more general deompositiondetermined by the data (�; ';N), whih we'll all a blown up summed open book. Wede�ne its interfae to be the original interfae I(�;'), and its binding isB(';N) = B' nN:There is a natural di�eomorphismM(�;') nB' =M(�;';N) n �B(';N) [ �M(�;';N)� ;so the �bration �' : M(�;') n �B' [ I(�;')�! S1 arries over to M(�;';N) n (B(';N) [ I(�;') [�M(�;';N)), and an then be extended smoothly to the boundary to de�ne a �bration�(';N) :M(�;';N) n �B(';N) [ I(�;')�! S1:5Throughout this paper, we use polar oordinates (�; �) on subdomains of C with the angular oordinate �normalized to take values in S1 = R=Z, i.e. the atual angle is 2��.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 21We will again refer to the onneted omponents of the �bers of �(';N) as the pages of(�; ';N), and orient them in aordane with the o-orientations indued by the �bration.Their losures are immersed surfaes whih oasionally may have pairs of boundary ompo-nents that oinide as oriented 1-manifolds, e.g. this an happen whenever two binding irleswithin the same onneted open book are summed to eah other.Note that the �bration �(';N) :M(�;';N) n�B(';N) [ I(�;')�! S1 is not enough informationto fully determine the blown up open book (�; ';N), as it does not uniquely determine the\blown down" manifold M(�;'). Indeed, M(�;') determines on eah boundary torus T ��M(�;';N) a distinguished basis fmT ; `T g � H1(T );where `T is a boundary omponent of a page and mT is determined by the meridian ona small torus around the binding irle to be blown up. Two di�erent manifolds M(�;')may sometimes produe di�eomorphi blown up manifoldsM(�;';N), whih will however havedi�erent meridiansmT on their boundaries. Similarly, eah interfae torus T � I(�;') inheritsa distinguished basis f�mT ; `T g � H1(T )from the binding sum operation, with the di�erene that the meridianmT is only well de�nedup to a sign.The binding sum of an open book � : M n B ! S1 along omponents N1 [ N2 � B annow also be understood as a two step operation, where the �rst step is to blow up N1 and N2,and the seond is to attah the resulting boundary tori to eah other via a di�eomorphismdetermined by � : �N1 ! �N2. One an hoose a supported ontat struture on the blown upopen book whih �ts together smoothly under this attahment to reprodue the onstrutionof �(�;';N) desribed above.De�nition 2.7. A blown up summed open book (�; ';N) is alled irreduible if the �bersof the indued �bration �(';N) are onneted.In the irreduible ase, the pages an be parametrized in a single S1-family, e.g. an ordinaryonneted open book is irreduible, but a symmetri summed open book is not. Any blownup summed open book an however be deomposed uniquely into irreduible subdomainsM(�;';N) =M1(�;';N) [ : : : [M `(�;';N);where eah piee M i(�;';N) for i = 1; : : : ; ` is a ompat manifold, possibly with boundary,de�ned as the losure in M(�;';N) of the region �lled by some smooth S1-family of pages.Thus M i(�;';N) arries a natural blown up summed open book of its own, whose binding andinterfae are subsets of B' and I(�;') respetively, and �M i(�;';N) � I(�;') [ �M(�;';N). Onean also write M(�;';N) = �M1(�;';N) � : : :� �M `(�;';N);where the manifolds �M i(�;';N) also naturally arry blown up summed open books and an beobtained from M i(�;';N) by blowing down �M i(�;';N) \ I(�;'):De�nition 2.8. Given a blown up summed open book (�; ';N) on a manifoldM(�;';N) withboundary, a Giroux form for (�; ';N) is a ontat form � on M(�;';N) with Reeb vetor�eld X� satisfying the following onditions:(1) X� is positively transverse to the interiors of the pages,

22 CHRIS WENDL(2) X� is positively tangent to the boundaries of the losures of the pages,(3) ker� on eah interfae or boundary torus T � I(�;') [ �M(�;';N) indues a harater-isti foliation with losed leaves homologous to the meridian mT .We will say that a ontat struture on M(�;';N) is supported by (�; ';N) whenever it isthe kernel of a Giroux form. By the proedure desribed above, one an easily take a Girouxform for the underlying open book � :M nB ! S1 and modify it near B to produe a Girouxform for the blown up summed open book on M(�;';N). Moreover, the same argument thatproves uniqueness of ontat strutures supported by open books (f. [Etn06, Prop. 3.18℄)shows that any two Giroux forms are homotopi to eah other through a family of Girouxforms. We thus obtain the following uniqueness result for supported ontat strutures.Proposition 2.9. Suppose M(�;';N) is a ompat 3-manifold with boundary, with a ontatstruture �(�;';N) supported by the blown up summed open book (�; ';N), and (M(�;';N); �(�;';N))admits a ontat embedding into some losed ontat 3-manifold (M 0; �0). If � is a ontatform on M 0 suh that(1) � de�nes a Giroux form on M(�;';N) �M 0, and(2) ker� = �0 on M 0 nM(�;';N),then ker � is isotopi to �0.Example 2.10. Suppose � is a ompat, oriented and onneted surfae, possibly withboundary, ontaining a non-empty multiurve � � � suh that �� � � and � divides � intotwo (possibly disonneted) piees � = �+ [� ��:By Lutz [Lut77℄, S1 � � admits an S1-invariant ontat struture �� whih is determineduniquely up to isotopy by the ondition that the loops S1 � fzg be positively/negativelytransverse to �� for z 2 int�� and Legendrian for z 2 �. Then (S1��; ��) is supported by ablown up summed open book with empty binding, interfae I = S1 � (� n ��) and �bration� : (S1 � �) n I ! S1 : (�; z) 7! (� for z 2 �+;�� for z 2 ��:Indeed, one an write �� as the kernel of a ontat form whose Reeb vetor �eld is posi-tively/negatively transverse to the interior of f�g � �� and admits losed orbits of the formf�g �  for eah dividing urve  � �. (An expliit onstrution of suh a ontat form maybe found e.g. in [LW11℄.) The distinguished meridians at I and �(S1 � �) are generated bythe Legendrians S1 � f�g.2.2. Partially planar domains and planar torsion. We are now ready to state the mostimportant de�nitions in this paper.De�nition 2.11. A blown up summed open book on a ompat manifold M is alled par-tially planar if M n �M ontains a planar page. A partially planar domain is then anyontat 3-manifold (M; �) with a supporting blown up summed open book that is partiallyplanar. An irreduible subdomain MP �Mthat ontains planar pages and doesn't touh �M is alled a planar piee, and we will referto the omplementary subdomain M nMP as the padding.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 23By this de�nition, every planar ontat manifold is a partially planar domain (with emptypadding), as is the symmetri summed open book obtained by summing together two planaropen books with the same number of binding omponents (here one an all either side theplanar piee, and the other side the padding). As we'll soon see, one an also use partiallyplanar domains to haraterize the solid torus that appears in a Lutz twist, or the thikenedtorus in the de�nition of Giroux torsion, as well as many more general objets.De�nition 2.12. We say that a ontat 3-manifold (M; �) with a losed 2-form 
 ontainsan 
-separating partially planar domain if there exists a partially planar domain (M0; �0)with planar piee MP0 � M0 and a ontat embedding � : (M0; �0) ,! (M; �) suh that forevery interfae torus T of M0 lying in MP0 , RT ��
 = 0. We say that the domain is fullyseparating if this is true for all hoies of 
.Note that in general, a 2-torus T embedded in a losed oriented 3-manifold M satis�esRT 
 = 0 for all losed 2-forms 
 on M if and only if T separates M . In a partially planardomain, any interfae torus in the interior of the planar piee is neessarily non-separating,thus the fully separating ondition implies that there are no suh interfae tori, and eahomponent of the boundary of the planar piee also separates (f. De�nition 1.3).We now ome to the de�nition of a new sympleti �lling obstrution.De�nition 2.13. For any integer k � 0, a ontat manifold (M; �), possibly with boundary,is alled a planar torsion domain of order k (or briey a planar k-torsion domain)if it is supported by a partially planar blown up summed open book (�; ';N) with a planarpiee MP �M satisfying the following onditions:(1) The pages in MP have k + 1 boundary omponents.(2) The padding M nMP is not empty.(3) (�; ';N) is not a symmetri summed open book (f. Example 2.5).We say that a ontat 3-manifold (M; �) has (perhaps 
-separating or fully separating)planar k-torsion if it admits a (perhaps 
-separating or fully separating) ontat embeddingof a planar k-torsion domain.Remark 2.14. The planar piee of a planar 0-torsion domain has no interior interfae toriand only one boundary omponent, thus planar 0-torsion is always fully separating. It iseasy to see from examples (f. Example 2.15) that this is not true for k � 1. Observe alsothat whenever (M; �) is losed and onneted and ontains a fully separating partially planardomain M0 �M , one of the following must be true:(i) (M0; �) is a planar torsion domain,(ii) M0 = M and the interfae is empty, i.e. (M; �) is supported by an ordinary planaropen book,(iii) M0 =M and it arries a symmetri summed open book with disk-like pages.In the last ase, (M; �) is ontatomorphi to the tight S1 � S2 (see Example 2.5), whihis planar. We thus onlude that under these assumptions, (M; �) always either has planartorsion or is planar.Example 2.15. The S1-invariant ontat manifold (S1 � �; ��) from Example 2.10 is apartially planar domain whenever � n � has a onneted omponent �0 of genus zero with�0\�� = ;. In this ase S1��0 is the planar piee, and S1�� is also a planar torsion domainunless the blown up summed open book from Example 2.10 is symmetri, whih would mean
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I S1 � D (T 3=Z2) n N (K)12321222vkv1�v2�Figure 6. Shemati representations of two planar torsion domains as de-sribed in Example 2.16.�� = ; and � n � has exatly two onneted omponents, whih are di�eomorphi to eahother. Some speial ases are shown in Figures 3 and 4.Example 2.16. More generally than the S1-invariant examples desribed above, blown upsummed open books an always be represented by shemati pitures as in Figure 6, whihshows two examples of planar torsion domains, eah with the order labeled within the pla-nar piee. Here eah piture shows a surfae � ontaining a multiurve �: eah onnetedomponent �0 � � n � then represents an irreduible subdomain with pages di�eomorphito �0, and the omponents of � represent interfae tori (labeled in the piture by I). Eahirreduible subdomain may additionally have binding irles, shown in the piture as irleswith the label B. The information in these pitures, together with a spei�ed monodromymap for eah omponent of � n �, determine a blown up summed open book and supportedontat struture uniquely up to ontatomorphism. If we take these partiular pitures withthe assumption that all monodromy maps are trivial, then the �rst shows a solid torus S1�Dwith an overtwisted ontat struture that makes one full twist along a ray from the enter(the binding B) to the boundary. The other piture shows the omplement of a solid torus inthe torus bundle T 3=Z2 from Example 2.3. More preisely, one an onstrut it by taking aloop K � T 3=Z2 transverse to the pages in that example, modifying the ontat struture �nearK by a full Lutz twist, and then removing a smaller neighborhoodN (K) of K on whih �makes a quarter twist. Note that the appearane of genus in this piture is a bit misleading;due to the interfae torus in the interior of the bottom piee, it has planar pages with threeboundary omponents.We an now proeed toward the proof of Theorem 3.De�nition 2.17. A Lutz tube is the solid torus S1�D with oordinates (�; �; �), where (�; �)are polar oordinates on the losed unit disk D � C , together with the ontat struture �de�ned as the hyperplane �eld(2.1) � = ker [f(�) d� + g(�) d�℄for some pair of smooth funtions f; g suh that the path[0; 1℄! R2 n f0g : � 7! (f(�); g(�))
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� = 0jslopej = 1� + �0�=3231r � Æ02r=3�0�r=3�(1� �0)'RT0T0MBM0u�;�T1T2e1h1e2h2v+1v�1v+2v�2u0BIS1 � D(T 3=Z2) n N (K)12321222vkv1�v2�Figure 7. The path � 7! (f(�); g(�)) used to de�ne the ontat form on L�(for the Lutz tube at the left and Giroux torsion domain at the right) in theproof of Prop. 2.19.makes exatly one half-turn (ounterlokwise) about the origin, moving from the positive tothe negative x-axis. (See Figure 1.)De�nition 2.18. A Giroux torsion domain is the thikened torus [0; 1℄ � T 2 with oor-dinates (�; �; �) 2 [0; 1℄ � S1 � S1, together with the ontat struture � de�ned via theseoordinates as in (2.1), where the path � 7! (f(�); g(�)) makes one full (ounterlokwise)turn about the origin, beginning and ending on the positive x-axis. (See Figure 2.)Proposition 2.19. If L �M is a Lutz tube in a losed ontat 3-manifold (M; �), then anyopen neighborhood of L ontains a planar 0-torsion domain. Similarly if L is a Giroux torsiondomain, then any open neighborhood of L ontains a planar 1-torsion domain.Proof. Suppose L � M is a Lutz tube. Then for some � > 0, an open neighborhood of Lontains a region identi�ed with L� := S1 � D 1+� ;where D r denotes the losed disk of radius r and � = ker �� for a ontat form�� = f(�) d� + g(�) d�with the following properties (see Figure 7, left):(1) f(0) > 0 and g(0) = 0,(2) f(1) < 0 and g(1) = 0,(3) f(�)g0(�)� f 0(�)g(�) > 0 for all � > 0,(4) g0(1 + �) = 0,(5) f(1 + �)=g(1 + �) 2 Z.Setting D(�) := f(�)g0(�)� f 0(�)g(�), the Reeb vetor �eld de�ned by �� in the region � > 0is X� = 1D(�) �g0(�)�� � f 0(�)��� ;and at � = 0, X� = 1f(0)��. Thus X� in these oordinates depends only on � and its diretionis always determined by the slope of the path � 7! (f(�); g(�)) in R2 ; in partiular, X� points

26 CHRIS WENDLin the ���-diretion at � = 1 + �, and in the +��-diretion at some other radius �0 2 (0; 1).We an hoose f and g without loss of generality so that these are the only radii at whih X�is parallel to ���.We laim now that L� is a planar 0-torsion domain with planar piee LP� := S1 � D �0 .Indeed, LP� an be obtained from the open book on the tight 3-sphere with disk-like pages byblowing up the binding: the pages in the interior of LP� are de�ned by f� = onstg. Similarly,the �-level sets in the losure of L� n LP� form the pages of a blown up open book, obtainedfrom an open book with ylindrial pages. The ondition f(1 + �)=g(1 + �) 2 Z implies thatthe harateristi foliation on T := �L� has losed leaves homologous to a primitive lassmT 2 H1(T ), whih together with the homology lass of the Reeb orbits on T forms a basis ofH1(T ). Thus our hosen ontat form �� is a Giroux form for some blown up summed openbook. (Note that the monodromy of the blown up open book in L� n LP� is not trivial sinethe distinguished meridians on �L� and �LP� are not homologous.)The argument for Giroux torsion is quite similar, so we'll only sketh it: given L = [0; 1℄�T 2 �M , we an expand L slightly on both sides to reate a domainL� = [��; 1 + �℄� T 2;with a ontat form �� that indues a suitable harateristi foliation on �L� and whoseReeb vetor �eld points in the ���-diretion at � = ��, � = 1 + � and exatly two otherradii 0 < �1 < �2 < 1 (see Figure 7, right). This splits L� into three piees, of whihLP� := f� 2 [�1; �2℄g is the planar piee of a planar 1-torsion domain, as it an be obtainedfrom an open book with ylindrial pages and trivial monodromy by blowing up both bindingomponents. The padding now onsists of two separate blown up open books with ylindrialpages and nontrivial monodromy. �Proof of Theorem 3. The only laim in the theorem that doesn't follow immediately fromProp. 2.19 is that (M; �) must be overtwisted if it ontains a planar 0-torsion domain M0.One an see this as follows: note �rst that if we writeM0 =MP0 [M 00;where MP0 is the planar piee and M 00 = M0 nMP0 is the padding, then M 00 arries a blownup summed open book with pages that are not disks (whih means (M0; �) is not the tightS1 � S2). If the pages in M 00 are surfaes with positive genus and one boundary omponent,then one an glue one of these together with a page in MP0 to form a onvex surfae � �M0whose dividing set is �MP0 \�. The latter is the boundary of a disk in �, so Giroux's riterion(see [Gir01, Th�eor�eme 4.5(a)℄ or [Gei08, Prop. 4.8.13℄) implies the existene of an overtwisteddisk near �.In all other ases the pages � in M 00 have multiple boundary omponents�� = CP [ C 0;where we denote by CP the onneted omponent situated near the interfae �MP0 , and C 0 =�� nCP . We an then �nd overtwisted disks by onstruting a partiular Giroux form usinga small variation on the Thurston-Winkelnkemper onstrution as desribed e.g. in [Etn06,Theorem 3.13℄. Namely, hoose oordinates (s; t) 2 (1=2; 1℄ � S1 on a ollar neighborhood ofeah omponent of �� and de�ne a 1-form �1 on � with the following properties:(1) d�1 > 0(2) �1 = (1 + s) dt near eah omponent of C 0



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 27(3) �1 = (�1 + s) dt near CPObserve that all three onditions annot be true unless C 0 is non-empty, due to Stokes'stheorem. Now following the onstrution desribed in [Etn06℄, one an produe a Girouxform � on M 00 whih annihilates some boundary parallel urve ` near �MP0 in a page, and�ts together smoothly with some Giroux form in MP0 , so that ker� is a supported ontatstruture and is isotopi to � by Prop. 2.9. Then ` is the boundary of an overtwisted disk. �3. Holomorphi summed open books3.1. Tehnial bakground. We begin by olleting some de�nitions and bakground re-sults on puntured holomorphi urves that will be important for understanding the remainderof the paper.A stable Hamiltonian struture on an oriented 3-manifold M is a pair H = (�; !)onsisting of a 1-form � and 2-form ! suh that d! = 0, �^! > 0 and ker! � ker d�. Giventhis data, we de�ne the o-oriented 2-plane distribution � = ker � and nowhere vanishingvetor �eld X, alled the Reeb vetor �eld, whih is determined by the onditions!(X; �) � 0; �(X) � 1:The onditions on � and ! imply that !j� gives � the struture of a sympleti vetor bundleover M , and this distribution with its sympleti struture is preserved by the ow of X. Asan important speial ase, if � is a ontat form, then one an de�ne a stable Hamiltonianstruture in the form H = (�; h d�) for any smooth funtion h : M ! (0;1) suh thatdh ^ d� � 0. Then � is a positive and o-oriented ontat struture, and X is the usualontat geometri notion of the Reeb vetor �eld: we will often denote it in this ase by X�,sine it is uniquely determined by �.For the rest of this setion, assume H = (�; !) is a stable Hamiltonian struture with theusual attahed data � and X. We say that an almost omplex struture J on R � M isompatible with H if it satis�es the following onditions:(1) The natural R-ation on R �M preserves J .(2) J�t � X, where �t denotes the unit vetor in the R-diretion.(3) J(�) = � and !(�; J �) de�nes a symmetri, positive de�nite bundle metri on �.Denote by J (H) the (non-empty and ontratible) spae of almost omplex strutures om-patible with H. Note that if � is ontat then J (H) depends only on �; we will in this asesay that J is ompatible with �.A periodi orbit  of X is determined by the data (x; T ), where x : R ! M satis�es_x = X(x) and x(T ) = x(0) for some T > 0. We sometimes abuse notation and identify with the submanifold x(R) � M , though tehnially the period is also part of the datade�ning . If � > 0 is the smallest positive number for whih x(�) = x(0), we all it theminimal period of this orbit, and say that  = (x; �) is a simple, or simply overed orbit.The overing multipliity of an orbit (x; T ) is the unique integer k � 1 suh that T = k�for a simple orbit (x; �).If  = (x; T ) is a periodi orbit and 'tX denotes the ow of X for time t 2 R, then therestrition of the linearized ow to �x(0) de�nes a sympleti isomorphism('TX)� : (�x(0); !)! (�x(0); !):We all  nondegenerate if 1 is not in the spetrum of this map. More generally, aMorse-Bott submanifold of T -periodi orbits is a losed submanifold N � M �xed by 'TX suh

28 CHRIS WENDLthat for any p 2 N , ker �('TX )� � 1

� = TpN:We will all a single orbit  = (x; T ) Morse-Bott if it lies on a Morse-Bott submanifoldof T -periodi orbits. Nondegenerate orbits are learly also Morse-Bott, with N �= S1. Wesay that the vetor �eld X is Morse-Bott (or nondegenerate) if all of its periodi orbitsare Morse-Bott (or nondegenerate respetively). Sine X never vanishes, every Morse-Bottsubmanifold N � M of dimension 2 is either a torus or a Klein bottle. One an show(f. [Wen10a, Prop. 4.1℄) that in the former ase, ifX is Morse-Bott, then every orbit ontainedin N has the same minimal period.To every orbit  = (x; T ), one an assoiate an asymptoti operator, whih is morallythe Hessian of a ertain funtional whose ritial points are the periodi orbits. To write itdown, hoose J 2 J (H), let x : S1 !M : t 7! x(T t), hoose a symmetri onnetion r onMand de�ne A : �(x��)! �(x��) : � 7! �J(rt� � Tr�X):One an show that this operator is well de�ned independently of the hoie of onnetion,and it extends to an unbounded self-adjoint operator on the omplexi�ation of L2(x��), withdomain H1(x��). Its spetrum �(A) onsists of real eigenvalues with multipliity at most 2,whih aumulate only at �1. It is straightforward to show that solutions of the equationA� = 0 are given by �(t) = ('T tX )��(0), thus  is nondegenerate if and only if 0 62 �(A),and in general if  belongs to a Morse-Bott submanifold N �M , thendimkerA = dimN � 1:Choosing a unitary trivialization � of (�; J; !) along the parametrization x : S1 ! Midenti�es A with a �rst-order di�erential operator of the form(3.1) H1(S1;R2 )! L2(S1;R2) : � 7! �J0 _� � S�;where J0 denotes the standard omplex struture on R2 = C and S : S1 ! EndR(R2 ) is asmooth loop of symmetri real 2-by-2 matries. Seen in this trivialization, A� = 0 de�nesa linear Hamiltonian equation _� = J0S� orresponding to the linearized ow of X along ,thus its ow de�nes a smooth family of sympleti matries	 : [0; 1℄! Sp(2)for whih 1 62 �(	(1)) if and only if  is nondegenerate. In this ase, the homotopy lass ofthe path 	 is desribed by its Conley-Zehnder index �CZ(	) 2 Z, whih we use to de�nethe Conley-Zehnder index of the orbit  and of the asymptoti operator A with respet tothe trivialization �, ��CZ() := ��CZ(A) := �CZ(	):Note that in this way, ��CZ(A) an be de�ned for any injetive operator A : �(x��)! �(x��)that takes the form (3.1) in a loal trivialization. In partiular then, even if  is degenerate,we an pik any � 2 R n �(A) and de�ne the \perturbed" Conley-Zehnder index��CZ( � �) := ��CZ(A � �) := �CZ(	�);where 	� : [0; 1℄ ! Sp(2) is the path of sympleti matries determined by the equation(A � �)� = 0 in the trivialization �. It is espeially onvenient to de�ne Conley-Zehnderindies in this way for orbits that are degenerate but Morse-Bott: then the disreteness of thespetrum implies that for suÆiently small � > 0, the integer ��CZ( � �) depends only on ,� and the hoie of sign.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 29The eigenfuntions of A are nowhere vanishing setions e 2 �(x��) and thus have well de-�ned winding numbers wind�(e) with respet to any trivialization �. As shown in [HWZ95a℄,all setions in the same eigenspae have the same winding, thus de�ning a funtion�(A)! Z : � 7! wind�(�);where we set wind�(�) := wind�(e) for any nontrivial e 2 ker(A � �). In fat, [HWZ95a℄shows that this funtion is nondereasing and surjetive: ounting with multipliity there areexatly two eigenvalues � 2 �(A) suh that wind�(�) equals any given integer. It is thussensible to de�ne the integers,���( � �) = maxfwind�(�) j � 2 �(A � �), � < 0g;��+( � �) = minfwind�(�) j � 2 �(A � �), � > 0g;p( � �) = ��+( � �)� ���( � �):Note that the parity p( � �) does not depend on �, and it always equals either 0 or 1 if� 62 �(A). In this ase, the Conley-Zehnder index an be omputed as(3.2) ��CZ( � �) = 2���( � �) + p( � �) = 2��+( � �)� p( � �):Given H = (�; !) and J 2 J (H), �x 0 > 0 suÆiently small so that (! +  d�)j� > 0 forall  2 [�0; 0℄, and de�ne T = f' 2 C1(R; (�; )) j '0 > 0g:For ' 2 T , we an de�ne a sympleti form on R �M by(3.3) !' = ! + d('�);where ! and � are pulled bak through the projetion R�M !M to de�ne di�erential formson R �M , and ' : R ! (�; ) is extended in the natural way to a funtion on R �M . Thenany J 2 J (H) is ompatible with !' in the sense that !'(�; J �) de�nes a Riemannian metrion R �M . We therefore onsider puntured pseudoholomorphi urvesu : ( _�; j)! (R �M;J)where (�; j) is a losed Riemann surfae with a �nite subset of puntures � � �, _� := � n �,and u is required to satisfy the �nite energy ondition(3.4) E(u) := sup'2T Z _� u�!' <1:An important example is the following: for any losed Reeb orbit  = (x; T ), the mapu : R � S1 ! R �M : (s; t) 7! (Ts; x(T t))is a �nite energy J -holomorphi ylinder (or equivalently puntured plane), whih we all thetrivial ylinder over . More generally, we are most interested in puntured J -holomorphiurves u : _�! R �M that are asymptotially ylindrial, in the following sense. De�ne thestandard half ylindersZ+ = [0;1) � S1 and Z� = (�1; 0℄ � S1:We say that a smooth map u : _�! R �M is asymptotially ylindrial if the punturesan be partitioned into positive and negative subsets� = �+ [ ��

30 CHRIS WENDLsuh that for eah z 2 ��, there is a Reeb orbit z = (x; T ), a losed neighborhood Uz � �of z and a di�eomorphism 'z : Z� ! Uz n fzg suh that for suÆiently large jsj,(3.5) u Æ 'z(s; t) = exp(Ts;x(T t)) hz(s; t);where hz is a setion of � along uz with hz(s; t)! 0 for s! �1, and the exponential mapis de�ned with respet to any hoie of R-invariant onnetion on R �M . We often refer tothe puntured neighborhoods Uz n fzg or their images in R �M as the positive and negativeends of u, and we all z the asymptoti orbit of u at z.De�nition 3.1. Suppose N � M is a submanifold whih is the union of a family of Reeborbits that all have the same minimal period. Consider an asymptotially ylindrial mapu : _� ! R � M with puntures �+ [ �� � � and orresponding asymptoti orbits zwith overing multipliities kz � 1 for eah z 2 ��. Then if k�N � 0 denotes the sum ofthe multipliities kz for all puntures z 2 �� at whih z lies in N , we shall say that uapproahes N with total multipliity k�N at its positive or negative ends respetively.Every asymptotially ylindrial map de�nes a relative homology lass in the followingsense. Suppose  = f(1;m1); : : : ; (N ;mN )g is an orbit set, i.e. a �nite olletion of distintsimply overed Reeb orbits i paired with positive integers mi. This de�nes a 1-dimensionalsubmanifold of M , � = 1 [ : : : [ N ;together with homology lasses [℄ = m1[1℄ + : : : +mN [N ℄in both H1(M) and H1(�). Given two orbit sets + and � with [+℄ = [�℄ 2 H1(M),denote by H2(M;+ � �) the aÆne spae over H2(M) onsisting of equivalene lasses of2-hains C inM with boundary �C in �+[ �� representing the homology lass [+℄� [�℄ 2H1(�+ [ ��), where C � C 0 whenever C � C 0 is the boundary of a 3-hain in M . Now, theprojetion of any asymptotially ylindrial map u : _� ! R �M to M an be extended asa ontinuous map from a ompat surfae with boundary (the irle ompati�ation of _�)to M , whih then represents a relative homology lass[u℄ 2 H2(M;+ � �)for some unique hoie of orbit sets + and �.As is well known (f. [Hof93,HWZ96a,HWZ96b℄), every �nite energy J -holomorphi urvewith nonremovable puntures is asymptotially ylindrial if the ontat form is Morse-Bott.Moreover in this ase, the setion hz in (3.5), whih ontrols the asymptoti approah of uto z at z 2 ��, either is identially zero or satis�es a formula of the form6(3.6) hz(s; t) = e�s(e�(t) + r(s; t));where � 2 �(A) with �� < 0, e� is a nontrivial eigenfuntion in the �-eigenspae, and theremainder term r(s; t) 2 �x(T t) deays to zero as s! �1. It follows that unless hz � 0, whihis true only if u is a over of a trivial ylinder, u has a well de�ned asymptoti windingabout z, wind�z (u) := wind�(e�);6The asymptoti formula (3.6) is a stronger version of a somewhat more ompliated formula originallyproved in [HWZ96a,HWZ96b℄. The stronger version is proved in [Mor03℄, and another exposition is given in[Sie08℄.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 31whih is neessarily either bounded from above by ���(z) or from below by ��+(z), dependingon the sign z 2 ��. We say that this winding is extremal whenever the bound is not strit.Denote byM(J) the moduli spae of unparametrized �nite energy puntured J -holomorphiurves in R �M : this onsists of equivalene lasses of tuples (�; j;�; u), where _� = � n � isthe domain of a pseudoholomorphi urve u : ( _�; j)! (R�M;J), and we de�ne (�; j;�; u) �(�0; j0;�0; u0) if there is a biholomorphi map ' : ( _�; j)! ( _�0; j0) suh that u = u0 Æ'. We as-sign to M(J) the natural topology de�ned by C1lo-onvergene on _� and C0-onvergeneup to the ends. It is often onvenient to abuse notation by writing equivalene lasses[(�; j;�; u)℄ 2M(J) simply as u when there is no danger of onfusion.If u 2 M(J) has asymptoti orbits fzgz2� that are all Morse-Bott, then a neighborhoodof u inM(J) an be desribed as the zero set of a Fredholm setion of a Banah spae bundle(see e.g. [Wen10a℄). We say that u is Fredholm regular if this setion has a surjetivelinearization at u, in whih ase a neighborhood of u inM(J) is a smooth �nite dimensionalorbifold. Its dimension is then equal to its virtual dimension, whih is given by the indexof u,(3.7) ind(u) := ��( _�) + 2�1 (u) + Xz2�+ ��CZ(z � �)� Xz2�� ��CZ(z + �);where � > 0 is any small positive number, � is an arbitrary hoie of unitary trivialization of� along all the asymptoti orbits z, and we abbreviate�1 (u) := �1 (u�T (R �M));where the latter denotes the relative �rst Chern number with respet to � of the omplexvetor bundle u�T (R�M) ! _�. Sine T (R�M) splits into the diret sum of � with a trivialomplex line bundle, this Chern number is the same as �1 (u��), whih an be omputed byounting the zeroes of a generi setion of u�� that is nonzero and onstant at in�nity withrespet to �.We say that an almost omplex struture J 2 J (H) is Fredholm regular if all somewhereinjetive urves in M(J) are Fredholm regular. As shown in [Dra04℄ or the appendix of[Bou06℄, the set of Fredholm regular almost omplex strutures is of seond ategory inJ (H); one therefore often refers to them as generi almost omplex strutures.It is sometimes onvenient to have an alternative formula for ind(u) in the ase where u isimmersed. Indeed, the linearization of the Fredholm operator that desribesM(J) near u atson the spae of setions of u�T (R�M), whih then splits naturally as T _��Nu, where Nu ! _�is the normal bundle, de�ned so that it mathes � at the asymptoti ends of u. As explainede.g. in [Wen10a℄, the restrition of the linearization to Nu de�nes a linear Cauhy-Riemanntype operator DNu : �(Nu)! �(HomC (T _�; Nu));alled the normal Cauhy-Riemann operator at u, and the Fredholm index of this oper-ator is preisely ind(u). Thus whenever u is immersed, we an ompute ind(u) diretly fromthe puntured version of the Riemann-Roh formula proved in [Sh95℄:(3.8) ind(DNu ) = �( _�) + 2�1 (Nu) + Xz2�+ ��CZ(z � �)� Xz2�� ��CZ(z + �):Finally, let us briey summarize the intersetion theory of puntured J -holomorphi urvesintrodued by R. Siefring [Sie11℄. Given any asymptotially ylindrial smooth maps u : _�!

32 CHRIS WENDLR �M and v : _�0 ! R �M , there is a symmetri pairingu � v 2 Zwith the following properties:(1) u � v depends only on the asymptoti orbits of u and v and the relative homologylasses [u℄ and [v℄.(2) If u and v represent urves in M(J) with non-idential images, then their algebraiount of intersetions u � v satis�es 0 � u � v � u � v. In partiular, u � v = 0 impliesthat u and v never interset.The �rst property amounts to homotopy invariane: it implies that u0 � v = u1 � v wheneveru0 and u1 are onneted to eah other by a ontinuous family of urves u� 2 M(J) with�xed asymptoti orbits. The seond property gives a suÆient ondition for two urves tohave disjoint images, but this ondition is not in general neessary : sometimes one may have0 = u � v < u � v if u and v have an asymptoti orbit in ommon, and one must thenexpet intersetions to emerge from in�nity under generi perturbations. The number u � van also be de�ned when u and v are holomorphi buildings in the sense of [BEH+03℄, sothat it satis�es a similar ontinuity property under onvergene of urves to buildings. Theomputation of u � v is then a sum of the intersetion numbers between orresponding levels,plus some additional nonnegative terms that ount \hidden" intersetions at the breakingorbits.Remark 3.2. The version of homotopy invariane desribed above assumes that u and v varyas asymptotially ylindrial maps with �xed asymptoti orbits, but if any of the orbits belongto Morse-Bott families, one an de�ne an alternative version of u � v that permits the orbitsto move ontinuously. This more general theory is skethed in the last setion of [Wen10a℄. Ingeneral, the intersetion number de�ned in this way is greater than or equal to u � v, beauseit ounts additional nonnegative ontributions for intersetions that may emerge from in�nityas the asymptoti orbits move. It's useful to observe however that in the situation we willonsider, both versions agree: in partiular, if u and v are disjoint urves with u � v = 0 anda ommon positive asymptoti orbit that is (for both urves) simply overed and belongs toa Morse-Bott torus that doesn't interset the images of u and v, then no new intersetionsan appear under a perturbation that moves the orbit (independently for both urves). Thisfollows from an easy omputation of asymptoti winding numbers using the de�nitions givenin [Wen10a℄.Similarly, if u 2 M(J) is somewhere injetive, one an de�ne the integer Æ(u) � 0, whihalgebraially ounts the self-intersetions of u after perturbing away its ritial points, butin the puntured ase this need not be homotopy invariant. One �xes this by introduingthe asymptoti ontribution Æ1(u) 2 Z, whih is also nonnegative and ounts \hidden"self-intersetions that may emerge from in�nity under generi perturbations. We then have0 � Æ(u) � Æ(u) + Æ1(u);and the puntured version of the adjuntion formula takes the form(3.9) u � u = 2 [Æ(u) + Æ1(u)℄ + N (u) + [��(u)�#�℄ ;



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 33where ��(u) is an integer that depends only on the asymptoti orbits and satis�es ��(u) � #�,and N (u) is the onstrained normal Chern number, whih an be de�ned as7(3.10) N (u) = �1 (u)� �( _�) + Xz2�+ ���(z + �)� Xz2�� ��+(z � �):Observe that N (u) also depends only on the asymptoti orbits fzgz2� and the relativehomology lass [u℄.3.2. An existene and uniqueness theorem. We now prove a theorem on holomorphiopen books whih lies in the bakground of all the results that were stated in x1. The setup isas follows. Assume (M 0; �) is a losed 3-manifold with a positive, o-oriented ontat struture,and it ontains a ompat 3-dimensional submanifold M � M 0, possibly with boundary, onwhih � is supported by a partially planar blown up summed open book�� = (��; �'; �N):We will denote its binding and interfae by B and I respetively, and denote the indued�bration by � :M n (B [ I)! S1:Denote the irreduible subdomains by Mi for i = 0; : : : ; N , soM =M0 [M1 [ : : : [MNfor some N � 0. If Bi and Ii denote the intersetions of B and I respetively with theinterior of Mi, then the restrition of � to the interior of Mi n (Bi [ Ii) extends smoothly toits boundary as a �bration �i :Mi n (Bi [ Ii)! S1:Denote by gi � 0 the genus of the �bers of �i, and assume without loss of generality that M0is a planar piee, thus g0 = 0 and M0 \ �M = ;; in partiular �M0 � I.De�nition 3.3. Given the above setup, an integer m 2 N and an almost omplex struture Jompatible with some ontat form on (M 0; �), we shall say that a �nite energy J -holomorphiurve u : _�! R�M 0 is subordinate to �0 up to multipliity m if the following onditionshold: � u is not a over of a trivial ylinder,� All positive ends of u approah Reeb orbits in B0 [ I0 [ �M0,� Eah positive asymptoti orbit of u in B0 has overing multipliity at most m.Moreover, u is strongly subordinate to �0 if the following also holds:� At its positive ends, u approahes eah onneted omponent of B0 [ �M0 with totalmultipliity at most 1, and eah onneted omponent of I0 with total multipliity atmost 2.See De�nition 3.1 for an explanation of the term total multipliity. Note that the aboveondition allows the total multipliity at any given omponent of B0[I0[�M0 to be 0, whihwould mean that the urve has no asymptoti orbits in that omponent.7The version of N (u) de�ned in (3.10) is adapted to the ondition that homotopies inM(J) are requiredto �x asymptoti orbits. A more general de�nition is given in [Wen10a℄ (see also Remark 3.2).

34 CHRIS WENDLTheorem 7. For any numbers �0 > 0 and m0 2 N, the ontat manifold (M 0; �) with subdo-main M � M 0 arrying the blown up summed open book �� desribed above admits a Morse-Bott ontat form � and ompatible Fredholm regular almost omplex struture J with thefollowing properties.(1) The ontat struture ker � is isotopi to �.(2) On M , � is a Giroux form for ��.(3) The omponents of I [ �M are all Morse-Bott submanifolds, while the Reeb orbitsin B are nondegenerate and ellipti, and their overs for all multipliities up to m0have Conley-Zehnder index 1 with respet to the natural trivialization determined bythe pages.(4) All Reeb orbits in B0 [ I0 [ �M0 have minimal period at most �0, while every otherlosed orbit of X� in M 0 has minimal period at least 1.(5) For eah omponent Mi with gi = 0, the �bration �i : Mi n (Bi [ Ii) ! S1 admits aC1-small perturbation ^�i : Mi n (Bi [ Ii) ! S1 suh that the interior of eah �ber^��1i (�) for � 2 S1 lifts uniquely to an R-invariant family of properly embedded surfaesS(i)�;� � R �Mi; (�; �) 2 R � S1;whih are the images of embedded �nite energy J-holomorphi urvesu(i)�;� = (a(i)� + �; F (i)� ) : _�i ! R �Mi;all of them Fredholm regular with index 2, and with only positive ends.(6) A �nite energy J-holomorphi urve u in R � M 0 parametrizes one of the planarsurfaes S(i)�;� desribed above whenever either of the following holds:� u is strongly subordinate to �0,� u is somewhere injetive, subordinate to �0 up to multipliity m0 and intersetsthe interior of M0.In addition to the appliations treated in x4, Theorem 7 implies a wide range of existeneresults for �nite energy foliations, e.g. it ould be used to redue the onstrution in [Wen08℄to a few lines, after observing that every overtwisted ontat struture is supported by avariety of summed open books with only planar pages. The proof of the theorem will oupythe remainder of x3.2.3.2.1. A family of stable Hamiltonian strutures. The �rst step in the proof is to onstruta spei� almost omplex struture on R �M for whih all pages of �� admit holomorphilifts. We will follow the approah in [Wen10℄ and refer to the latter for details in a fewplaes where no new arguments are required. The idea is to present eah subdomain Mi asan abstrat open book that supports a stable Hamiltonian struture whih is ontat nearB [ I [ �M and integrable elsewhere.We must hoose suitable oordinate systems near eah omponent of the binding, interfaeand boundary. Choose r > 0 and let D r � R2 denote the losed disk of radius r. For eahbinding irle  � B, hoose a small tubular neighborhoodN () and identify it with the solidtorus S1 � D r with oordinates (�; �; �), where (�; �) denote polar oordinates on D r . If r issuÆiently small then we an arrange these oordinates so that the following onditions aresatis�ed:�  = S1 � f0g, with the natural orientation of S1 mathing the o-orientation of �along 



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 35� �(�; �; �) = � on N () n � � = ker(d� + �2 d�)Similarly, for eah onneted omponent T � �M , let \N (T ) �M 0 denote a neighborhoodthat is split into two onneted omponents by T , and denote N (T ) = \N (T ) \M . Identify\N (T ) with S1 � [�r; r℄� S1 with oordinates (�; �; �) suh that:� N (T ) = S1 � [0; r℄� S1� For eah �0 2 S1 the oriented loop S1 � f0; �0g in T is positively transverse to �� �(�; �; �) = � on N (T )� � = ker(d� + � d�)Finally, we hoose two oordinate systems for neighborhoods N (T ) of eah interfae torusT � I, assuming that T divides N (T ) into two onneted omponentsN (T ) n T = N+(T ) [N�(T ):Choose an identi�ation of N (T ) with S1� [�r; r℄� S1 and denote the resulting oordinatesby (�+; �+; �+), whih we arrange to have the following properties:� T = S1 � f0g � S1, N+(T ) = S1 � (0; r℄� S1 and N�(T ) = S1 � [�r; 0) � S1� For eah �0 2 S1 the oriented loop S1 � f0; �0g in T is positively transverse to �� �(�+; �+; �+) = �+ on N+(T ) and �(�+; �+; �+) = ��+ +  on N�(T ) for someonstant  2 S1� � = ker(d�+ + �+ d�+)Given these oordinates, it is natural to de�ne a seond oordinate system (��; ��; ��) by(3.11) (��; ��; ��) = (�+;��+;��+ + ):Then the oordinates (��; ����) satisfy minor variations on the properties listed above: inpartiular � = ker(d�� + �� d��) and �(��; ��; ��) = �� on N�(T ). In the following, wewill use separate oordinates on the two omponents of N (T ) n T , denoting both by (�; �; �):(�; �; �) := ((�+; �+; �+) on N+(T );(��; ��; ��) on N�(T ):Then �(�; �; �) = � and � = ker(d� + � d�) everywhere on N (T ) n T . Observe that theseoordinates on N+(T ) or N�(T ) separately an be extended smoothly to the losures N+(T )and N�(T ), though in partiular the two �-oordinates are di�erent where they overlap at T .Notation. For any open and losed subset N � B [ I [ �M , we shall in the followingdenote by N (N) the union of all the neighborhoods N () and N (T ) onstruted above forthe onneted omponents ; T � N . Thus for example,N (B [ I [ �M)denotes the union of all of them.The omplement M n N (B [ I [ �M) is di�eomorphi to a mapping torus. Indeed, letP denote the losure of ��1(0) \ (M n N (B [ I [ �M)), a ompat surfae whose boundaryomponents are in one to one orrespondene with the onneted omponents of N (B [ I [�P ) n I. The monodromy map of the �bration � de�nes a di�eomorphism  : P ! P , whihpreserves onneted omponents and without loss of generality has support away from �P ,so we de�ne the mapping torus P = (R � P )= �;

36 CHRIS WENDLwhere (t + 1; p) � (t;  (p)). This omes with a natural �bration � : P ! S1 whih istrivial near the boundary, so for a suÆiently small ollar neighborhood U � P of �P , aneighborhood of �P an be identi�ed with S1 � U . Choose positively oriented oordinateson eah onneted omponent of U(�; �) : U ! [r � Æ; r + Æ) � S1for some small Æ > 0. This de�nes oordinates (�; �; �) on a ollar neighborhood of �P =S1 � �P , so identifying these for � 2 (r � Æ; r℄ with the (�; �; �) oordinates hosen above onthe orresponding omponents of N (B [I [�M) nI de�nes an attahing map, suh that theunion P [N (B [ I [ �M)is di�eomorphi to M , and the �-oordinate, whih is globally de�ned outside of B [ I,orresponds to the �bration � :M n (B [ I)! S1.Choose a number Æ0 > Æ with r � Æ0 > 0, and for eah of the oordinate neighborhoods inN (B [ I [ �M) n I, de�ne a 1-form of the form�0 = f(�) d� + g(�) d�;with smooth funtions f; g : [0; r℄! R hosen so that(1) ker�0 = � on a smaller neighborhood of B [ I [ �M .(2) For N (I) n I, f(�) and g(�) extend smoothly to [�r; r℄ as even and odd funtionsrespetively.(3) The path [0; r℄ ! R2 : � 7! (f(�); g(�)) moves through the �rst quadrant from thepositive real axis to (0; 1) and is onstant for � 2 [r � Æ; r℄.(4) The funtion D(�) := f(�)g0(�)� f 0(�)g(�)is positive and f 0(�) is negative for all � 2 (0; r � Æ).(5) g(�) = 1 for all � 2 [r � Æ0; r℄.Some possible pitures of the path � 7! (f(�); g(�)) 2 R2 (with extra onditions that willbe useful in the proof of Lemma 3.7) are shown in Figure 8. Note that the funtions f andg must generally be hosen individually for eah onneted omponent of N (B [ I [ �M).Extend �0 over M 0 nM so that ker �0 = � on this region, and extend it over P as �0 = d�.The kernel �0 := ker�0 is then a onfoliation on M 0: it is ontat outside of M and nearB [ I [ �M , while integrable and tangent to the �bers on P . In partiular �0 is ontat inthe region f� < r � Æg near B [ I [ �M , and its Reeb vetor �eld here is(3.12) X0 = g0(�)D(�)�� � f 0(�)D(�)��;whih is positively transverse to the pages f� = onstg and redues to �� for � 2 [r � Æ0; r℄,whih ontains the region where P and N (B [ I [ �M) overlap.Proeeding as in [Wen10℄, hoose next a 1-form � on P suh that d� is positive on the�bers and, in the hosen oordinates (�; �; �) near �P , � takes the form� = (1� �) d�;where we assume r > 0 is small enough so that 1 � � > 0 when r 2 [r � Æ; r + Æ). Then if� > 0 is suÆiently small, the 1-form �� := d�+ ��



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 37is ontat on P . We extend it to the rest of M 0 by setting �� = �0 on M 0 nM , and onN (B [ I [ �M), �� = f�(�) d� + g�(�) d�;where the funtions f�; g� : [0; r℄! R satisfy(1) (f�(�)); g�(�)) = (f(�); g(�)) for � � r � Æ0,(2) g�(�) = 1 and f 0�(�) < 0 for � 2 [r � Æ0; r � Æ℄,(3) (f�(�); g�(�)) = (�(1� �); 1) for � 2 [r � Æ; r℄,(4) f� ! f and g� ! g in C1 as �! 0.Now �� is a ontat form everywhere on M 0, and �� ! �0 in C1 as � ! 0. Denote theorresponding ontat struture by �� = ker��:The Reeb vetor �eld X� of �� is de�ned by the obvious analogue of (3.12) near B [I [ �M ,is independent of � on M 0 nM , and on P is determined uniquely by the onditionsd�(X�; �) � 0; d�(X�) + ��(X�) � 1:It follows that as � ! 0, X� onverges to a smooth vetor �eld X0 that mathes (3.12) nearB [ I [ �M and on P is determined by(3.13) d�(X0; �) � 0 and d�(X0) � 1:Observing that X� is always positively transverse to the pages f� = onstg, and applyingProposition 2.9, we have:Lemma 3.4. For � > 0 suÆiently small, �� is a ontat struture on M 0 isotopi to �, and�� is a Giroux form for ��.In order to turn �� into a stable Hamiltonian struture, we de�ne an exat taming formas follows. For eah oordinate neighborhood in N (B [ I [ �M) n I, �x a smooth funtionh : [r � Æ0; r � Æ℄ ! R suh that h0 < 0, h(�) = f(�) +  for � near r � Æ0 and some onstant � 0, and h(�) = 1� � for � near r � Æ. For eah interfae torus T � I the funtion f(�) isthe same on N+(T ) as on N�(T ), thus we may assume the same is true of h(�) and . ThenF (�) := 8><>:1� � for � 2 [r � Æ; r℄;h(�) for � 2 [r � Æ0; r � Æ℄;f(�) +  for � 2 [0; r � Æ0℄de�nes a smooth funtion on [0; r) whih, for omponents of N (I), has a smooth even exten-sion to [�r; r℄. By hoosing f(�) appropriately on the omponents of N (�M), one an alsoarrange  = 0; it will be onvenient (e.g. for Lemma 3.7 below) to assume this for N (�M)but leave the hoie of  � 0 and thus f(�) arbitrary everywhere else. Now there is a smooth1-form ^� on M 0 suh that^� = 8><>:�+ d� on P ;F (�) d� + g(�) d� on N (B [ I [ �M);�0 on M 0 nM;and we use this to de�ne an exat 2-form ! = d^�:We laim that (�0; !) de�nes a stable Hamiltonian struture on M 0. Indeed, outside Mand in a suÆiently small neighborhood of B [ I [ �M this is lear sine �0 is ontat and

38 CHRIS WENDL! = d�0. On the subsets desribed in oordinates by r� Æ0 � � < r� Æ, �0 is still ontat and! = �h0(�) d�^d� = h0(�)f 0(�)d�0, thus ! has maximal rank and its kernel is spanned by X0. OnP , d�0 = 0 and ! = d� annihilates X0 by (3.13), so the laim is proved. In fat, for � > 0suÆiently small, we still have !j�� > 0 and the kernel of ! is still spanned by X�, thus we'veproved:Proposition 3.5. For suÆiently small � � 0,H� := (��; !)de�nes a stable Hamiltonian struture on M 0.De�nition 3.6. Any smooth family H� = (��; !) of stable Hamiltonian strutures on M 0de�ned for small � � 0 by the proedure above will be said to be adapted to ��.Lemma 3.7. There exists a number �1 > 0 so that for any �0 > 0 and m0 2 N, a family ofstable Hamiltonian strutures H� = (��; !) on M 0 adapted to �� an be onstruted so as tosatisfy the following additional onditions on the Reeb vetor �elds X�:(1) The interfae and boundary tori are Morse-Bott submanifolds, and all losed orbits ina neighborhood of I [ �M are also Morse-Bott.(2) Eah onneted omponent  � B and all its multiple overs are nondegenerate elliptiorbits, and their overs up to multipliity m0 all have Conley-Zehnder index 1 withrespet to the natural trivialization of � along  determined by the oordinates.(3) All orbits in B0[I0[�M0 have minimal period at most �0, while all other orbits haveperiod at least �1.Moreover for eah � > 0 suÆiently small, the ontat form �� admits a C1-small pertur-bation to a globally Morse-Bott ontat form whose Reeb vetor �eld still satis�es the aboveonditions.Proof. We �rst prove that the stated onditions an be established for X0.If  � B is a binding irle, then  and all its multiple overs an be made nondegenerateand ellipti by hoosing the funtions f and g so thatf 0(�)=g0(�) 2 R n Q for all � > 0 suÆiently small:This implies that the slope of the urve � 7! (f(�); g(�)) 2 R2 is onstant for � near 0, andthis slope determines the Conley-Zehnder index of ; in partiular, the stated ondition issatis�ed whenever f 00(0)=g00(0) is a negative number suÆiently lose to 0. Assume this fromnow on.Similarly, we make every orbit in a neighborhood of I [ �M Morse-Bott by assuming thatin suh a neighborhood, �0 = f(�) d� + g(�) d� where f and g satisfyf 0(�)g00(�)� f 00(�)g0(�) > 0:This means that the path � 7! (f(�); g(�)) 2 R2 has nonzero inward angular aeleration asit winds (ounterlokwise) about the origin; learly for N (I) we an also still safely assumethat f and g are restritions of even and odd funtions respetively on [�r; r℄.We now show that the periods of the orbits in B0[I0[�M0 an be made arbitrarily smallompared to all other periods. Observe that by (3.12), the Reeb ow as we've onstruted itpreserves the onentri tori f� = onstg in the neighborhood N (B0 [I0 [ �M0), thus it alsopreserves M 0 n N (B0 [ I0 [ �M0). Sine the latter has ompat losure, there is a positivelower bound for the periods of all losed orbits in M 0 n N (B0 [ I0 [ �M0), so it will suÆe
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'RT0T0MBM0u�;�T1T2e1h1e2h2v+1v�1v+2v�2u0BIS1 � D(T 3=Z2) n N (K)12321222vkv1�v2�Figure 8. The path � 7! (f(�); g(�)) 2 R2 with the extra onditions imposedin the proof of Lemma 3.7 for the nondegenerate ase (left) and Morse-Bottase (right).to leave �0 �xed in this region and redue the periods in B0 [ I0 [ �M0 while preserving alower bound for all other orbits in N (B0 [ I0 [ �M0).Consider a binding orbit  � B0: writing �0 as f(�) d� + g(�) d� near , the period of is f(0) > 0. Choosing suÆiently small onstants � > 0 and �0 > 0, we impose the followingadditional onditions on f and g (see Figure 8, left):� (f(0); g(0)) = (�; 0),� For all � 2 (0; r℄, g0(�)�f 0(�) � 1� + �0 2 R n Q ;with equality for � � 2r=3.� For � 2 [2r=3; r℄, g(�) � 2=3 and f(�) � �=3.Sine f 0(�)=g0(�) is irrational for � � 2r=3, all losed orbits in N ()n are outside this region.For any �0 2 [2r=3; r℄, (3.12) implies that a Reeb orbit in f� = �0g has its �-oordinateinreasing at the onstant rate of �f 0(�0)=D(�0). Its period is thus at least����D(�0)f 0(�0) ���� = ����f(�0)g0(�0)� f 0(�0)g(�0)f 0(�0) ���� � jg(�0)j � ����f(�0) g0(�0)f 0(�0) ����� 23 � �����3 �1� + �0����� = 23 � 13(1 + ��0) > 0:(3.14)We an therefore keep these periods bounded away from zero while shrinking f(0) = � tomake both the period at  and the ratio �f 0(�)=g0(�) near  arbitrarily small.The above requires only a small modi�ation for the neighborhood of a torus T � I0[�M0:here we need f and g to extend over � 2 [�r; r℄ as even and odd funtions respetively, soit is no longer possible to �x the slope f 0(�)=g0(�) throughout � 2 [0; 2r=3℄. In fat f 0(0)must vanish, so we amend the above onditions by allowing them to hold for � 2 [r=3; r℄, butrequiring the following for � 2 [0; r=3℄,� �g0(�)=f 0(�) � 1=� + �0,� f(�) � �(1� �0),

40 CHRIS WENDL� g(�) � �0.This modi�ation is shown at the right of Figure 8. Now for � � r=3, the lower boundalulated in (3.14) beomes����D(�0)f 0(�0) ���� � ����f(�0) g0(�0)f 0(�0) ����� jg(�0)j � �(1� �0)�1� + �0�� �0= 1 + �0 �� � 2� ��20� > 0:Thus we an freely shrink f(0) = � , the minimal period of the Morse-Bott family at T , whilebounding all other periods away from zero.Sine X� is a small perturbation of X0 outside a neighborhood of B [ I [ �M , the sameresults immediately hold for X�: in partiular, for any sequene �k ! 0,M 0nN (B0[I0[�M0)annot ontain a sequene of orbits of X�k with periods below a ertain threshold, as asubsequene of these would onverge (by Arzel�a-Asoli) to an orbit of X0. Similarly, thisonstraint on the periods will be satis�ed by any suÆiently small perturbation of X�. We annow hoose suh a perturbation to a globally Morse-Bott ontat form as follows: let U �M 0denote a union of oordinate neighborhoods of the form fj�j < r0g near eah omponent ofB [ I [ �M , where r0 > 0 is hosen suh that all periodi orbits inside U are Morse-Bottand none exist near �U (beause f 0=g0 is irrational). After a generi perturbation of �� inM 0 n U , every Reeb orbit not fully ontained in U beomes nondegenerate (f. the appendixof [ABW10℄), whih means all orbits outside U are nondegenerate, while all the others (whihare inside U) are Morse-Bott by onstrution. �Remark 3.8. To satisfy the onditions stated in Theorem 7, we need a version of Lemma 3.7with �1 = 1. This an always be ahieved by resaling �� by a onstant, and thus replaingH� = (��; !) by (��; !) for some  > 0.3.2.2. A sympleti obordism. As a quik detour away from the proof of Theorem 7, we nowexplain a onstrution that will be useful for proving Theorem 4. Namely, we will need toknow that the stable Hamiltonian strutures H0 and H� for some � > 0 an be related to eahother by a ylindrial sympleti obordism that looks standard near the binding.To simplify the statement of the following result, let us restrit to the speial ase whereM =M 0 and � :M nB ! S1 is an ordinary (not summed or blown up) open book; this willsuÆe for the appliation we have in mind.Proposition 3.9. There exists a family of stable Hamiltonian strutures H� = (��; !) on Madapted to the open book � : M n B ! S1 suh that [0; 1℄ �M admits a sympleti form 
with the following properties:� 
 = ! + d(t�0) near f0g �M .� 
 = d(et�) near f1g �M for some ontat form � with ker � = �� and some � > 0.� 
 = d('(t)�0) on [0; 1℄ � U for some neighborhood U � M of B on whih �� = �0,and some smooth funtion ' : [0; 1℄! (0;1) with '0 > 0.Remark 3.10. We are not laiming that H� in this result an be hosen to make the periodsof binding orbits small as in Lemma 3.7 and Theorem 7. For our appliation we will not needthis.



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 41Proof of Prop. 3.9. In (�; �; �)-oordinates on N (B), we an write �0 = f(�) d� + g(�) d�with f and g hosen suh that f(�) = 1� � for � near r � Æ0. Then settingF (�) = (1� � for � 2 [r � Æ0; r℄;f(�) for � 2 [0; r � Æ0℄and de�ning ^� and ! as before, we have ! � d^� where ^� = �0 on a neighborhood U := f� <r � Æ0g of B.With this stipulation in plae, onstrut the family �� as before. Next hoose small numbers�; �1 > 0 and a smooth funtion � : [0;1)! [0; �℄ suh that� �(t) = 0 for t near 0,� �(t) = � for t � �1.De�ne a 1-form ^� on [0;1)�M by ^�j(t;p) = ��(t)jpfor all (t; p) 2 [0;1) �M , and then de�ne
 = ! + d(t^�)on [0;1) �M . Note that ! + d(t�0) is sympleti on [0; �1℄ �M if �1 > 0 is suÆientlysmall, and 
 is C1-lose to this if � > 0 is also small, implying that 
 is also sympleti on[0; �1℄�M . It is also obviously sympleti on [�1;1)�M sine it then equals! + d(t��)for some � > 0, where �� is ontat and ! is d�� multiplied by a smooth positive funtion. Thisonstrution thus gives a sympleti form on [0;1)�M whih has the desired form alreadynear f0g�M and on [0;1)�U . To de�ne a suitable top boundary for the obordism, observethat 
 = d(^�+ t^�), thus the 
-dual vetor �eld to ^�+ t^� is a Liouville vetor �eld Y :�Y 
 := ^�+ t^�:We laim that on the hypersurfae fTg �M for T > 0 suÆiently large, dt(Y ) > 0. Indeed,this is equivalent to the statement that ^� + t^� de�nes a positive ontat form on fTg �M ,whih is true if T is large enough sine its kernel is then a small perturbation of ker��. Thus�xing T suÆiently large, fTg�M is a onvex boundary omponent of [0; T ℄�M . Moreoversine the primitive of 
 is just (1 + t)�0 in [�1;1) � U , the vetor �eld Y takes the simpleform (1 + t)�t in this region. Using the ow of Y near fTg �M , we an now identify aneighborhood of this hypersurfae in [0; T ℄�M sympletially with a domain of the form((1� �1; 1℄�M;d(et�));where � is a onstant multiple of the ontat 1-form ^�+T��, whih de�nes a ontat strutureisotopi to �� due to Gray's theorem. There is thus a di�eomorphism of [0; T ℄�M to [0; 1℄�Mthat transforms 
 into the desired form. �3.2.3. Non-generi holomorphi urves and perturbation. Returning to the proof of Theo-rem 7, assume H� = (��; !) is a family of stable Hamiltonian strutures adapted to the blownup summed open book �� on M � M 0 and satisfying Lemma 3.7. Choose any ompatiblealmost omplex struture J0 2 J (H0) whih has the following properties in the oordinateneighborhoods N (B [ I [ �M):� J0 is invariant under the T 2-ation de�ned by translating the oordinates (�; �).

42 CHRIS WENDL� d�(J0��) � 0.Observe that �� 2 �0 always, so the seond ondition says that J0 maps �� into the hara-teristi foliation de�ned by �0 on the torus f� = onstg. Note also that sine �0 is tangentto the �bers of P , these �bers naturally embed into R �M 0 as J0-holomorphi urves. Theonstrution in [Wen10, x3℄ now arries over diretly to the present setting and gives thefollowing result.Proposition 3.11. For eah i = 0; : : : ; N , the interior of R � (Mi n (Bi [ Ii)) is foliated byan R-invariant family of properly embedded surfaesfS(i)�;�g(�;�)2R�S1with J0-invariant tangent spaes, whereS(i)�;� \ (R � P ) = f�g � ���1i (�) \ P � ;and its intersetion with eah onneted omponent of R�N (B[I [�M) an be parametrizedin (�; �; �)-oordinates by a map of the form[0;1)� S1 ! R � S1 � (0; r℄� S1 : (s; t) 7! (ai(s) + �; t; �i(s); �):Here ai : [0;1) ! [0;1) is a �xed map with ai(0) = 0 and lims!1 ai(s) = +1, and�i : [0;1)! (0; r℄ is a �xed orientation reversing di�eomorphism.Denote by F (i)0 for i = 0; : : : ; N the resulting foliation on the interior of R�(Mi n(Bi[Ii)),whose leaves an eah be parametrized by an embedded �nite energy J0-holomorphi urveu(i)�;� : _�i ! R �M 0:The olletion of all these urves together with the trivial ylinders over their asymptotiorbits (whih inlude all orbits in B[I[�M) de�nes a J0-holomorphi �nite energy foliationF0 ofM , as de�ned in [HWZ03,Wen08℄. It's important however to be aware that this foliationis not generally stable, due to the following index alulation. From now on we assume thatH� has the properties spei�ed in Lemma 3.7.Proposition 3.12. ind �u(i)�;�� = 2� 2gi.Proof. Let � denote the natural trivialization of �0 determined by the (�; �; �)-oordinatesalong eah of the asymptoti orbits of u(i)�;� . These orbits are in general a mix of nondegeneratebinding irles  � Bi with ��CZ() = 1 and Morse-Bott orbits that belong to S1-familiesfoliating I [ �M . If  is one of the latter, then we observe that sine u(i)�;� doesn't intersetR � (I [ �M), the asymptoti winding of u(i)�;� as it approahes  mathes the winding of anynontrivial setion in kerA , whih is zero in the hosen oordinates. Thus for suÆientlysmall � > 0, the two largest negative eigenvalues of A � � both have zero winding, implying���( � �) = 0 and p( � �) = 1, hene by (3.2),(3.15) ��CZ( � �) = 2���( � �) + p( � �) = 1:Sine u(i)�;� projets to an embedding in M 0, it is everywhere transverse to the omplexsubspae in T (R �M 0) spanned by �t and X0, though asymptotially u(i)�;� beomes tangentto this spae. We an thus de�ne a sensible normal bundle N ! _�i for u(i)�;� as follows: let Xdenote the smooth vetor �eld onM 0n(B[I[�M) that equals �� in every (�; �; �)-oordinateneighborhood (exept at f� = 0g, where this is not well de�ned), and X0 everywhere outside



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 43of this. Then the J0-omplex span of this vetor �eld de�nes a bundle that extends smoothlyover B [ I [ �M , and we de�ne the normal bundle N ! _�i to be the restrition of thisbundle to the image of u(i)�;� . From this onstrution it is lear that �1 (N) = 0. Now sine u(i)�;�is embedded, its index is the index of the normal Cauhy-Riemann operator on the bundleN ! _�i, so by (3.8),ind�u(i)�;�� = �( _�i) + 2�1 (N) +X ��CZ( � �) = �(�i) = 2� 2gi;where the summation is over all the asymptoti orbits of u(i)�;� , whose Conley-Zehnder indiesthus anel out the terms in �( _�i) resulting from the puntures. �From this alulation it follows that the higher genus urves in F0 will vanish under generiperturbations of the data. In ontrast, the genus zero urves have exatly the right propertiesto apply the following useful perturbation result (f. [Wen05, Theorem 4.5.44℄):Impliit Funtion Theorem. Assume M is any losed 3-manifold with stable Hamiltonianstruture H = (�; !), J 2 J (H), andu = �uR; uM� : _� n �! R �Mis a �nite energy J-holomorphi urve with positive/negative puntures �� � � and thefollowing properties:(1) u is embedded and asymptoti to simply overed periodi orbits at eah punture, andsatis�es Æ1(u) = 0.(2) _� has genus zero.(3) All asymptoti orbits z of u for z 2 �� are either nondegenerate or belong to S1-parametrized Morse-Bott families foliating tori, andp(z � �) = 1for all z 2 �� and suÆiently small � > 0.(4) ind(u) = 2.Then u is Fredholm regular and belongs to a smooth 2-parameter family of embedded urvesu(�;�) = �uR� + �; uM� � : _�! R �M; (�; �) 2 R � (�1; 1)with u(0;0) = u, whose images foliate an open neighborhood of u( _�) in R �M . Moreover, themaps uM� : _�!M are all embedded and foliate an open neighborhood of uM ( _�) in M , and if�z denotes a degenerate Morse-Bott asymptoti orbit of u(�;�) for some �xed punture z 2 �,then the map � 7! �z parametrizes a neighborhood of 0z in its S1-family of orbits.Using this and a simple topologial argument in [Wen10℄, it follows that whenever gi = 0,the family u(i)�;� perturbs smoothly along with any suÆiently small perturbation of J0. Inpartiular, piking � > 0 small and J� 2 J (H�) lose to J0, there is a orresponding familyof J�-holomorphi urves in R �Mi that projet to a blown up summed open book on Mithat is C1-lose to the original one. Perturbing �� a little bit further outside a suitableneighborhood of B[I[�M , we an then also turn �� into a globally Morse-Bott ontat form,and a orresponding perturbation of J� makes the latter Fredholm regular. This proves the

44 CHRIS WENDLexistene part of Theorem 7. We will ontinue to denote the J�-holomorphi pages onstrutedin this way by u(i)�;� : _�i ! R �Mi;for all i = 0; : : : ; N with gi = 0.3.2.4. Uniqueness. Despite their obvious instability, the higher genus urves in the foliationF0 are useful due to the following uniqueness result based on intersetion theory. Here m0 2 Ndenotes the multipliity bound from Lemma 3.7, whih we an assume to be arbitrarily large.Proposition 3.13. Suppose v : _� ! R � M 0 is a somewhere injetive �nite energy J0-holomorphi urve that intersets the interior of R�Mi and has all its positive ends asymptotito orbits in B [ I [ �M , where the orbits in Bi eah have overing multipliity at most m0.Then v parametrizes one of the surfaes S(i)�;� .Proof. We use the homotopy invariant intersetion number u�v 2 Z de�ned by Siefring [Sie11℄for asymptotially ylindrial maps u and v. If v does not parametrize any leaf of F (i)0 , thenits intersetion with R�Mi implies that it has at least one isolated positive intersetion withsome leaf S(i)�;� with J0-holomorphi parametrization u(i)�;� , heneu(i)�;� � v > 0:By hanging � slightly, we may assume without loss of generality that any ends of u(i)�;�approahing Morse-Bott orbits in I [ �M are disjoint from the positive asymptoti orbitsof v. By homotopy invariane, we an also take advantage of the lak of negative ends for u(i)�;�and R-translate it until its image lies entirely in [0;1)�M 0. We an likewise hange v by ahomotopy through asymptotially ylindrial maps so that its intersetion with [0;1)�M 0 liesentirely in the trivial ylinders over its positive asymptoti orbits, i.e. in [0;1)�(B[I[�M).An example of this kind of homotopy is shown in Figure 9. The intersetion number aboveis then a sum of the form u(i)�;� � v =X u(i)�;� � (R � );where the summation is over some olletion of orbits  in B [ I [ �M , and we use R �  asshorthand for a J0-holomorphi urve that parametrizes the trivial ylinder over . Note thatu(i)�;� never has an atual intersetion with R�, so the intersetions ounted by u(i)�;� � (R�)are asymptoti, i.e. they are hidden intersetions that ould potentially emerge from in�nityunder small perturbations of the data. Sine we've arranged for u(i)�;� and v to have noMorse-Bott orbits in ommon, the asymptoti intersetions vanish exept possibly for orbits � Bi of overing multipliity m � m0. As explained in [Sie11, x3.2℄, eah suh asymptotiintersetion an be expressed in terms of the di�erene in the asymptoti winding of them-foldover of the end of u(i)�;� about  from its maximum possible value, whih (by standard resultsin [HWZ96a,HWZ95a℄) is the winding number of the asymptoti eigenfuntion with largestnegative eigenvalue. In the natural trivialization � determined by the (�; �; �)-oordinates,eah of the relevant orbits  has ��CZ() = 1 = 2���() + 1, hene ���() = 0 using (3.2).By onstrution, the asymptoti winding of u(i)�;� as it approahes  is also zero, hene thiswinding is extremal, and this impliesu(i)�;� � (R � ) = 0:This is a ontradition. �
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RT0T0MBM0u�;�T1T2e1h1e2h2v+1v�1v+2v�2u0BIS1 � D(T 3=Z2) n N (K)12321222vkv1�v2�Figure 9. A homotopy of two asymptotially ylindrial maps, reduing theomputation of the intersetion number to the intersetion of one holomorphiurve with the asymptoti trivial ylinders of the other.The above proof also works for a J�-holomorphi urve if it passes through a region that isfoliated by J�-holomorphi pages. In partiular, sine we've already shown this to be true inthe planar piee M0 for suÆiently small � > 0, we dedue the following parallel result:Proposition 3.14. For all suÆiently small � > 0, the following holds: if v : _�! R �M 0 isa somewhere injetive �nite energy J�-holomorphi urve that intersets the interior of R�M0and has all its positive ends asymptoti to orbits in B [ I [ �M , where the orbits in B0 haveovering multipliity at most m0, then v is a reparametrization of one of the J�-holomorphipages u(0)�;� .We now prove the remainder of the uniqueness statement in Theorem 7. Choose a sequene�k > 0 onverging to zero, denote �k := ��k and �k := ker �k, and hoose generi almostomplex strutures Jk 2 J (H�k) with Jk ! J0 in C1. By small perturbations we an assumethe forms �k are all Morse-Bott and have the properties listed in Lemma 3.7: in partiularthe minimal periods of the orbits in B0 [ I0 [ �M0 are bounded by an arbitrarily smallnumber � > 0, while all others are at least 1, and the orbits in B0 have Conley-Zehnderindex 1. We an also assume that for suÆiently large k, planar Jk-holomorphi pages u(i)�;�in R �Mi exist whenever gi = 0, and hene Prop. 3.14 holds. Now arguing by ontradition,suppose that for every k, there exists a �nite energy Jk-holomorphi urvevk : ( _�k; jk)! (R �M 0; Jk)whih is strongly subordinate to �0 and is (for large k) not equivalent to any of the planarurves u(i)�;� . If vk has any positive end asymptoti to an orbit in B0 or I0, then it mustinterset the interior of R � M0 and Proposition 3.14 already gives a ontradition. Wean therefore assume that the positive ends of vk approah simply overed orbits in distintonneted omponents of �M0. This implies that they are all somewhere injetive.Lemma 3.15. A subsequene of vk onverges to one of the J0-holomorphi leaves of thefoliation F0.Proof. We proeed in three steps.Step 1: Energy bounds. We use the stable Hamiltonian struture H�k = (�k; !) to de�nethe energy of vk. To be preise, hoose 0 > 0 small enough so that ! + d(t�0) is sympletion [�0; 0℄�M 0; the same is then true for all !+d(t�k) with k suÆiently large, so following

46 CHRIS WENDL(3.3) and (3.4), de�ne Ek(vk) = Z _�k v�k! + sup'2T Z _�k v�kd('�k);where T = f' 2 C1(R; (�0 ; 0)) j '0 > 0g. Sine ! is exat, Ek(vk) depends only on theasymptoti behavior of vk. Now sine the positive ends all approah simple orbits in distintonneted omponents of �M0, the number of ends and sum of their periods are uniformlybounded, implying a uniform bound on Ek(vk).Step 2: Genus bounds. After taking a subsequene we may assume that all the urves vkhave the same number of positive and negative puntures. It is still possible however thatthe surfaes _�k ould have unbounded topology, i.e. their genus ould blow up as k !1. Toprelude this, we apply the urrents version of Gromov ompatness, see [Tau98, Prop. 3.3℄or [Hut02, Lemma 9.9℄. The key fat is that sine Ek(vk) is uniformly bounded, Hk ! H0and Jk ! J0, vk as a sequene of urrents has a onvergent subsequene, and this implies inpartiular that the relative homology lasses [vk℄ for this subsequene onverge. We now plugthis into the adjuntion formula (3.9) for puntured holomorphi urves, whih impliesvk � vk � 2 [Æ(vk) + Æ1(vk)℄ + N (vk) � N (vk):Both the right and left hand sides of this expression depend only on [vk℄ and on ertain integervalued winding numbers of eigenfuntions at the asymptoti orbits of vk. As orbits vary ina Morse-Bott family that all have the same minimal period, these winding numbers remainonstant, thus by the onvergene of [vk℄, the sequene vk � vk onverges to a �xed integer,implying an upper bound on N (vk) for large k. The latter an be written as �1 (vk)� �( _�k)plus more winding numbers of eigenfuntions, thus every term other than �( _�k) onverges,and we obtain a uniform upper bound on ��( _�k), or equivalently, an upper bound on thegenus of _�k.Step 3: SFT ompatness. We an now assume the domains _�k are a �xed surfae _�, sothe sequene vk with uniform energy bound Ek(vk) < C satis�es the ompatness theorem ofSympleti Field Theory [BEH+03℄. There is one subtle point to be areful of here: sine X0is not a Morse-Bott vetor �eld, it is not lear at �rst whether the SFT ompatness theoryan be applied as H�k ! H0. What saves us is the fat that vk is asymptoti at +1 toorbits with arbitrarily small period: then for energy reasons, we may assume the only orbitsthat an appear under breaking or bubbling are other orbits in B0 [ I0 [ �M0, all of whihare Morse-Bott. With this observation, the proof of SFT ompatness in [BEH+03℄ goesthrough unhanged. We an thus assume that vk onverges to a J0-holomorphi building v1.The positive asymptoti orbits of v1 are all simply overed and lie in distint onnetedomponents of �M0, thus the top level of v1 ontains at least one somewhere injetive urvev+ that is strongly subordinate to �0. Then Prop. 3.13 implies that v+ parametrizes a leafof the foliation F0, so it has no negative ends. The same is true for every other top levelomponent of v1 unless it is a trivial ylinder, and nontrivial urves must all be distintsine they approah distint orbits at their positive ends. It follows that they do not interseteah other, so there is no possibility of nodes onneting them, and the building must bedisonneted unless it onsists of only a single omponent, namely v+. �We are now just about done with the proof of Theorem 7: the impliit funtion the-orem implies that if the limit v1 = limvk has genus zero, then vk is always one of theJk-holomorphi pages u(i)�;� for suÆiently large k. If on the other hand v1 has genus g > 0,



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 47then ind(vk) = ind(v1) = 2 � 2g � 0 by Prop. 3.12, yet vk must be Fredholm regular sineJk was hosen generially, and this gives a ontradition.3.3. Deformation and ompatness. We now prove a ompatness result for families ofholomorphi urves in sympleti manifolds that emerge from the holomorphi pages providedby Theorem 7.We reall �rst that every strong sympleti �lling an be ompleted by attahing a ylindri-al end. To be preise, assume (M 0; �) is a losed, onneted ontat 3-manifold with positiveontat form �, and for any two smooth funtions f; g :M 0 ! [�1;1℄ with g > f , de�ne asubdomain of the sympletization (R �M 0; d(et�)) by(3.16) Sgf = f(t;m) 2 R �M 0 j f(m) � t � g(m) g:Here we inlude the ases f � �1 and g � +1 so that Sgf may be unbounded. Now supposeM 0 = �W , where (W;!) is a (not neessarily ompat) sympleti manifold with ontattype boundary, and � is a primitive of ! de�ned near �W suh that �jTM 0 = ef� for somesmooth funtion f : M 0 ! R. Then using the ow of the Liouville vetor �eld Y de�ned by�Y ! = �, one an identify a neighborhood ofM 0 in (W;!) sympletially with a neighborhoodof �Sf�1 in (Sf�1; d(et�)). As a onsequene, one an sympletially glue the ylindrial end(S1f ; d(et�)) to (W;!) along M 0, giving a nonompat sympleti manifold(W1; !) := (W;!) [M 0 (S1f ; d(et�));whih neessarily ontains the half-sympletization ([T;1) �M 0; d(et�)) whenever T 2 R issuÆiently large.Adopting the notation from the setup for Theorem 7, assume now that in addition tothe above, (M 0; �) ontains a partially planar domain M � M 0 with irreduible subdomainsM = M0 [ : : : [MN for N � 0, of whih M0 is a planar piee lying in the interior of M .By Theorem 7, we an then �nd a Morse-Bott ontat form � on M 0 and generi ompatiblealmost omplex struture J+ suh that the planar pages in M0 lift to an R-invariant foliationby properly embedded J+-holomorphi urves in R�M 0 , whose asymptoti orbits are simplyovered and have minimal period less than an arbitrarily small number �0 > 0, while all otherlosed orbits of X� in M 0 have period at least 1. Assume that � is the ontat form hosenfor de�ning the sympleti ylindrial end in (W1; !).Choose an almost omplex struture J onW1 whih is ompatible with !, generi onW �W1 and mathes J+ on S1f �W1. Then every leaf of the J+-holomorphi foliation in R�M0has an R-translation that an be regarded as a properly embedded surfae in S1f � W1parametrized by a �nite energy J -holomorphi urve. The main idea used for the proofs in x4.1is to show that these urves generate a moduli spae of J -holomorphi urves that must �ll theentirety ofW1, and leads to a ontradition in any of the situations onsidered by Theorems 1,4 and 5. To prove this, we need a deformation result and a orresponding ompatness resultto show that the region �lled by these urves is open and losed respetively. We shall provesomewhat more general versions of these results than are immediately needed, as they arealso useful for other appliations (e.g. in [NW11,LVW℄).We now generalize the above setup as follows: let u+ : _� ! W1 denote one of theJ -holomorphi planar pages living in the ylindrial end of (W1; !), and pik any openneighborhood U �M 0 and T > 0 suh thatu+( _�) � [T;1)� U :

48 CHRIS WENDLChoose any data (�0; !0; J 0) with the following properties:� �0 is a Morse-Bott ontat form on M 0 that mathes � on U [N (B0 [I0 [ �M0) andhas only Reeb orbits of period at least 1 outside of N (B0 [ I0 [ �M0)� !0 is a sympeti form on W1 that mathes d(et�0) on S1f� J 0 is an !0-ompatible almost omplex struture on W1 that has an R-invariantrestrition J 0+ := J 0jS1fthat is generi and ompatible with �0 and mathes J+ on R�(U [N (B0[I0[�M0)),and J 0 is generi on W .The advantage of this generalization is that fairly arbitrary hanges to the data an beaommodated outside a neighborhood of a single page, whih is useful for instane in theadaptation of these arguments for weak �llings (f. [NW11℄). Let M�(J 0) denote the modulispae of all unparametrized somewhere injetive �nite energy J 0-holomorphi urves in W1,whih is non-empty by onstrution sine it ontains u+, and de�neM�0(J 0) �M�(J 0)to be the onneted omponent of this spae ontaining u+. The urves u 2M�0(J 0) share allhomotopy invariant properties of the planar J+-holomorphi pages in R �M 0, in partiular:(1) ind(u) = 2,(2) u � u = Æ(u) + Æ1(u) = 0.It follows that all urves in M�0(J 0) are embedded. This situation is a slight variation onthe setup that was onsidered in [ABW10, x4℄, only with the added ompliation that urvesin M�0(J 0) may have two ends approahing the same Morse-Bott Reeb orbit, whih presentsthe danger of degeneration to holomorphi buildings with multiply overed omponents. Therequired deformation result is however exatly the same: it depends on the fat that a neigh-borhood of eah embedded urve u 2 M�0(J 0) an be desribed by setions of its normalbundle whih are nowhere vanishing, beause they satisfy a Cauhy-Riemann type equationand have vanishing �rst Chern number with respet to ertain speial trivializations at theends.Proposition 3.16 ([ABW10, Theorem 4.7℄). The moduli spae M�0(J 0) is a smooth 2-dimensional manifold ontaining only proper embeddings that never interset eah other: inpartiular they foliate an open subset of W1.The ompatness result we need is a variation on [ABW10, Theorem 4.8℄, but somewhatmore ompliated due to the appearane of multiple overs. For the statement of the result,reall that the ompati�ation in [BEH+03℄ for the spae of �nite energy holomorphi urvesin an almost omplex manifold with ylindrial ends onsists of so-alled stable holomorphibuildings, whih have one main level and potentially multiple upper and lower levels, eah ofwhih is a (perhaps disonneted) nodal holomorphi urve. We will be onsidering sequenesof urves in W1 that stay within a bounded distane of the positive end, so there will be nolower levels in the limit. We shall use the term \smooth holomorphi urve" to mean a holo-morphi building with only one level and no nodes. The following variation on De�nition 3.3will be onvenient.De�nition 3.17. A J 0-holomorphi urve u : _� ! W1 will be alled subordinate to �0if it has only positive ends, all of whih approah Reeb orbits in B0 [ I0 [ �M0, with total



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 49multipliity at most 1 for eah onneted omponent of B0 [ �M0 and at most 2 for eahonneted omponent of I0.Observe that all the urves in M�0(J 0) are subordinate to �0. The intersetion argumentin the proof of Prop. 3.13 now implies:Lemma 3.18. If u 2M�(J) is subordinate to �0, then u � u+ = 0.Theorem 8. Choose an open subset W0 � W that ontains �W and has ompat losure,and let W10 = W0 [M 0 S1f . Then there is a �nite set of index 0 urves �(W0) � M�(J 0)subordinate to �0 and with images in W10 suh that the following holds. Any sequene ofurves uk 2 M�0(J 0) with images in W10 has a subsequene onvergent (in the sense of[BEH+03℄) to one of the following:(1) A urve in M�0(J 0)(2) A holomorphi building with empty main level and one nontrivial upper level onsistingof a single onneted urve that an be identi�ed (up to R-translation) with a urvein M�0(J 0) with image in S1f(3) A J 0-holomorphi building whose upper levels ontain only overs of trivial ylinders,and main level onsists of a onneted double over of a urve in �(W0)(4) A J 0-holomorphi building whose upper levels ontain only overs of trivial ylin-ders, and main level ontains at most two onneted omponents, whih are urvesin �(W0).Proof. Assume uk is a sequene of either index 2 urves in M�0(J 0) or index 0 urves subor-dinate to �0 with images in W10 and only simply overed asymptoti orbits. By [BEH+03℄,uk has a subsequene onverging to a stable J 0-holomorphi building u1. The main idea isto add up the indies of all the onneted omponents of u1 and use generiity to deriverestritions on the on�guration of u1. To failitate this, we introdue a variation on theusual Fredholm index formula (3.7): for any �nite energy holomorphi urve v : _�! R �M 0with positive and negative asymptoti orbits fzgz2�� , hoose a small number � > 0 andtrivializations � of the ontat bundle along eah z and de�ne the onstrained indexind(v) = ��( _�) + 2�1 (v) + Xz2�+ ��CZ(z � �)� Xz2�� ��CZ(z � �):The only di�erene here from (3.7) is that at the negative puntures we take ��CZ(z � �)instead of ��CZ(z + �), whih geometrially means we ompute the virtual dimension of aspae of urves whose negative ends have all their Morse-Bott orbits �xed in plae. Sofor urves without negative ends ind(v) = ind(v), and the onstrained index otherwise hasthe advantage of being additive aross levels, i.e. if the building u1 has no nodes, then weobtain ind(uk) = ind(u1) if the latter is de�ned as the sum of the onstrained indies forall its onneted omponents. Observe that trivial ylinders over Reeb orbits always haveonstrained index 0. If u1 does have nodes, the formula remains true after adding 2 for eahnode in the building, so we then take this as a de�nition of the index for a nodal urve ornodal holomorphi building. We now proeed in several steps.Step 1: Curves in upper levels. We laim that every onneted omponent of u1 eitherhas no negative ends or is a over of a trivial ylinder (in an upper level). Indeed, urves inthe main level obviously have no negative ends, and if v is an upper level omponent withnegative ends, the smallness of the periods in B0[I0[�M0 onstrains these to approah other

50 CHRIS WENDLorbits in B0 [I0 [ �M0, as otherwise v would have negative energy. Then if v does not overa trivial ylinder, an intersetion argument arried out in [ABW10, Proof of Theorem 4.8℄implies that v must interset u+, ontraditing Lemma 3.18 above. The key idea here is toonsider the asymptoti winding numbers that ontrol holomorphi urves approahing orbitsat B0 [I0[�M0, whih di�er for positive and negative ends at eah of these orbits, and thusfore v to interset u+ in the projetion to M 0. We refer to [ABW10℄ for the details; notethat a similar argument has also appeared in [Mom08℄.Step 2: Indies of onnetors. Borrowing some terminology from Embedded Contat Ho-mology, we refer to branhed multiple overs of trivial ylinders as onnetors. These anappear in the upper levels of u1, but an never have any urves above them exept for furtherovers of trivial ylinders, due to Step 1. Sine the positive ends of u1 approah any givenorbit in B0[I0[�M0 with total multipliity at most 2, only the following types of onnetorsan appear, both with genus zero:� Pair-of-pants onnetors: these have one positive end at a doubly overed orbit andtwo negative ends at the same simply overed orbit.� Inverted pair-of-pants onnetors: with two positive ends at the same simply overedorbit and one negative end at its double over.The seond variety will be espeially important, and we'll refer to it for short as an invertedonnetor. As we omputed in (3.15), all of the simply overed Morse-Bott orbits underonsideration have ��CZ( � �) = 1 in the natural trivialization, and in fat exatly the sameargument produes the same result for their multiple overs. We thus �nd that the onstrainedFredholm index is 0 for a pair-of-pants onnetor and 2 for the inverted variant.Step 3: Indies of multiple overs. Suppose v is a onneted omponent of u1 whih isnot a over of a trivial ylinder: then it has no negative ends, and all its positive ends mustapproah orbits in B0 [ I0 [ �M0 with total multipliity at most 2. Thus if v is a k-foldover of a somewhere injetive urve v0, we have k 2 f1; 2g, and all the asymptoti orbits ofboth v and v0 have ��CZ( � �) = 1 in the natural trivialization. Assume k = 2, and labelthe positive puntures of v as � = �1 [ �2, where a punture is de�ned to belong to �2 if itsasymptoti orbit is doubly overed, and �1 otherwise. For i = 1; 2, let �0i denote the punturesof v0 that are overed by �i, so the set of all puntures �0 of v0 is �01 [ �02. Note that in thissituation all the asymptoti orbits of v must have total multipliity exatly 2, whih impliesthat all asymptoti orbits of v0 are distint and simply overed, and we have #�2 = #�02 and#�1 = 2#�01. Both domains must also have genus zero, so we haveind(v) = �(2�#�) + 2�1 (v) +#� = �2 + 2(#�02 + 2#�01) + 2k�1 (v0);ind(v0) = �(2�#�0) + 2�1 (v0) + #�0 = �2 + 2(#�02 +#�01) + 2�1 (v0);hene(3.17) ind(v) = k ind(v0) + 2(k � 1)(1 �#�2):This formula also trivially holds if k = 1. This gives a lower bound on ind(v) sine ind(v0) isbounded from below by either 1 (in R�M 0) or 0 (inW1) due to generiity. Now observe thatwhenever �2 is non-empty, the doubly overed orbit must onnet v to an inverted onnetor,whose onstrained index is 2, so for k = 2 we have(3.18) ind(v) +XC ind(C) = k ind(v0) + 2(k � 1) � 2;



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 51where the sum is over all inverted onnetors that onnet to v along doubly overed breakingorbits.Step 4: Indies of bubbles. There may also be losed omponents in the main level of u1:these are J 0-holomorphi spheres v whih are either onstant (ghost bubbles) or are k-foldovers of somewhere injetive spheres v0 for some k 2 N. In the latter ase, (3.17) also holdswith #�2 = 0, implying ind(v) � 0, and the inequality is strit whenever k > 1.If v is a ghost bubble, then ind(v) = �2, but then the stability ondition implies theexistene of at least three nodes onneting v to other omponents; let us refer to nodes ofthis type as ghost nodes. There is then a graph with verties representing the ghost bubblesin u1 and edges representing the ghost nodes that onnet two ghost bubbles together, andsine u1 has arithmeti genus zero, every onneted omponent of this graph is a tree. Let Gdenote suh a onneted omponent, with V verties and Ei edges, whih therefore satisfyV � Ei = 1, and suppose there are also Ee nodes onneting the ghost bubbles representedby G to nononstant omponents; we an think of these as represented by \external" edgesin G. By the stability ondition, we have2Ei +Ee � 3V;whih after replaing Ei by V � 1, beomes Ee � 2 � V . Then the total ontribution toind(u1) from all the ghost bubbles and ghost nodes represented by G is�2V + 2(Ei +Ee) = [�2V + (2Ei +Ee)℄ +Ee � V + (2 + V )= 2V + 2 � 4;(3.19)unless u1 has no ghost bubbles at all.Step 5: The total index of u1. We an now break down ind(u1) 2 f0; 2g into a sum ofnonnegative terms and use this to rule out most possibilities. Ghost bubbles are exludedimmediately due to (3.19). Similarly, there annot be any multiply overed bubbles, beausethese imply the existene of at least one node and thus ontribute at least 4 to ind(u1).The only remaining possibility for multiple overs (aside from onnetors) is a omponentwith only positive ends, whose index together with ontributions from attahed invertedonnetors is given by (3.18) and is thus already at least 2. In fat, if this omponent existsin an upper level, then the underlying simple urve must have index at least 1, implying aneven larger lower bound in (3.18) and hene a ontradition. The remaining possibility, whihours in the ase ind(u1) = 2, is therefore that the main level onsists only of a onneteddouble over, and there are no nodes at all, nor anything other than trivial ylinders andonnetors in the upper levels (Figure 10). The underlying simple urve in the main level hasindex 0 and has only simply overed asymptoti orbits, all in separate onneted omponentsof B0 [ I0 [ �M0, thus it is subordinate to �0.Assume now that u1 ontains no multiply overed omponents exept possibly for on-netors. If there is an upper level omponent v that is not a over of a trivial ylinder, thengenerity implies ind(v) � 1, and in fat the index must also be even sine all the asymptotiorbits satisfy ��CZ( � �) = 1. Then ind(u1) = ind(v) = 2 and there are no nodes or invertedonnetors; the latter implies that all positive asymptoti orbits of v must be simply overed.Then there also annot be any doubly overed breaking orbits, leaving only the possibilitythat v is the only nontrivial omponent in u1.Next assume there are only overs of trivial ylinders in the upper levels, in whih asethe main level is neessarily non-empty. Eah omponent in the main level has a nonnegativeeven index, so there an be at most one node or one inverted onnetor in u1, and only
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11 1 22 2 33 321 222vkv1�v2�Figure 10. The limit building u1 in a ase where all asymptoti orbits havetotal multipliity two, so the main level may be a double over of an index 0urve, while the upper level inludes onnetors and trivial ylinders (the latternot shown in the piture). The numbers inside eah omponent indiate theonstrained index.if ind(u1) = 2. If the main level ontains a omponent v of index 2, then there are nonodes or inverted onnetors. The latter preludes doubly overed breaking orbits, thus thereare no onnetors at all, and sine v annot have negative ends, we onlude that u1 = v(Figure 11). Otherwise all main level omponents in u1 have index 0 and are subordinateto �0. Examples of the possible on�gurations are shown in Figures 12{15.Step 6: Compatness for index 0 urves. If ind(u1) = 2, then the somewhere injetiveindex 0 urves that an appear in the building u1 are all subordinate to �0 and ome in twotypes:� Type 1: Curves with only simply overed asymptoti orbits.� Type 2: Curves with exatly one doubly overed asymptoti orbit and all otherssimply overed, and satisfying v � v = 0.Indeed, the seond type an our as the unique main level urve in u1 if there is a singleinverted onnetor in an upper level, attahed along the doubly overed orbit (Figure 14). Tosee that v � v = 0 for suh a urve, we use the ontinuity of the intersetion number underonvergene to buildings, and the fat that uk � uk = 0 sine uk 2 M�0(J 0); a omputationshows that the ontribution to u1 � u1 from trivial ylinders and onnetors in the upperlevel plus breaking orbits adds up to 0. The index ounting argument of the previous stepsshows already that the urves of Type 1 form a ompat and hene �nite set. To �nish theproof, we must show that the same is true for the Type 2 urves.Suppose vk is a sequene of Type 2 urves onverging to a holomorphi building v1.Applying the index ounting argument from the previous steps, v1 annot ontain any nodesor inverted onnetors; the worst ase senario is that the upper levels ontain only trivialylinders and a single pair-of-pants onnetor, whose two negative ends onnet to two mainlevel omponents v1� and v2� that are both Type 1 urves (Figure 16). Sine there are �nitelymany Type 1 urves, we may assume by generiity of J 0 that no two of them approah aommon orbit in the Morse-Bott families I0, but this must be the ase for v1� and v2� as theyare both attahed to a onnetor over an orbit in I0, so we onlude that both are the sameurve, whih we'll all v�. We an rule out this senario by omputing the self-intersetion
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 2vkv1�v2� Figure 15. Bothtypes of onnetorsan appear.number v1 � v1, whih must a priori equal vk � vk = 0. One more the onnetors, trivialylinders and breaking orbits ontribute zero in total, so sine the main level inludes twoopies of v�, we dedue 0 = v1 � v1 = 4(v� � v�):But we an also ompute v� � v� diretly from the adjuntion formula (3.9); indeed,v� � v� = 2 [Æ(v�) + Æ1(v�)℄ + N (v�);where we've dropped the last term in (3.9) sine all the asymptoti orbits are simple. Theonstrained normal Chern number N (v�) is de�ned in (3.10) and an be dedued from thefat that ind(v�) = 0: sine all of the relevant orbits satisfy ��CZ(��) = 1 and ���(+�) = 0,we �nd 2�1 (v�) = ind(v�) + �( _�)�Pz2� ��CZ(z � �) = 2� 2#�, heneN (v�) = �1 (v�)� �( _�) + Xz2�+ ���(z + �) = 1�#�� (2�#�) = �1:This implies that v� � v� is odd, and is thus a ontradition. �

54 CHRIS WENDL
0

PSfrag replaementsS1fg0�01 + ����1�2� = 0jslopej = 1� + �0�=3231r � Æ02r=3�0�r=3�(1� �0)'RT0T0MBM0u�;�T1T2e1h1e2h2v+1v�1v+2v�2u0BIS1 � D(T 3=Z2) n N (K)1232122 2 2vk v1� v2�Figure 16. A possible limit of the sequene vk.4. Proofs of the main results4.1. Non-�llability. We are now in a position to prove the main results on sympleti �llings.Proof of Theorem 5 and Corollary 4. Given Proposition 3.16 (impliit funtion theorem) andTheorem 8 (ompatness) above, the result follows from the same argument as in [ABW10℄.For ompleteness let us briey reall the main idea: if (M; �) is a losed ontat 3-manifoldwhih embeds as a non-separating ontat type hypersurfae into some losed sympleti4-manifold (W;!), then by utting W open along M and gluing together an in�nite hainof opies of the resulting sympleti obordism between (M; �) and itself, we obtain a non-ompat but geometrially bounded sympleti manifold (W; !) with ontat type boundary(M; �). Attahing a ylindrial end and onsidering the moduli spaeM0(J) that arises froma partially planar domain, one an use the monotoniity lemma to prevent the urves inM0(J) from esaping beyond a ompat subset ofW, thus the ompatness result Theorem 8applies. In ombination with Prop. 3.16, this implies that outside a subset of odimension 2(the images of �nitely many urves from Theorem 8), the set of all points in W �lled byurves inM0(J) must be open and losed, and is therefore everything; sine those urves areon�ned to a ompat subset, this implies W is ompat and is thus a ontradition.By a similar argument one an prove Corollary 4 independently of Theorem 5, for if (W;!)is a strong �lling with at least two boundary omponents (M; �) and (M 0; �0), then the urvesin M0(J) emerging from the ylindrial end at M will foliate W1 exept at a subset ofodimension 2; yet they annot enter the ylindrial end at M 0 due to onvexity, and this isagain a ontradition. �Proof of Theorem 1. Assume (W;!) is a strong �lling of (M; �) and the partially planar do-main M0 � M is a planar torsion domain. It therefore has a planar piee MP0 � M0, whihis a proper subset of its interior. Combining Prop. 3.16 (impliit funtion theorem) and The-orem 8 (ompatness) as in the proof of Theorem 5 above, the urves inM0(J) that emergefrom MP0 in the ylindrial end of W1 form a foliation of W1 outside a subset of odimen-sion 2. We an therefore pik a point p 2M nMP0 and �nd a sequene of urves uk 2M0(J)for k ! 1 whose images ontain (k; p) 2 [T;1) �M � W1. Applying Theorem 8 again,these have a subsequene whih onverges to a J+-holomorphi urve u0 in R �M , whose as-ymptoti orbits are in the same Morse-Bott families as the urves inM0(J). The uniquenessstatement in the holomorphi open book result (Theorem 7) then implies that u0 is a lift of apage in the blown up summed open book on M0, whih proves that M0 =M , and M0 nMP0onsists of a single family of pages di�eomorphi to the planar pages inMP0 and approahing
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IS1 � D(T 3=Z2) n N (K)12321222vkv1�v2�Figure 17. The sympleti obordism used in the proof of Theorem 4, withthe negative end \walled o�" by holomorphi pages of an open book. Thealmost omplex struture in the shaded region is a non-generi one for whihholomorphi open books always exist.the same Reeb orbits at their boundaries. In other words, M0 is a symmetri summed openbook, whih ontradits the de�nition of a planar torsion domain. �Proof of Theorem 4. The idea is muh the same as in the proof of Theorem 1, but instead ofworking in the ompat ontext of a sympleti �lling, we work in a nonompat sympletiobordism di�eomorphi to R �M , in whih the negative end is \walled o�" so that urvesin M0(J) annot reah it. This wall is reated by a family of holomorphi urves, namelya subset of the generally non-generi family arising from an open book deomposition (seeFigure 17).Spei�ally, suppose � :M nB ! S1 is an open book deomposition. Reall from Prop. 3.9that there is a sympleti obordism (W;
) = ([0; 1℄�M;
) where 
 has the form !+d(t�0)near f0g �M , d(et�) near f1g �M and d('(t)�0) in a neighborhood of [0; 1℄ � B for somepositive inreasing funtion '. Here H� = (��; !) is a family of stable Hamiltonian struturesadapted to the open book, so �� = ker�� for some small � > 0 is a supported ontat strutureand � is a ontat form for ��.Arguing by ontradition, assume (M; ��) ontains a planar torsion domain M0 that isdisjoint from B. We an then �nd a neighborhood U � M of B suh that M0 � M n U and
 = d('(t)�0) on [0; 1℄�U . Extend W to a nonompat sympleti manifold as follows: �rstattah to f1g �M a positive ylindrial end that ontains a half-sympletization of the form([T �1)�M;d(et�)):

56 CHRIS WENDLNote that sine f1g � M is a onvex boundary omponent of (W;
), we are free here tohoose � as any ontat form with ker� = ��: in partiular on M0 we an assume it is thespeial Morse-Bott ontat form provided by Theorem 7, and sine M0 \ U = ;, we an alsoassume � = �0 in U and 
 = d(et�0) on [1;1) � U . Seondly, attah to f0g �M a negativeylindrial end of the form ((�1; 0℄ �M;! + d( (t)�0));where  : (�1; 0℄ ! R is an inreasing funtion with suÆiently small magnitude to makethe form sympleti. Denote the resulting nonompat sympleti manifold by (W1; !).Reall the speial almost omplex struture J0 2 J (H0) onstruted in x3.2, for whih allthe pages of � admit J0-holomorphi lifts in R �M . We now an hoose an almost omplexstruture J on (W1; !) that has the following properties:(1) J is everywhere ompatible with !(2) J = J0 on both R � U and (�1; 0℄�M(3) On [T;1)�M , J is the speial almost omplex struture ompatible with � providedby Theorem 7.Now the moduli spae M0(J) of J-holomorphi urves emerging from M0 in the positiveend an be de�ned as in the previous proof. The important new feature is that we also haveJ -holomorphi urves inW1 oming from the J0-holomorphi lifts of pages of the open book:in fat for some T0 2 R suÆiently lose to �1, every point in (�1; T0℄ �M is ontainedin suh a urve (see Figure 17). The leaves of the foliation in [T;1) � M0 obviously donot interset these urves, so positivity of intersetions implies that no urve in M0(J) mayinterset them. It follows that the urves in M0(J) an never enter (�1; T0℄ �M , so theompatness result Theorem 8 applies, and we onlude as before that M0(J) �lls an openand losed subset of W1 outside a subset of omdimension 2. But this fores some urve inM0(J) to enter the negative end eventually, and we have a ontradition. �Remark 4.1. For an arguably easier proof of Theorem 4, one an present it as a orollary ofTheorem 1 by showing that whenever (M; �) is supported by an open book � : M n B ! S1and U � M is a neighborhood of the binding, (M n U ; �) an be embedded into a strongly�llable ontat manifold. This an be onstruted by a doubling trik using the bindingsum: if (M 0; �0) is supported by an open book that has the same page P as � but inversemonodromy, then one an onstrut a larger ontat manifold by summing every bindingomponent in M to a binding omponent in M 0. The result is a symmetri summed openbook whih has a strong sympleti �lling homeomorphi to [0; 1℄ � S1 � P , in whih thenatural projetion to [0; 1℄�S1 forms a sympleti �bration. The details of this onstrutionare arried out in [LVW℄; see also the appendix of [BV℄.4.2. Embedded Contat Homology. Our goal in this setion is to prove Theorems 2, 20,6 and 60. We begin with a quik review of the essential de�nitions of Embedded ContatHomology, mainly following the disussions in [HS06, x11℄ and [Tau10b℄.4.2.1. Review of twisted and untwisted ECH. Assume (M; �) is a losed ontat 3-manifoldwith nondegenerate ontat form �, and J is a generi almost omplex struture on R �Mompatible with �. We will refer to Reeb orbits as even or odd depending on the parity oftheir Conley-Zehnder indies: in dynamial terms, an even orbit is always hyperboli, whilean odd orbit an be either ellipti or hyperboli, the latter if and only if its double over iseven. In x3.1 we de�ned the notion of an orbit set  = f(1;m1); : : : ; (N ;mN )g, and we



A HIERARCHY OF FILLING OBSTRUCTIONS FOR CONTACT MANIFOLDS 57say that  is admissible if mi = 1 whenever i is hyperboli. Given h 2 H1(M), hoose areferene yle, i.e. a 1-yle �h inM with [�h℄ = h; without loss of generality we an assume�h is represented by an embedded oriented knot in M that is not ontained in any losedReeb orbit. Then adapting the de�nition of H2(M;+ � �) from x3.1, it makes sense tospeak of relative homology lasses in H2(M;�h � ) for any orbit set  with [℄ = h.Given two orbit sets � = f(�1 ;m�1 ); : : : ; (�N� ;m�N�)g and a relative homology lassA 2 H2(M;+� �) one de�nes the ECH index I(A) 2 Z by hoosing any trivialization �of � along the orbits in � and setting(4.1) I(A) = �1 (�jA) +A �� A+ N+Xi=1 m+iXk=1��CZ(k+i )� N�Xi=1 m�iXk=1��CZ(k�i );where the various symbols are to be interpreted as follows:� �1 (�jA) is the relative �rst Chern number �1 (u��) for any asymptotially ylindrialmap u representing A,� A �� A is the relative self-intersetion number, omputed as an algebrai ount ofintersetions of some asymptotially ylindrial representative u with a generi push-o� of u that is pushed in the diretion of � at the ylindrial ends,� k denotes the k-fold over of a Reeb orbit .One an hek that this expression does not depend on the hoie of trivializations �. Sineevery �nite energy J -holomorphi urve u in R �M represents a relative homology lass, wean de�ne the ECH index of u as I(u) := I([u℄).De�nition 4.2. A (possibly disonneted) �nite energy J -holomorphi urve u : _�! R�Mis alled a ow line if it is a disjoint union of two urves u0 and C, where u0 is embedded,and C is any olletion of trivial ylinders that do not interset u0.Huthings [Hut02℄ has shown that for generi J , a ow line u always satis�es 1 � ind(u) �I(u). Embedded Contat Homology is de�ned by ounting spei�ally the ow lines for whihthis inequality is an equality. For any subgroup G � H2(M), de�neeC�(M;�;h;G)to be the free Z-module generated by symbols of the form eA, where  is an admissibleorbit set with [℄ = h and A 2 H2(M;�h � )=G, meaning A � A0 whenever A�A0 2 G. Adi�erential � : eC�(M;�;h;G) ! eC��1(M;�;h;G) is de�ned by� �eA� = X0;A0#�M1emb(; 0; A0)R � eA+A0 0;where the sum ranges over all admissible orbit sets 0 and A0 2 H2(M; � 0)=G, andM1emb(;0; A0) � M(J) is the oriented 1-manifold of (possibly disonneted) �nite energyJ -holomorphi urves u : _�! R �M satisfying the following onditions:(i) I(u) = 1,(ii) [u℄ � A0 in H2(M; � 0)=G,(iii) u is a ow line in the sense of De�nition 4.2.The orientation of M1emb(; 0; A0) is hosen in aordane with [BM04℄, whih requires�rst hoosing an ordering for all the even orbits in M , then ordering the puntures of anyu 2 M1emb(; 0; A0) aordingly. The signed ount above is then �nite due to the index

58 CHRIS WENDLinequality and ompatness theorem in [Hut02℄.8 These same results together with the gluingonstrution of [HT07,HT09℄ imply that �2 = 0, and the resulting homology is denoted by℄ECH�(M;�; J ;h;G). We have two natural hoies for the subgroup G: if G = H2(M), thenthe terms eA are all trivial and we obtain the usual untwisted Embedded Contat Homology,ECH�(M;�; J ;h) := ℄ECH�(M;�; J ;h;H2(M)):At the other end of the spetrum, taking G to be the trivial subgroup leads to the fully twistedvariant of ECH, ℄ECH�(M;�; J ;h) := ℄ECH�(M;�; J ;h; f0g):Sine every nontrivial �nite energy J-holomorphi urve in R �M has at least one positivepunture, the empty orbit set ; always satis�es �; = 0, and thus represents a homology lasswhih we all the (untwisted) ontat lass,(�; J) = [;℄ 2 ECH�(M;�; J ; 0):To de�ne the twisted ontat lass, we note that for h = 0 there is a anonial hoie ofreferene yle �0, namely the empty set, so H2(M;�0 � ;) = H2(M) and it is natural tode�ne ~(�; J) = [e0;℄ 2 ℄ECH�(M;�; J ; 0):A hain map U : eC�(M;�;h;G) ! eC��2(M;�;h;G) an be de�ned by hoosing a generipoint p 2 M and ounting index 2 holomorphi urves that pass through the point (0; p),that is U �eA� = X0;A0# �M2emb(;0; A0; p)� eA+A0 0;whereM2emb(; 0; A0; p) onsists of J -holomorphi ow lines u with I(u) = 2 and one markedpoint whih is mapped to the point (0; p). We denote byU : ECH�(M;�; J ;h) ! ECH��2(M;�; J ;h)and eU : ℄ECH�(M;�; J ;h) ! ℄ECH��2(M;�; J ;h)respetively the untwisted and fully twisted variants of the resulting map on homology.It follows from Taubes's isomorphism [Tau10a,Tau10b℄ that none of the above depends onthe hoie of � and J , and the U -map also does not depend on the hoie of generi pointp 2M .4.2.2. Proof of the vanishing theorems. We now prove Theorems 2 and 20. Assume (M; �)ontains a planar k-torsion domain M0 with planar piee MP0 � M0. Note that for someplanar torsion domains, there may be multiple subsets of M0 that ould sensibly be alledthe planar piee (e.g. M0 ould ontain multiple planar open books summed together as inFigure 18), so whenever suh an ambiguity exists, we hoose MP0 to make k as small aspossible. Let � and J denote the speial Morse-Bott ontat form and ompatible Fredholmregular almost omplex struture provided by Theorem 7. Then �MP0 is a non-empty unionof tori �MP0 = T1 [ : : : [ Tn8The results in [Hut02℄ are stated only for a very speial lass of stable Hamiltonian strutures arising frommapping tori, but they extend to the ontat ase due to the relative asymptoti formulas of Siefring [Sie08℄.
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