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ABSTRACT. This is a revision of some expository lecture notes written originally for a
5-hour minicourse on the intersection theory of punctured holomorphic curves and its
applications in 3-dimensional contact topology. The main lectures are aimed primarily
at students and require only a minimal background in holomorphic curve theory, as the
emphasis is on topological rather than analytical issues. Some of the gaps in the analysis
are then filled in by the appendices, which include self-contained proofs of the similarity
principle and positivity of intersections, and conclude with a “quick reference” for the
benefit of researchers, detailing the basic facts of Siefring’s intersection theory.

Intersection theory has played a prominent role in the study of closed symplectic
4-manifolds since Gromov’s paper [Gro85] on pseudoholomorphic curves, leading to a
myriad of beautiful rigidity results that are either not accessible or not true in higher
dimensions. In recent years, the highly nontrivial extension of this theory to the case of
punctured holomorphic curves, due to Siefring [Sie08l[Sie11], has led to similarly beautiful
results about contact 3-manifolds and their symplectic fillings. These notes begin with
an overview of the closed case and an easy application (McDuff’s characterization of
symplectic ruled surfaces), and then explain the essentials of Siefring’s intersection theory
and how to use it in the real world. As a sample application, we discuss the classification
of symplectic fillings of planar contact manifolds via Lefschetz fibrations [Wen10Db).
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Preface

The main portion of this book is a lightly revised set of expository lecture notes written
originally for a 5-hour minicourse on the intersection theory of punctured holomorphic
curves and its applications in 3-dimensional contact topology, which I gave as part of the
LMS Short Course “Topology in Low Dimensions” at Durham University, August 26-30,
2013. These lectures were aimed primarily at students, and they required only a minimal
background in holomorphic curve theory since the emphasis was on topological rather
than analytical issues. The original appendices were relatively brief, their purpose being
to provide a quick survey of analytical background material on holomorphic curves that
I needed to refer to in the lectures without assuming that students already knew it. In
revising the manuscript for publication, I have taken the opportunity to add Lecture [
as a motivational introduction to the topic of the notes, plus two things that I felt were
lacking from the existing literature, as a result of which the appendices have become
considerably more substantial. One (Appendix [B]) is a complete proof of local positivity of
intersections, including just enough background material on elliptic regularity for a student
familiar with distributions and Sobolev spaces to consider it “self-contained”; this notably
includes a weak version of the Micallef-White theorem, which some readers may hopefully
find easier to comprehend than the deeper result in [MW95] that inspired it. The other
(Appendix [C]) is a quick survey of Siefring’s intersection theory of punctured holomorphic
curves, putting the essential facts and formulas in as compact a form as possible for the
benefit of researchers who need a ready reference. Most of what is in Appendix [C] also
appears in Lectures [3] and [ but the latter are written in a more pedagogical style that
develops the structure of the theory based on a few core ideas—that is presumably helpful
if your goal is to understand why the main results are true, but less so if you just need to
look up a specific formula, and Appendix [Clis there to help in the latter case.

Intersection theory has played a prominent role in the study of closed symplectic 4-
manifolds since Gromov’s paper [Gro85] on pseudoholomorphic curves, leading to a myriad
of beautiful rigidity results that are either not accessible or not true in higher dimensions.
In the last 15 years, the highly nontrivial extension of this theory to the case of punc-
tured holomorphic curves, due to Siefring [Sie08|[Siel1], has led to similarly beautiful
results about contact 3-manifolds and their symplectic fillings. These notes begin with an
overview of the closed case and an easy application (McDuff’s characterization of symplec-
tic ruled surfaces), and then explain the essentials of Siefring’s intersection theory and how
to use it in the real world. As a sample application, Lecture [l concludes by discussing



vi PREFACE

the classification of symplectic fillings of planar contact manifolds via Lefschetz fibrations
[Wenl0b].

How to use these notes. I expect a variety of audiences to find these notes useful
for a variety of reasons. Since they were written with an audience of students in mind, I
did not want to assume too much previous knowledge of symplectic/contact geometry or
holomorphic curves, and most of the text reflects that. On the other hand, I also expect
a certain number of readers to be experienced researchers who already know the essentials
of holomorphic curve theory—including the adjunction formula in the closed case—but
would specifically like to learn about the intersection theory for punctured curves. For
readers in this category, I recommend starting with Appendix [C] for an overview of the
basic facts, and then turning back to Lectures B and @l for details whenever necessary. If
on the other hand you are a student and still getting to know the field of symplectic and
contact topology, you'd probably rather start from the beginning.

Or if you really want to challenge yourself, feel free to read the whole thing backwards.

Acknowledgments. 1 would like to thank Richard Siefring and Michael Hutchings for
many conversations over the years that have improved my understanding of the subjects
discussed in this book. Thanks are also due to Andrew Lobb, Durham University and
the London Mathematical Society for bringing about the summer school that gave rise
to the original notes. They were written mostly while I worked at University College
London, with partial support from a Royal Society University Research Fellowship and a
Leverhulme Research Project Grant.



LECTURE 0

Motivation

In order to illustrate briefly what these lectures are about, I'd like to give an informal
sketch of two closely related theorems from the early days of symplectic topology. The first
is a beautiful application of the theory of closed pseudoholomorphic curves as introduced by
Gromov in [Gro85], and its proof requires only a few basic facts from this theory, plus some
knowledge of the standard homological intersection product from algebraic topology. The
second theorem admits a closely analogous proof, but we will see that the intersection-
theoretic portion of the argument is difficult to make precise, because it is no longer
homological—it requires some generalization of the intersection product in which “cycles”
need not be closed. One of the main objectives of the subsequent lectures will be to make
this idea precise and demonstrate what else it can be used for.

The statements of these theorems assume familiarity with the notions of minimal sym-
plectic 4-manifolds, symplectomorphisms, symplectic submanifolds, the standard symplec-
tic structure on R*, the sign of a transverse intersection, and the homological intersection
product—some background on all of these topics is covered in Lectures [I] and

THEOREM 0.1. Suppose (M,w) is a closed, connected, minimal symplectic 4-manifold
containing a pair of symplectic submanifolds Sy, Sy < M with the following properties:

e Both are homeomorphic to S?;
e Both have vanishing homological self-intersection number:

[S1] - [S1] = [S2] - [S2] = 0.
o The set S; n Sy = M consists of a single transverse and positive intersection.

Then there exists a symplectomorphism identifying (M, w) with (S? x S? wy) such that S;
and Sy are identified with S* x {const} and {const} x S* respectively, and wy is a product
of two area forms on S2.

This result says in effect that if we are given a certain type of “local” information
about submanifolds of a closed symplectic 4-manifold, then this is enough to recover its
global structure. From an alternative perspective, it says that the vast majority of closed
symplectic 4-manifolds do not contain certain types of symplectic submanifolds. The sec-
ond result says something similar, but now the symplectic manifold is noncompact and
the “local” information we are given is its structure outside of some compact subset—the

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic
Curves and Intersection Theory by Chris Wendl. This pre-publication version is free to view and download
for personal use only. Not for re-distribution, re-sale or use in derivative works. (©Chris Wendl, 2019.
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2 0. MOTIVATION

theorem is typically summarized by saying that there do not exist any exotic symplectic
4-manifolds that look “standard at infinity”.

THEOREM 0.2. Suppose (M,w) is an open, connected, minimal symplectic 4-manifold
with a compact subset K < M such that (M\K,w) is symplectomorphic to the complement
of a compact subset in the standard symplectic R*. Then (M, w) is globally symplectomor-
phic to the standard symplectic R*.

REMARK 0.3. Both of these theorems appeared in less general forms in Gromov’s paper
[Gro85]; see §2.4.A7 and §0.3.C' respectively. The statements given above are attributed
to both Gromov and McDuff, as they rely on the slightly more sophisticated intersection
theory of closed holomorphic curves that was developed by McDuff within a few years
after Gromov’s paper—see in particular [McD90]. Theorem can also be rephrased
as the statement that S® with its standard contact structure admits a unique minimal
symplectic filling, and we will discuss this version of the result in Lecture[H (see in particular

Corollary B.7).

Let’s sketch a proof of Theorem [0l The starting point is the observation that since S;
and Sy are both symplectic submanifolds and their intersection is transverse and positive,
one can choose a compatible almost complex structure J : TM — TM on (M,w) that
preserves the tangent spaces of S; and Sy (see .11 for more on almost complex structures).
This makes S; and S, into images of embedded J-holomorphic spheres, i.e. smooth maps
u: S? — M that satisfy the nonlinear Cauchy-Riemann equation

Tuoi=JoTu,

where i : T'S? — TS? is the almost complex structure on S? resulting from its standard
identification with the extended complex plane C U {oo}. The advantage of replacing sym-
plectic submanifolds by J-holomorphic spheres is a matter of rigidity: the condition of
being a symplectic submanifold is open and thus quite flexible, i.e. the space of all sym-
plectic submanifolds is unmanageably large, whereas J-holomorphic spheres are solutions
to an elliptic PDE, and thus tend to come in finite-dimensional moduli spaces, which are
sometimes (if we're lucky!) even compact. For this reason, we now consider for each
k = 1,2 the moduli spaces

Mi(J) :=={u:5* > M | Tuoi=JoTuand [u] :=u,[S*] = [Si] € HQ(M)}/Aut(SQ,i),

where Aut(S?,1) is the group of holomorphic automorphisms ¢ : S* — S? of the extended
complex plane (i.e. the Mobius transformations), acting on the space of J-holomorphic
maps u : S? — M by ¢ - u := uo . We assign to this space the natural topology arising
from C®-convergence of maps. Both M;(J) and My(J) are clearly nonempty, since they
contain equivalence classes of parametrizations of the submanifolds S; and S5 respectively.
One can now apply general results from the theory of J-holomorphic curves to prove that
for generic choices of the almost complex structure J, M;(J) and My(.J) are both compact
smooth 2-dimensional manifolds. A quick survey of the analytical results behind this is
given in Appendix [A.1l and we will sketch the proof in a somewhat more general setting
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in Lectures [l and [ (see Lemmas [[.T7 and [[LI])), though we do not plan to get too deeply
into such analytical details in this book.

What we will discuss in more detail is the intersection-theoretic properties of the J-
holomorphic spheres in M;(J) and Ms(J). We observe first that the hypotheses of The-
orem clearly imply

[51] ’ [52] =1,

as this intersection number can be computed as a signed count of transverse intersections
between S; and Ss, for which there is only one intersection to count, and it is positive.
In Lecture 2 and Appendix Bl we will discuss a standard result known as positivity of
intersections, which implies that whenever v : ¥ — M and v : ¥ — M are two closed
J-holomorphic curves with non-identical images in an almost complex 4-manifold M, their
intersections are all isolated and count positively toward the homological intersection num-
ber [u] - [v] € Z; moreover, the contribution of each isolated intersection is exactly +1 if
and only if that intersection is transverse. This is very strong information, from which one
can deduce the following:

(1) For each k = 1,2 and every pair of distinct elements u,v € My(J), the images
of u:S? — M and v : S* — M are disjoint. (This follows from the condition
[Sk] - [Sk] = 0.)

(2) For every u € M;(J) and v € My(J), the maps u : S* — M and v : §* — M have
exactly one intersection point, which is transverse and positive.

A related result discussed in §2.11 called the adjunction formula, makes it possible charac-
terize in homological terms which J-holomorphic curves in an almost complex 4-manifold
are embedded, and in this case it implies:

(3) Every element of M;(J) or Ms(J) is embedded.

Finally, we will see in §L.3]that whenever u € My (J) is an embedded J-holomorphic sphere
in one of these moduli spaces, the 2-parameter family of nearby J-holomorphic spheres in
M, (J) forms a smooth foliation of the neighborhood of u(S5?) in M. Combining this with
the compactness of My(J), it follows that the set of points in M that are contained in the
images of any of the spheres in My/(J) is both open and closed, thus it is everything: the
holomorphic spheres of My/(J) foliate M. The result is the “coordinate grid” depicted in
Figure [ILI} starting from the two symplectically embedded spheres Sy, Se © M, we obtain
two smooth families of embedded J-holomorphic spheres that each foliate M, such that
each sphere in M (/) has a unique transverse intersection with each sphere in Ms(J). It
follows that there is a diffeomorphism

assigning to each point p € M the unique pair of holomorphic spheres (u,v) € My(J) x
M (J) such that both have p in their images. Moreover, for each individual element of
M (J) parametrized by a map u : S? — M, there is a diffeomorphism

5?2 =5 My(J)
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So

FiGURE 0.1. The two symplectic submanifolds S, 5, < M generate two
transverse foliations by holomorphic spheres in the proof of Theorem [0l
The two families can be regarded as a “coordinate grid” that identifies M
with S? x S2.

sending each z € S? to the unique holomorphic sphere v € Msy(J) that has u(z) in its
image; this proves that My(J) has the topology of S?, and in the same manner one shows
M;(J) = S% In summary, (0] can now be interpreted as a diffeomorphism from M to
S? x S2. There is still a bit of work to be done in identifying the symplectic structure w
with a product of two area forms, but the techniques needed for this are not hard—they
involve geometric tools such as the Moser stability theorem for deformations of symplectic
forms (see e.g. [MS17]), but no serious analysis is required.

The original proof of Theorem used a clever “capping” trick to derive it from
Theorem [0.Il For this motivational discussion, I would like to sketch a different proof that
is conceptually simpler, but trickier in the technical details.

By the hypotheses of Theorem [0.2] we can decompose the open symplectic manifold
(M,w) into two regions: one is the compact (but otherwise completely unknown) subset
K < M, and the other is a region that we can identify with (R*\ K’ wgq) for some compact
set K' < R* where wgq denotes the standard symplectic form on R*. We would like to
argue as in Theorem [0.I] that is, find a nice pair of “seed curves” to generate two well-
behaved moduli spaces of J-holomorphic curves that can then be used to form a coordinate
grid identifying M with R*. One easy way to find such seed curves is by observing that
R* has a natural identification with C? such that the natural multiplication by i on C?
defines a compatible almost complex structure on (R*, wyq). This is useful for the following
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FIGURE 0.2. The two families of properly embedded holomorphic planes
fw and g, form a coordinate grid for C? and are each asymptotic on the
cylindrical end C2\D}, =~ (R, 0) x S? to one of two specific loops 71,7, = S2.

reason: C? contains two obvious families of holomorphic planes
fu:C—C*: 20 (2,w), for w € C,
Gw:C—C*: 2z (w,2), for w € C,

all of which are properly embedded maps, with two distinct types of asymptotic behavior.
To describe the latter, choose a large constant R > 0, let D}, = C? denote the disk of
radius R and identify C*\D% with (R, 0) x S® by viewing S* as the unit sphere in C? and
applying the diffeomorphism

(R,0) x §3 =5 C\D% : (r,2) — 7.
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FIGURE 0.3. The moduli spaces M;(J;71) and My(J;~,) of proper J-
holomorphic planes asymptotic to the loops 71,7, = S? form two transverse
foliations of M in Theorem [0.2] building a coordinate grid that proves M =~
C x C =R%.

Then each f,, or g, maps a neighborhood of infinity into an arbitrarily small neighborhood
of the cylinder (R, ) x 741 or (R, o0) x 7, respectively, where we define

7= 8t x {0} = S* = C?, Yo = {0} x S = S = C2.

A schematic picture of this asymptotic behavior and the resulting transverse pair of holo-
morphic foliations of C? is shown in Figure Informally, we will say that the planes f,
are asymptotic to 7; and the planes g, are asymptotic to ~,; more precise definitions of
this terminology will appear in §2.4 when we discuss asymptotically cylindrical maps.
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Now since K’ < C? = R* is compact, D} will contain K’ for any R > 0 sufficiently large,
so that we can also regard (M, w) as containing a copy of the region identified above with
(R,0) x S3. Let us fix such a radius and choose a compatible almost complex structure
J on (M,w) that matches the standard multiplication by i on C*\D% =~ (R, o) x S3. The
curves f, and g, can then be regarded as J-holomorphic planes in M for every w € C
with |w| > R, and just as in Theorem [0.T], these two families define elements in a pair of
connected moduli spaces M (J;71) and Ms(J;72) of J-holomorphic planes in M, where
we can use the loops v; and 7 to prescribe the asymptotic behavior of the curves in the
moduli spaces. There exists a well-developed theory of moduli spaces of J-holomorphic
curves with this type of asymptotic behavior, a survey of which is given in Appendix
In the present context, it can be applied to prove that M;i(J;71) and My(J;72) are
both smooth 2-dimensional manifolds, and they are also compact except for the obvious
way in which they are not: a sequence u; € My(J;7;) for k € {1,2} will fail to have a
convergent subsequence if and only if for large j it is of the form u; = f,, € My(J;71) or
u; = Gu, € Ms(J;72) for a sequence w; € C with |w;| — co. This gives each of M1 (J;1)
and Mo (J;72) the topology of a compact surface with one boundary component attached
to a cylindrical end of the form C\Dp =~ (R, ) x S'.

If we want to apply these two moduli spaces the same way they were used in Theo-
rem [0.T], then we need to establish the following:

LEMMA 0.4. The moduli spaces My(J;v1) and Ma(J;72) described above have the
following properties:

(1) For each k = 1,2 and every pair of distinct elements u,v € My(J; ), the images
ofu:C— M andv:C — M are disjoint.

(2) For every ue My(J;v1) and v e May(J;72), the mapsu:C — M andv : C — M
have exactly one intersection point, which is transverse and positive.

(3) Every element of My(J;v1) or May(J;7y2) is embedded.

Indeed, one can then argue exactly as in the proof of Theorem that the two moduli
spaces My (J;v) and My(J;7,) form two transverse smooth foliations of M by planes,
producing a coordinate grid (see Figure [I3)) that identifies M with C x C ~ R*. The
question I would now like to focus on is this: why is Lemma true?

The answer does not come from homological intersection theory, as the curves in
M (J;v) and My(J;72) are noncompact and do not represent homology classes. One
can however use differential topological arguments to verify the second claim in the lemma:
the fact that each f,, intersects each g,  exactly once transversely implies via a homotopy
argument that the same will be true for any pair u € My(J;7;) and v € Ms(J;7,). Indeed,
M (J;71) and My(J;y2) are each connected spaces of properly embedded planes that are
asymptotic to disjoint loops in S3, thus they map neighborhoods of infinity to completely
disjoint regions near infinity in M. This ensures that there exist homotopies of properly
embedded maps

u, : C— M, v, : C—> M, 7€ [0,1]
with vy = u, u; = fu, vo = v and v; = g, such that the intersections of u, with v, for
every 7 € [0, 1] are confined to compact subsets of both domains. Standard arguments as



8 0. MOTIVATION

w-v >0 u-v >0 u-v=>0

FI1GURE 0.4. The algebraic intersection count u - v € Z between two proper
maps of noncompact domains can change under homotopies if the two maps
have matching asymptotic behavior.

in [Mil97] then imply that u and v must have the same algebraic intersection count as
fw and g+, which is 1, so in light of positivity of intersections, v and v can only have one
intersection point and it must be transverse.

This type of argument does not suffice to prove the other two claims in Lemma[0.4l For
example, suppose we would like to prove that two distinct curves w,v € M;y(J;71) must
always be disjoint. It is easy to believe this in light of the curves that we can explicitly
see, i.e. f, and f,, both belong to M;(J;71) for any w,w’" € C sufficiently large, and they
are clearly disjoint if w # w’. To extend this to the curves that we cannot explicitly see
because they do not live entirely in the region (R,0) x S* < M, we would ideally like
to argue via homotopy invariance, namely that if u, and v, are two continuous families
of curves in M (J;~;) with wy and vy disjoint, then u; and v; must also be disjoint. But
here we have a problem that did not arise in the previous paragraph: the curves u, and v,
in this homotopy are always asymptotic to the same loop v, = S3, so their images in M
always become arbitrarily close to each other in the cylindrical end (R, o0) x S%. In this
situation, there is no way to make sure that intersections are confined to compact subsets,
and we can imagine in fact that under a homotopy, some intersections might just escape
to infinity and disappear (see Figure [0.4])!

It is a remarkable fact that in the situation under consideration, this nightmare scenario
cannot happen, and Lemma[0.4]is indeed true. To understand why, we will have to explore
the asymptotic behavior of noncompact J-holomorphic curves much more deeply. Still more
interesting perhaps is that in more general situations, the nightmare scenario of Figure
really can happen, but it can also be controlled: one can define an asymptotic contribution
that measures the possibility for “hidden” intersections to emerge from infinity under
small perturbations. It turns out that just like the contribution of an isolated intersection
between two J-holomorphic curves, this asymptotic contribution is always nonnegative, and
adding it to the algebraic count of actual intersections produces a meaningful homotopy-
invariant intersection product. Once this product and the corresponding generalization
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of the adjunction formula have been understood, proving results like Lemma becomes
quite easy.

The first hints of a systematic intersection theory for noncompact holomorphic curves
appeared in Hutchings’s work on embedded contact homology [Hut02], and the theory
was developed in earnest a few years later in the Ph.D. thesis of Richard Siefring [Sie05]
and his two papers [Sie08|[Sie11]. Our primary objectives in these notes will be to explain
where this theory comes from, demonstrate how to use it, and give some examples of what
it can be used for. We'll start in Lectures [[l and 2] by reviewing the intersection theory for
closed holomorphic curves and discussing one of its most famous applications, McDuff’s
theorem [McD90] on symplectic ruled surfaces (which is a variation on Theorem [I1]). The
asymptotic analysis required for Siefring’s theory is then surveyed in Lecture B (mostly
without the proofs since these are analytically somewhat intense), and Lecture Ml uses
these asymptotic results to define the precise generalizations of the homological intersection
product and the adjunction formula that are needed for results such as Lemma [0L4l In
Lecture B we will demonstrate how to use the theory via a generalization of Theorem [0.2]
framed in the language of contact 3-manifolds and their symplectic fillings.






LECTURE 1

Closed holomorphic curves in symplectic 4-manifolds

Contents
1.1. Some examples of symplectic 4-manifolds [11]
1.2. McDuff’s characterization of symplectic ruled surfaces [16
1.3. Local foliations by holomorphic spheres 21

In these lectures we would like to explain some results about symplectic 4-manifolds
with contact boundary, and some of the technical tools involved in proving them, notably
the intersection theory of punctured pseudoholomorphic curves. These tools are relatively
recent, but have historical precedents that go back to the late 1980’s, when the field of
symplectic topology was relatively new and many deep results about closed symplectic
4-manifolds were proved. We begin with a discussion of some of those results.

1.1. Some examples of symplectic 4-manifolds

Suppose M is a smooth manifold of even dimension 2n > 2. A symplectic form on M
is a closed 2-form w that is nondegenerate, meaning that w(X,-) # 0 for every nonzero
vector X € T'M, or equivalently,

Wri=wA...A#0

everywhere on M. This means that w™ is a volume form, thus it induces a natural ori-
entation on M. We will always assume that any symplectic manifold (M,w) carries the
natural orientation induced by its symplectic structure, thus we can write

w™ > 0.

We say that a submanifold > < M is a symplectic submanifold, or is symplectically
embedded, if w|ry, is also nondegenerate.

EXERCISE 1.1. Show that every finite-dimensional manifold admitting a nondegenerate
2-form has even dimension.

There are many interesting questions one can study on a symplectic manifold (M, w),
e.g. one can investigate the Hamiltonian dynamics for a function H : M — R, or one

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic
Curves and Intersection Theory by Chris Wendl. This pre-publication version is free to view and download
for personal use only. Not for re-distribution, re-sale or use in derivative works. (©Chris Wendl, 2019.
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12 1. CLOSED HOLOMORPHIC CURVES IN SYMPLECTIC 4-MANIFOLDS

can study symplectic embedding obstructions of one symplectic manifold into another (see
e.g. [HZ94/IMS17] for more on each of these topics). In this lecture, we will consider the
most basic question of symplectic topology: given two closed symplectic manifolds (M, w)
and (M',w’) of the same dimension, what properties can permit us to conclude that they
are symplectomorphic, i.e. that there exists a diffeomorphism

o: M= M with @' = w?

We shall deal with two fundamental examples of symplectic manifolds in dimension 4, of
which the second is a generalization of the first.

EXAMPLE 1.2. Suppose X is a closed, connected and oriented surface, and 7 : M — X
is a smooth fibre bundle whose fibres are also closed, connected and oriented surfaces. The
following result of Thurston says that under a mild (and obviously necessary) homological
assumption, such fibrations always carry a canonical deformation class of symplectic forms.

THEOREM 1.3 (Thurston [Thu76]). Given a fibration m : M — X as described above,
suppose the homology class of the fibre is not torsion in Hy(M). Then M admits a sym-
plectic form w such that all fibres are symplectic submanifolds of (M,w). Moreover, the
space of symplectic forms on M having this property is connected.

A symplectic manifold (M,w) with a fibration whose fibres are symplectic is called a
symplectic fibration. As a special case, if the fibres of 7 : M — ¥ are spheres and X is
a closed oriented surface, then a symplectic fibration (M, w) over ¥ is called a symplectic
ruled surface. This term is inspired by complex algebraic geometry; in particular, the
word “surface” refers to the fact that such manifolds can also be shown to admit complex
structures, which makes them 2-dimensional complex manifolds, i.e. complex surfaces.

EXERCISE 1.4. Show that the homological condition in Theorem is always satisfied
if the fibres are spheres. Hint: A € Hy(M) is a torsion class if and only if the homological
intersection number A- B € 7 vanishes for all B € Hy(M). Consider the vertical subbundle
VM < TM — M, defined as the set of all vectors in T'M that are tangent to fibres of
7 : M — X. How many times (algebraically) does the zero-set of a generic section of
VM — M intersect a generic fibre of m: M — %7

The above class of examples is a special case of the following more general class.

ExXAMPLE 1.5. Suppose M and ¥ are closed, connected, oriented, smooth manifolds of
dimensions 4 and 2 respectively. A Lefschetz fibration of M over ¥ is a smooth map

T: M — X

with finitely many critical points M := Crit(r) < M and critical values X :=
7(M") < ¥ such that near each point p € M there exists a complex coordinate
chart (21, z2) compatible with the orientation of M, and a corresponding complex coordi-
nate z on a neighborhood of 7(p) € X compatible with the orientation of ¥, in which 7
locally takes the form

(1.1) m(21,22) = 2} + 23.
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REMARK 1.6. Any 2n-dimensional manifold M admits a set of complex coordinates
(z1,...,2,) near any point p € M, but it is not always possible to cover M with such
coordinate charts so that the transition maps are holomorphic; this is possible if and only
if M also admits a complex structure. In the definition above, we have not assumed that
M admits a complex structure, as the coordinates (z1, 25) are only required to exist locally
near the finite set M. Note however that any choice of complex coordinates on some
domain determines an orientation on that domain: this follows from the fact that under
the natural identification R?*" = C", any complex linear isomorphism C"* — C", when
viewed as an element of GL(2n,R), has positive determinant. In the above definition,
we are assuming that the given orientations of M and ¥ always match the orientations
determined by the complex local coordinates.

A Lefschetz fibration restricts to a smooth fibre bundle over the set ¥\X and the
fibres of this bundle are called the regular fibres of M they are in general closed oriented
surfaces, and we may always assume without loss of generality that they are connected (see
Exercise [L3 below). The finitely many singular fibres 771(z) for z € X are immersed
surfaces with finitely many double points that look like the transverse intersection of Cx {0}
and {0} x C in C?% one can see this by rewriting (L)) in the coordinates (; := z; + iz,
and (y := z; — 129, so that the local model becomes 7((, (2) = (1(». Each singular fibre is
uniquely decomposable into a transversely intersecting union of subsets that are immersed
images of connected surfaces: we call these subsets the irreducible components, see
Figure [LL1]

Thurston’s theorem about symplectic structures on fibrations was generalized to Lef-
schetz fibrations by Gompf. To state the most useful version of this result, we need to
generalize the notion of a “symplectic submanifold” in a way that will also make sense
for singular fibres, which are not embedded submanifolds. Since Lefschetz critical points
are defined in terms of complex local coordinates, one way to do this is by elucidating the
relationship between complex and symplectic structures.

DEFINITION 1.7. Suppose E — B is a smooth real vector bundle of even rank. A
complex structure on £ — B is a smooth linear bundle map J : £ — FE such that
J? = —1. A symplectic structure on £ — B is a smooth antisymmetric bilinear bundle
map w : £@® F — R which is nondegenerate, meaning w(v,-) # 0 for all nonzero v € F.
We say that w tames J if for all v € F with v # 0, we have

w(v, Jv) > 0.
We say additionally that J is compatible with w if the pairing
gs(v,w) = w(v, Jw)
is both nondegenerate and symmetric, i.e. it defines a bundle metric.

One can show that a complex or symplectic structure on a vector bundle implies the
existence of local trivializations for which all transition maps are complex linear maps
C" — C" or symplectic linear maps R?*" — R?*" respectively; see [MS17] for details.
An almost complex structure on a manifold M is simply a complex structure on its
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FIGURE 1.1. A Lefschetz fibration over T? with regular fibres of genus 2
and two singular fibres, each of which has two irreducible components.

tangent bundle TM — M. Here the word “almost” is inserted in order to distinguish
this relatively weak notion from the much more rigid notion mentioned in Remark a
complex manifold carries a natural almost complex structure (defined via multiplication
by ¢ in any holomorphic coordinate chart), but not every almost complex structure arises
in this way from local charts, and there are many manifolds that admit almost complex
structures but not complex structures. One way to paraphrase Definition [T is to say
that w tames J if and only if every complex 1-dimensional subspace of a fibre in E is
also a symplectic subspace; similarly, if (M,w) is a symplectic manifold, then w tames an
almost complex structure J on M if and only if every complex curve in the almost complex
manifold (M, J) is also a symplectic submanifold.

With this understood, suppose m : M — X is a Lefschetz fibration as defined above.
We will say that a symplectic form w on M is supported by 7 if the following conditions
hold:

(1) Every fibre of 7|y pperic : M\M™* — 3 is a symplectic submanifold;
(2) On a neighborhood of M w tames some almost complex structure J that pre-
serves the tangent spaces of the fibres.

Gompt’s generalization of Thurston’s theorem can now be stated as follows.
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THEOREM 1.8 (Gompf [GS99]). Suppose M and ¥ are closed, connected and oriented
manifolds of dimensions 4 and 2 respectively, and 7 : M — X is a Lefschetz fibration for
which the fibre represents a non-torsion class in Ho(M). Then the space of symplectic
forms on M that are supported by m is nonempty and connected.

A Lefschetz fibration 7 : M — ¥ on a symplectic manifold (M, w) with w supported in
the above sense is called a symplectic Lefschetz fibration.

EXERCISE 1.9. Assuming M and ¥ are closed and connected, show that if 7 : M — X
is a Lefschetz fibration with disconnected fibers, then one can write m = ¢ o @’ where
¢ : X — Y is a finite covering map of degree at least 2 and n’ : M — ¥ is a Lefschetz
fibration with connected fibers.

There is a natural way to replace any smooth fibre bundle as in Example with a
Lefschetz fibration that has singular fibres, namely by blowing up finitely many points.
Topologically, this can be described as follows: given p € M, choose local complex co-
ordinates (z1,22) on some neighborhood N (p) © M of p that are compatible with the
orientation and identify p with 0 € C2. Let E — CP! denote the tautological complex
line bundle, i.e. the bundle whose fibre over [z : 23] € CP? is the complex line spanned by
(21,22) € C% There is a canonical identification of E\CP' with C*\{0}, where CP' ¢ F
here denotes the zero-section. Thus for some neighborhood N (CP') = E of CP!, the above
coordinates allow us to identify A(p)\{p} with N'(CP')\CP', and we define the (smooth,
oriented) blowup M of M by removing N (p) and replacing it with A/(CP'). There is a
natural projection

&M — M,
such that S := ®~!(p) is a smoothly embedded 2-sphere S =~ CP! M (called an excep-
tional sphere), whose homological self-intersection number satisfies

(1.2) [S]-[S]=—-1.
The restriction of ® to M \S is a diffeomorphism onto M\{p}.

EXERCISE 1.10. Show that if 7 : M — X is a Lefschetz fibration and p € M\M®it,
then there exist complex local coordinates (21, z3) for a neighborhood of p in M and z for
a neighborhood of 7(p) in X, both compatible with the orientations, such that 7 takes the
form 7(z1, 29) = 21 near p.

EXERCISE 1.11. Suppose m : M — ¥ is a Lefschetz fibration, and M is obtained by
blowing up M at a point p € M\ M using a complex coordinate chart as in Exercise
Then if ® : M — M denotes the induced projection map, show that 7o ® : M — Y is
a Lefschetz fibration, having one more critical point than 7 : M — 3 and containing the
exceptional sphere ®~!(p) as an irreducible component of a singular fibre.

EXERCISE 1.12. Prove that the sphere S < M created by blowing up M at a point
satisfies (L2)). Hint: You only need to know the first Chern number of the tautological line
bundle.
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EXERCISE 1.13. Prove that if M is constructed by blowing up M at a point, then M
is diffeomorphic to the connected sum M#CP2, where the line over CP? indicates that it
carries the opposite of its canonical orientation (determined by the complex structure of
CP?). Hint: Present CP? as the union of C* with a “sphere at infinity” CP' < CP?. What
does a tubular neighborhood of CP! in CPP? look like, and what changes if you reverse the
orientation?

It is easy to prove from the above description of the blowup that if M is a complex

manifold, M inherits a canonical complex structure. What is somewhat less obvious,
but nonetheless true and hopefully not so surprising by this point, is that if (M,w) is

symplectic, then M also inherits a symplectic form & that is canonical up to smooth

deformation through symplectic forms (see [MS17] or [Wen18| §3.2]). In this case, the

resulting exceptional sphere is a symplectic submanifold of (M, ). Conversely, if (M,w)
is any symplectic 4-manifold containing a symplectically embedded exceptional sphere
S © M, then one can reverse the above operation and show that (M, w) is the symplectic
blowup of another symplectic manifold (M, wp), with the resulting projection ® : M — M,
collapsing S to a point. We say that a symplectic 4-manifold is minimal if it contains
no symplectically embedded exceptional spheres, which means it is not the blowup of any
other symplectic manifold. McDuff [McD90] proved:

THEOREM 1.14 (McDuff [McD90]). If (M,w) is a closed symplectic 4-manifold with a
mazximal collection of pairwise disjoint exceptional spheres Ey, ..., Ex < (M,w), then the
symplectic manifold obtained from (M,w) by “blowing down” along E1, ..., Ey is minimal.

One can also show that if w is supported by a Lefschetz fibration 7 : M — 3, then
the symplecti/c\ form & on the blowup M can be arranged to be supported by the Lefschetz
fibration on M arising from Exercise [[LT1} see e.g. [Wen18, Theorem 3.44].

Symplectic fibrations are a rather special class of symplectic 4-manifolds, but the follow-
ing deep theorem of Donaldson indicates that Lefschetz fibrations are surprisingly general
examples. The theorem is actually true in all dimensions; we will not make use of it in
any concrete way in these notes, but it is important to have as a piece of background
knowledge.

THEOREM 1.15 (Donaldson [Don99]). Any closed symplectic manifold can be blown up
finitely many times to a symplectic manifold which admits a symplectic Lefschetz fibration
over S2.

1.2. McDuff’s characterization of symplectic ruled surfaces

If (M,w) is a symplectic 4-manifold with a supporting Lefschetz fibration 7 : M — ¥,
then it admits a 2-dimensional symplectic submanifold S < (M, w) satisfying

[S]-[S]=0;

indeed, S can be chosen to be any regular fibre of the Lefschetz fibration. The following
remarkable result says that if S has genus 0, then the converse also holds.
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THEOREM 1.16 (McDuff [McD90]). Suppose (M,w) is a closed and connected symplec-
tic 4-manifold, and S < M is a symplectically embedded 2-sphere satisfying [S] - [S] = 0.
Then S is a fibre of a symplectic Lefschetz fibration w : M — X over some closed oriented
surface &2, and 7 is a smooth symplectic fibration (i.e. without Lefschetz critical points)
whenever (M\S,w) is minimal. In particular, (M,w) can be obtained by blowing up a
symplectic ruled surface finitely many times.

This theorem is false for surfaces S with positive genus (see Remark for more on
this). There is also no comparably strong result about symplectic fibrations in dimen-
sions greater than 4, as the theory of holomorphic curves is considerably stronger in low
dimensions. Our main goal for the rest of this lecture will be to sketch a proof of the
theorem.

The proof begins with the observation, originally due to Gromov [Gro85|, that every
symplectic manifold (M, w) admits an almost complex structure J that is compatible with
w in the sense of Definition [L71 Moreover, if S < (M,w) is a symplectic submanifold, one
can easily choose a compatible almost complex structure J that preserves T'S, i.e. it makes
S into an embedded J-complex curve. The main idea of the proof is then to study the
entire space of J-complex curves homologous to S and show that these must foliate M,
possibly with finitely many singularities.

Let us define the “space of J-complex curves” more precisely. Recall that a Riemann
surface can be regarded as an almost complex' manifold (¥, j) with? dim ¥ = 2. Given
(33, 7) and an almost complex manifold (M, J) of real dimension 2n, we say that a smooth
map u : ¥ — M is J-holomorphic, or pseudoholomorphic (often abbreviated simply
as “holomorphic”), if its tangent map is complex linear at every point, i.e.

(1.3) Tuoj=JoTu.

This is a first order elliptic PDE: in any choice of holomorphic local coordinates s + it on
a domain in ¥, (L3) is equivalent to the nonlinear Cauchy-Riemann type equation

Osu(s,t) + J(u(s,t)) dru(s,t) = 0.

Solutions are called pseudoholomorphic curves, where the word “curve” refers to the
fact that their domains are complex one-dimensional manifolds. They have many nice
properties, which are proved by a combination of complex function theory, nonlinear func-
tional analysis and elliptic regularity theory—a quick overview of the essential properties
is given in Appendix [A], and some of these will be used in the following discussion.

For any integer ¢ > 0 and A € Hy(M), we define the moduli space M (M, J)
of unparametrized closed .J-holomorphic curves of genus g homologous to A as
the space of equivalence classes [(3, 7, u)], where (X,7) is a closed connected Riemann
surface of genus g, v : (X,j) — (M, J) is a pseudoholomorphic map representing the
homology class [u] := u.[X] = A, and we write (3, j,u) ~ (X', 5/, ') if and only if they are

Due to a theorem of Gauss, every almost complex structure on a manifold of real dimension 2 is
integrable, i.e. it arises from an atlas of coordiate charts with holomorphic transition maps and is thus also
a complex structure (without the “almost”).

2Unless otherwise noted, all dimensions mentioned in these notes will be real dimensions, not complex.
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related to each other by reparametrization, i.e. there exists a holomorphic diffeomorphism
v (3,7) = (¥,7) (a biholomorphic map) such that u = u' o p. We will sometimes
abuse notation and abbreviate an equivalence class [(X, j,u)] € M (M, .J) simply as the
parametrization “u” when there is no danger of confusion. The notion of C'°-convergence
defines a natural topology on M;! (M, J) such that a sequence [(Ey, jr, uz)] € M (M, J)
converges to [(, j,u)] € M (M, J) if and only if there exist representatives (3, jj, uz) ~
(Xk, jr, ug) for which
Jr.—Jj and up —u

uniformly with all derivatives on >. In cases where we’d prefer not to specify the homology
class, we will occasionally write

My(M, )= ] MM, ).

AGHQ(M)

Observe that if u : (X, j) — (M, J) is a closed J-holomorphic curve and ¢ : (¥, j") —
(33,7) is a holomorphic map from another closed Riemann surface (3, ;), then wo ¢ :
(3, 4") — (M, J) is also a J-holomorphic curve. If ¢ is nonconstant, then holomorphicity
implies that it has degree deg(y) = 1, with equality if and only if it is biholomorphic; in
the case k := deg(y) > 1, we then say that u' is a k-fold multiple cover of u. Note
that in this situation, [u'] = k[u], so for instance, a curve cannot be a multiple cover if it
represents a primitive homology class. We say that a nonconstant closed J-holomorphic
curve is simple if it is not a multiple cover of any other curve.

Returning to the specific situation of McDuft’s theorem, assume J is an w-compatible
almost complex structure that preserves the tangent spaces of the symplectically embedded
sphere S < (M,w). Then (S, J|rg) is a closed Riemann surface of genus 0, and its inclusion
ug : S < M is an embedded J-holomorphic curve, defining an element

us e MEN(M, )

in the moduli space of J-holomorphic spheres homologous so S. A straightforward appli-
cation of standard machinery now gives the following result, a proof of which may be found

at the end of Appendix [A]l

LEMMA 1.17. After a C*-small perturbation of J outside a neighborhood of S, the
open subset M([)S]’*(M, J) < M([]S](M, J), consisting of simple J-holomorphic spheres ho-
mologous to [S], is a smooth oriented 2-dimensional manifold, and it is “compact up to
bubbling” in the following sense. There exists a finite set of simple curves 8 < My(M, J)
with positive first Chern numbers such that if uy € M([]S]’*(M, J) is a sequence with no
convergent subsequence in M([)S](M, J), then it has a subsequence that degenerates (see

Figure[1.3) to a nodal curve {v,,v_} € m([)s](M, J) for some vy, v_ € AB.

The above formulation is a bit lazy since we have not as yet given any definition of the
space My (M, J) of nodal curves. More precise details of this compactification of Mo(M, J)
may be found in Appendix[A.T] but for the purposes of the present discussion, it will suffice
to characterize the degeneration of a sequence [(S2, jy, ux)] € MZ(M, J) to a nodal curve
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FIGURE 1.2. A sequence of J-holomorphic spheres u; degenerating to a
nodal curve {v ,v_}.

{1(S%, 5, v)], [(S%7-,v )]} € M?(M, J) as follows. The nodal curve is assumed to have
the property that any choice of representatives (S2,ji,v5) comes with a distinguished
intersection

U+(Z+) = U_(Z_),
for some pair of points z; € S?; this intersection is called the node. Given these parametriza-
tions, let C' = S? denote the equator of the sphere, separating it into the two hemispheres

Sz - D+ UC Df,
and choose continuous surjections o4 : Do — S2 that map Dy diffeomorphically to S M\ {24}

and collapse C' to z4. The map

uw:SQ_)M:ZH{UOQO(z) for ze D_,

vyopy(z) forzeDy

is then continuous, and smooth on S*\C'. This also defines a complex structure on S?\C'

by
. p*j. onD_,
Joo 1= ‘ .
” ©ij+  onD,,
though j,, does not extend smoothly over C. Now the convergence ur — {v,,v_} can

be defined to mean that all of the above choices can be made together with choices of
representatives (52, ji, u) such that

up — Uy in C°(S? M) and C(S*\C, M), and
Jk = g i CE(SMC).
Observe that as a result of the C%-convergence, [v, ]+ [v_] = A € Ho(M).

Lemma [LI7 relies on very general properties of J-holomorphic curves that are valid
in all dimensions; under a few extra assumptions, some version of the same result could
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be proved for a 2n-dimensional symplectic manifold (M,w) containing a symplectically
embedded 2-sphere S © M with trivial normal bundle. The following improvement, which
we will prove in Lecture 2l (see §2.2)), is unique to dimension 4:

LEMMA 1.18. The finitely many nodal curves
oty o oy e MU ()
appearing in Lemma[I.17 have the following properties:
(1) Each v’ : S* — M fori=1,...,N is embedded and satisfies [v'] - [v] = —1;

(2) v and v’ fori=1,..., N intersect each other exactly once, transversely;
(3) Fori,je{l,...,N} with i # j,

v (S?) N v;-r(52) = v (5% n vj’(SQ) =v; (S?) n vj’(52) = .
Moreover, if F < M denotes the union of all the images of these nodal curves, then the

curves in ./\/lgs](M, J) are all embedded and have pairwise disjoint images that define a
smooth foliation of some open subset of M\F.

With this lemma at our disposal, the proof of Theorem concludes as follows: let
X = {p e M\F | p is in the image of a curve in MM, J)} :

Lemma [[.T8 guarantees that X is an open subset of M\F', but by the compactness state-
ment in Lemma [LT7 X is also a closed subset. Since M\ F' is connected, we conclude that

the curves in M([)S](M ,J) fill all of it. Now, the compactified moduli space M([]S](M ,J)

consists of M([)S](M ,J) plus finitely many additional elements in the form of nodal curves;
it has the topology of some compact oriented 2-manifold >, and the above argument shows

that every point in M is in the image of precisely one element of ﬂt[)s](M ,J). This defines
a map

T M — MO (M, J) =%,

whose regular fibres are the images of the smoothly embedded curves in M([)S](M . J),
and the images of nodal curves give rise to Lefschetz singular fibres, each with a unique
critical point where two embedded J-holomorphic spheres intersect transversely. Since
all the fibres are images of J-holomorphic curves and J is w-tame, the fibres are also
symplectic submanifolds. Furthermore, the irreducible components of the singular fibres
are exceptional spheres that are disjoint from S (since the latter is also a fibre), thus no
singular fibres can exist if (M\S,w) is minimal.

REMARK 1.19. One can also prove the converse of the statement about minimality,
i.e. if the Lefschetz fibration has no singular fibres then (M\S,w) must be minimal. This
relies on another theorem of McDuff [McD90], that for generic .J, any exceptional sphere is
homologous to a unique JJ-holomorphic sphere, which is embedded. A more comprehensive
exposition of this topic and the more general version of McDuft’s theorem for rational and

ruled symplectic 4-manifolds is given in [Wen18]; see also [LM96].



1.3. LOCAL FOLIATIONS BY HOLOMORPHIC SPHERES 21

1.3. Local foliations by holomorphic spheres

The distinctive power of holomorphic curve methods in dimension four results from
the numerical coincidence that 2 + 2 = 4: in particular, any pair of holomorphic curves
ue M}M,J) and v € M;‘/(M ,J) has a well-defined homological intersection number
[u] - [v] = A- A" € Z. We will discuss this subject in earnest in §2.I but before that,
let us examine a slightly simpler phenomenon that is also distinctive to dimension 4 and
important for the proof of Lemma [L.I8

Suppose (M, J) is a 2n-dimensional almost complex manifold and u € M (M, J) is an
embedded J-holomorphic curve such that the normal bundle N,, — S? to any parametriza-
tion w : S* — M is trivial. Since du(z) : (1.5%,j) — (TuxM, J) is complex linear and
injective for all z € S, the normal bundle naturally inherits a complex structure such that

w*TM =~TS*>@® N,
as complex vector bundles, so the first Chern numbers of these bundles satisfy
ci(u*TM) = ¢ (TS?) + c1(N,) = x(S*) +0 =2,

where ¢ (u*T'M) is shorthand for evaluation of ¢; (u*T'M, J) € H*(S?) on the fundamental
class:

ci(u*TM) = {ey(u*TM, J), [S?]) = (u*e (TM, J),[S?]) = {c1(TM, ), us[S*]) =: c1(A).

If dimM = 4, then triviality of N, implies that u(S?) is a symplectically embedded
sphere with self-intersection number 0, and we saw in Lemma [[I7 that in this case
dim M@ (M, J) = 2. More generally, plugging dim M = 2n and ¢;(A4) = 2 into the virtual
dimension formula (AJ)) in Appendix [AT] gives

vir-dim Mg (M, J) = 2(n — 3) + 2¢,(A) = 2n — 2.

This means more precisely that if .J is sufficiently generic, then the open subset of MZ(M, J)
consisting only of simple curves is a smooth manifold of this dimension, and since u itself
is embedded, this is true in particular for some neighborhood of u in M (M, J). Note also
that embeddedness of spheres in M is an open condition, so all other curves near u are also
embedded. This observation and the dimension computation above make the following
question reasonable:

QUESTION 1.20. Do the curves near u in M{ (M, J) foliate a neighborhood of u(S?)?

To answer this, let us choose a Riemannian metric on M and assume there exists a
smooth family of parametrizations for the curves near u via sections of its normal bundle,
i.e. one can find a smooth map

(1.4) VD2 x 5% 5 M:(0,2) — uy(2) := eXPy(z) o (2)

with h, € T'(N,) for each o € D**2 and hy = 0, such that the maps u, parametrize curves
in M (M, J) and ug = u. There is then a linear map R**~2 — I'(N,,) : X + nx defined
by

d

px(2) = dU0,2)(X,0) = Gux()]
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and the image of this map can be identified with the tangent space T, M (M, J). Using
the fact that each u, : S? — M satisfies a nonlinear Cauchy-Riemann type equation, one
can show that all the sections nx satisfy some linearized Cauchy-Riemann type equation
(cf. Appendix B.1T)): in particular, for any choice of local holomorphic coordinates s + it
identifying a domain U < X with some open set {2 = C, the local expression for nx in a
complex trivialization over I/ is a function f : Q — C"~! satisfying a linear PDE of the
form

(1.5) Osf(s,t) +idif(s,t) + A(s,t)f(s,t) =0,

for some smooth function A(s,t) valued in the space Endg(C"!) of real-linear maps
on C" 1. Except for the extra Oth-order term, this is the standard Cauchy-Riemann equa-
tion, and we might therefore expect f to have similar properties to an analytic function
) — C" !, e.g. its zeroes should be isolated unless nx = 0. This intuition is made pre-
cise by the following consequence of elliptic regularity theory, often called the similarity
principle; a slight generalization of this result is stated and proved in Appendix [B.]).

THEOREM 1.21 (similarity principle). Suppose Q2 < C is an open set, Ne N, A: Q —
Endg (CY) is smooth, f: Q — CV is a smooth function satisfying the equation (L), and
20 € Q is a point with f(zy) = 0. Then [ can be written on some neighborhood zyp € U <
as

(1.6) ) = B(2)g(z),  zeld,
for some continuous function ® : U — Endc(CN) with ®(z) = 1 and a holomorphic

function g : U — CN. Moreover, if A is complex linear at every point, then ® can be taken
to be smooth.

COROLLARY 1.22. Given f : Q — CV as in Theorem[L.21, f is either identically zero
or has only isolated zeroes. In the latter case, if N =1, all zeroes of f have positive order.

PrROOF. Writing f(z) = ®(2)g(z) as in ([L6]) for z in a neighborhood U of zy, we can
assume after shrinking U that ®(z) is close to 1 and thus invertible for all z € #. Then
flee is identically zero if and only if gy is, and otherwise, g has an isolated zero at zp and
thus so does f. If the latter holds and also N = 1, then we can further conclude that the
winding number of the loop

R/Z — C\{0} : 0 — g(zy + e*™)
for small € > 0 is positive, and since ® is close to the identity, the same is true for f. [

The similarity principle implies that sections nx € T, M (M, J) have at most finitely
many zeroes in general, but it implies much more than this in the case where dim M = 4.
Indeed, N, — S? is in this case a complex line bundle, so for any section of this bundle
with only isolated zeroes, the algebraic count of the zeroes is given by the first Chern
number ¢;(N,) € Z, which vanishes since the bundle is trivial. But by Corollary [[22] the
zeroes of any nontrivial section nx € T, M (M, J) all count positively,® so it follows that

3zeroes of a sectionlpositivity of
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there cannot be any: 7x is nowhere zero! This is true for all X # 0, and thus implies that
d¥(0,z) : Tj,.)(D? x 5?) — T,y M is an isomorphism for all z € 52, hence the map (4] is
an embedding in some neighborhood of {0} x S?, giving a positive answer to Question [L20]

PROPOSITION 1.23. If dim M = 4 and u € MZ(M,J) is an embedded J-holomorphic
sphere with trivial normal bundle, then the images of the curves in Mg (M, J) nearu foliate
a neighborhood of the image of u. OJ

No such general result is possible when dim M > 4, because there is no way to “count”
the number of zeroes of a section of a higher rank complex vector bundle over S2.

EXERCISE 1.24. Suppose L. — X is a complex line bundle over a closed Riemann
surface (3, 7), and V < I'(L) is a vector space of sections that satisfy a real-linear Cauchy-
Riemann type equation, so in particular the similarity principle holds for sections n € V.
Prove dimg V' < 2 + 2¢,(L).






LECTURE 2

Intersections, ruled surfaces, and contact boundaries
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In this lecture we explain the intersection theory for closed holomorphic curves in di-
mension 4 and use it to complete the overview from Lecture [ of McDuff’s theorem on
ruled surfaces. We will then begin discussing the generalization of these ideas to punc-
tured holomorphic curves in symplectic cobordisms, and some applications to the study of
symplectic fillings.

2.1. Positivity of intersections and the adjunction formula

To complete the proof of Lemma[LLI8 from §I.2] we must discuss the intersection theory
of J-holomorphic curves in dimension 4. The notion of “homological” intersection numbers
was mentioned already a few times in the previous lecture, and it will be useful now to
review precisely what this means. Suppose M is a closed oriented smooth 4-manifold, >
and Y are closed oriented surfaces, and

u:Y — M, v:Y — M
are C'-smooth maps. An intersection u(z) = v(¢) = p is transverse if
(2.1) imdu(z) ®@imdv(¢) = T,M,

and positive if and only if the natural orientation induced on this direct sum by the
orientations of 7.¥ and 7;%’ matches the orientation of 7,M. Otherwise it is called
negative, and we define the local intersection index accordingly as «(u, z; v, () = £1.
If all intersections between u and v are transverse, then they are all isolated and thus there
are only finitely many, so we can define the total intersection number
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The choice of notation reflects the fact that [u] - [v] turns out to depend only on the
homology classes [u], [v] € Ha(M); in fact, it defines a nondegenerate bilinear symmetric
form

Hy(M) @ Hy(M) — Z: [u] @ [v] = [u] - [v].
More details on this may be found e.g. in [Bre93].

If w and v have an isolated but non-transverse intersection at u(z) = v({) = p, one
can still define a local intersection index t(u,z; v,() € Z as follows. By assumption, z
and ¢ each lie in the interiors of smoothly embedded closed disks D, < ¥ and D, < ¥
respectively such that

w(D:\{z}) N u(DACY) = .
Then one can find a C*-small perturbation u. of u such that uc|p,dv|p, but u(0D.) and
v(0D;) remain disjoint. We set

(u,z;0,C) = Z t(ue, 25 v,(') e Z,
ue(z)=v(¢")
where the sum is restricted to pairs (2/,(") € D, x D.
EXERCISE 2.1. Suppose ¥ and Y are compact oriented surfaces with boundary, M is

a smooth oriented 4-manifold and

fr:X — M, gr X — M, 7€ [0,1]
are homotopies! of maps with the property that for all 7 € [0, 1],

fr(0%) N g (2) = f(2) n g- () = &.

Show that if f, and g, are of class C! and have only transverse intersections for 7 € {0, 1},
then

(2.2) Z t(fo: 23 90,C) = 2 t(f1:25 91, €).

fo(2)=g0(¢) f1(2)=91(¢)

Deduce from this that the above definition of the local intersection index for an isolated but
non-transverse intersection is well defined and independent of the choice of perturbation.
Then, show that (Z2]) also holds if the intersections for 7 € {0, 1} are assumed to be isolated
but not necessarily transverse. Hint: If you have never read [Mil97], you should.

The following useful result is immediate from the above definition; it can be paraphrased
by saying that “algebraically nontrivial intersections cannot be perturbed away.”

PROPOSITION 2.2. If u : ¥ — M and v : ¥ — M have an isolated intersection
u(z) = v(¢) with t(u, z; v,() # 0, then for any neighborhood z € U, = 3, any sufficiently
C-close perturbation u. of u satisfies u(U,) N v(X') # . O

IWe are not specifying the regularity of the homotopy in this statement because it does not matter:
one can use general perturbation results as in [Hir94] to replace any continuous homotopy between two
C'-smooth maps with a homotopy of class C'. If desired, one can also perturb all of the maps to make
them smooth.
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Recall next that any complex structure on a real vector space induces a preferred
orientation. In the case where u : (X,5) — (M, J) and v : (¥',j") — (M, J) are both
J-holomorphic curves, this means that each space in (Z1]) carries a canonical orientation
and they are automatically compatible with the direct sum, hence ¢(u, z; v,() = +1. This
positivity phenomenon turns out to be true for non-transverse intersections as well:

THEOREM 2.3 (local positivity of intersections). Suppose u : (X,j) — (M,J) and
v: (X5 — (M,J) are nonconstant pseudoholomorphic maps with u(z) = v({) =pe M
for some z € ¥, ¢ € 3. Then there exist neighborhoods z € U, < ¥ and ( € U < X' such
that either uw(U,) = v(U;) or

uU\{z}) N oUNCYH) = .

Moreover, in the latter case, if dim M = 4 then v(u, z; v,() = 1, with equality if and only
if the intersection is transverse.

A proof of this theorem is given in Appendix [Bl

To understand the global consequences of Theorem 2.3] observe that there are certain
obvious situations where a pair of closed J-holomorphic curves u : (X,75) — (M, J) and
v: (X, j") — (M, J) have infinitely many intersections, e.g. if they represent the same curve
up to parametrization, or they are multiple covers of the same simple curve. In such cases,
u and v have globally identical images, and we find neighborhoods with w(U.) = v(U)
in Theorem One can show that in all other cases, the set of intersections is finite, a
phenomenon known as unique continuation. Theorem then implies:

COROLLARY 2.4 (global positivity of intersections). If dim M = 4 and u : (3,7) —
(M,J) and v : (¥',7) — (M,J) are closed connected J-holomorhic curves with non-
identical images, then they have finitely many intersections, and

[ul - [v] = #{(z. ) e 2 x X' [ u(z) =v(()}.

with equality if and only if all the intersections are transverse. In particular, [u] - [v] = 0

if and only if w(X) nv(X) = . O

We next consider the question of how many times a single closed J-holomorphic curve
u: (X,7) — (M, J) intersects itself at two distinct points in its domain, i.e. its count of
double points. This question obviously has no reasonable answer if u is multiply covered,
so let us assume w is simple, in which case it has only finitely many double points. We say
that a point z € ¥ is a critical point of u if

du(z) = 0.

REMARK 2.5. This usage of the term “critical point” conflicts with standard terminol-
ogy since typically dim ¥ < dim M, hence du(z) can never be surjective and u therefore
cannot have any regular points, strictly speaking. Note however that whenever du(z) # 0,
the Cauchy-Riemann equation implies that du(z) is injective. For this reason, we will refer
to points with this property as immersed points instead of “regular points”.
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A simple J-holomorphic curve can have critical points, but only finitely many, and their
role in intersection theory is dictated by the following lemma. For an oriented surface ¥ and
a symplectic manifold (M,w), we say that a smooth map u : ¥ — M is symplectically
immersed if u*w > 0.

LEMMA 2.6. If u € My(M,J) is simple, then for any parametrization v : ¥ — M
and any z € X, there is a neighborhood z € U, < X2 such that |y, is injective. Moreover,
if du(z) = 0, dim M = 4, and w, is an auziliary choice of symplectic form defined near
u(z) and taming J, then there exists a positive integer 6(u, z) > 0 depending only on the
germ of u near z, such that uly. admits a C*-small perturbation to an w,-symplectically
immersed map u. : U, — M that matches u outside an arbitrarily small neighborhood of z
and satisfies®

1
o(u, z) = 3 2 L(ue, G5 ue, Ga),
ue(C1)=ue(C2), C1#C2
where the sum is finite and ranges over pairs (¢, () € U, X U,.

A proof of this lemma is given in Appendix [Bl It enables us to define for each simple
curve u € M (M, J) the integer

1
(2.3) o(u) =5 D dwziu Q)+ ) bu2) e,
u(z)=u({), 2#¢ du(z)=0
which we shall call the singularity index of u. The contribution d(u,z) > 0 for each
critical point z is the local singularity index of u at z.

THEOREM 2.7. For any simple curve u € My(M, J) in an almost complex 4-manifold
(M, J), the integer §(u) defined in (23) depends only on the genus g and the homology
class [u] € Hyo(M). Moreover, 6(u) = 0, with equality if and only if u is embedded.

Note that the second statement in Theorem 2.7 is an immediate consequence of The-
orem 2.3 and Lemma 2.6l To prove the first statement, we shall relate §(u) to other
quantities that more obviously depend only on [u] € Hy(M) and the genus, for instance
the homological self-intersection number

[u] - [u] € Z.
To compute the latter, it suffices to compute [u.] - [u.] for any C'-small immersed pertur-
bation u, : ¥ — M of u. Choose u, to be the perturbation promised by Lemma 2.6 so
for some auxiliary symplectic structure w taming J near the images of the critical points

of u, we can assume u, is symplectically immersed near those critical points and matches
u everywhere else. Notice that by Lemma and the definition of 0(u),

S(ul) = 6(u).

Denote the normal bundle of u, by N,, — ¥. Since u, is symplectically immersed in the
region where it differs from u, we can deform the natural complex structure of w7 M on

2Notice that each geometric double-point u.((1) = uc(¢2) appears twice in the summation over pairs
(C1,¢2), hence the factor of 1/2 in the definition of §(u, z), and similarly in (23)).
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this region to one that is tamed by w but also admits a splitting of complex vector bundles
ufTM = TY®N,,. This modification of the complex structure does not change ¢; (u*T'M),
so we then have

(2.4) ci([u]) = ct(WiTM) = 1 (TE) + ¢1(Ny,) = x(2) + c1(Ny,).

This motivates the following notion: we define the normal Chern number cy(u) € Z of
any closed J-holomorphic curve u : (X, 5) — (M, J) to be

(2.5) en(u) == er[u]) = x (%),
It is equal to ¢1(N,) whenever u is immersed, but has the advantage of obviously depending
only on [u] € Hy(M) and the topology of the domain, so we can define it without assuming
that u is immersed.

The self-intersection number [u] - [u] = [u.] - [u] can now be computed by counting
(with signs) the isolated intersections between u,. and a generic perturbation of the form

ug: N — Mz exp, ) 1(2),

where 7 is a generic C%small smooth section of N,, — X, and the exponential map
is defined using any choice of Riemannian metric on M. Figure 2] shows how many
intersections we should expect to see. Any zero of n with order k € Z will produce an
intersection of u, and u. whose local intersection index is also k, and the sum of these
orders over all zeroes of 7 is ¢1 (N, ). Moreover, any isolated double point u.(z) = u.(¢) will
produce two intersections of u. and u. with the same local index. These two observations
produce the formula

[u] - [u] = 26(ue) + c1(Ny,) = 20(u) + ey (u).

Since neither [u] - [u] nor ¢y (u) depends on the perturbation wu,, this proves the following
important result, known as the adjunction formula, which implies Theorem 2.7 as an
immediate corollary.

THEOREM 2.8 (adjunction formula). For any closed, connected and simple J-holomorphic
curve u in an almost complex 4-manifold (M, J),

(2.6) [u] - [u] = 26(u) + en(u),
where cy(u) € Z is the normal Chern number (2.5), and d(u) is a nonnegative integer that
vanishes if and only if u is embedded. OJ

COROLLARY 2.9. If u € M;‘(M, J) is embedded, then every other simple curve in
MM, J) is also embedded. O

EXERCISE 2.10.
(a) Consider the intersecting holomorphic maps u,v : C — C? defined by
u(z) = (2%,2°),  w(z) = (4,2

Show that u admits a C'-small perturbation to a holomorphic function u. such
that u. and v have exactly 18 intersections in a neighbourhood of the origin, all
transverse.
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/

Ue

F1cURE 2.1. Counting the intersections of u, : ¥ — M with a perturbation
of the form w, = exp,_ n for some section 1 of the normal bundle.

(b) Try to convince yourself that the above count of 18 intersections holds after any
generic C''-small perturbation of u and/or v.

(c) Show that for any neighbourhood & = C of 0, the map u admits a C'-small
perturbation to a holomorphic immersion u, such that

%#{(2, O el xU | ulz) =ucl), z# ¢} = 10.

(d) If you're especially ambitious, now try to convince yourself that for any perturba-
tion as in part (¢) making all double points of u. transverse, the count of double
points is the same.

EXERCISE 2.11. Recall that H,(CP?) is generated by an embedded sphere CP* = CP?
with [CP'] - [CP!] = 1. A holomorphic curve u : ¥ — CP? is said to have degree d € N if
[u] = d[CP"].

Show that all holomorphic spheres of degree 1 are embedded, and any other simple holo-
morphic sphere in CP? is embedded if and only if it has degree 2.

2.2. Application to ruled surfaces

We now apply the results of the previous section to complete the proof of Lemma [[.T§]
from Lecture [l
Since M([)S](M ,J) contains the embedded curve ug by construction, Corollary [Z9 im-

plies that all other simple curves in M([]S](M ,J) are also embedded, and we saw in L3
that every embedded curve u € M([)S](M ,J) has a neighborhood in M([)S](M ,J) consist-
ing of embeddings that foliate an open subset. On a more global level, any two curves

u,v € M([)S](M, J) satisty
[u] - [v] = [ST- [S] = O,

thus Corollary 2.4l now implies that u and v are disjoint unless they are identical, hence
the set of all simple curves in M([)S](M ,J) foliates an open subset of M.

We must still rule out the possibility that M([)S](M ,J) contains a multiple cover, so
arguing by contradiction, suppose u € M([)S](M ,J) is a k-fold cover of a simple curve
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v (Xy,7) = (M, J) with genus g > 0, for some k > 2. This requires the existence of a
map ¢ : S* — 3, of degree k, but such a map cannot exist if g > 0 since X, then has a
contractible universal cover and thus m(X,) = 0; we conclude g = 0. Moreover, the fact
that the embedded sphere S © M has trivial normal bundle implies via the usual splitting
TM|S = TS@NS that

a([S]) = a(TS) + c1(Ns) = x(5) = 2,
so [S] = [u] = k[v] implies 2 = ke ([v]), thus k£ = 2 and ¢;([v]) = 1. Consider now the
adjunction formula (2.6]) applied to the simple curve v:
[v] - [v] = 26(v) + en(v) = 20(v) + 1 ([v]) — 2.
The right hand side is an odd integer since ¢;([v]) = 1. However, the left hand side is 0,
as 0= [S]-[S] = [u] - [u] = k*[v] - [v], so we have a contradiction.

Next, suppose uy € M([]S](M ,J) is a sequence degenerating to a nodal curve {v,,v_} €
ﬂgs](M ,J), for which Lemma [[.T7] guarantees that both v, and v_ are simple and satisfy
c1([v+]) > 0. Since [S] = [ug] = [vy] + [v_] and ¢1([S]) = 2, this implies
(2.7) en([os]) = ex(fo]) = 1.

Since every curve u € M([)S] (M, J) has ¢1([u]) = ¢1([S]) = 2 and is simple, this implies that
u and vy can never have identical images, so [u] - [v+] = 0 by positivity of intersections
(Corollary 24]). Moreover,

0=[S]-[S] = [u] - ([o+] + [v-]) = [u] - [v+] + [u] - [v-],

where both terms at the right are nonnegative, thus both vanish and we conclude via
Corollary [Z4] that u is disjoint from both v, and v_.

We claim next that v, and v_ cannot be the same curve (up to parametrization):
indeed, if they are, then we have [S] = 2[v,], and applying the adjunction formula to v,

yields the same numerical contradiction as in the case of a multiple cover in M([)S] (M, J). It
follows now by Corollary 2.4l that v, and v_ have finitely many intersections, all of which
count positively, and in fact

(2.8) (0] [o-] > 1

since they must have at least one intersection, namely at the node. Using [S]
and (2.7)), and plugging in the adjunction formula and (Z71) to compute [v4

= [v4]+[v-]
[v4], we find

I
0=[5]-[S] = (lox] + [v-]) - (Toe] + [o-]) = [o4] - o4 ] + [o-] - [o-] + 2[v4 ] - [o-]
=20(vy) + en(vy) +20(v-) + en(v-) + 2[v4] - [v-]
= 20(vy) +20(v-) + er([v4]) = x(5%) + er([v-]) = x(S%) + 2[vy ] - [v-]
=20(vy) +20(v-) + 2 ([vy] - [v-] = 1).
By (2.8)), every term in this last sum is nonnegative, implying

d(vy) =0(v_)=0 and [oy]-[v_]=1.
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Applying Corollary 2.4] and Theorem 2.8 we deduce that vy are each embedded and
intersect each other exactly once, transversely. Applying the adjunction formula again to
vy with en(vy) = e1([vs]) — x(S?) = —1 then gives

[v4] - [v4] = 20(vs) + en(ve) =0 =1 = —1,

so both are J-holomorphic parametrizations of exceptional spheres.
Finally, we show that if {v,,v_} and {v/,,v" } are two non-identical nodal curves arising

as limits of curves in ./\/l([)s] (M, J), then they are disjoint. Here “non-identical” can be taken
to mean without loss of generality (i.e. by reversing the labels of v, and v_ if necessary) that
vy is not equivalent to either v/, or v/ up to parametrization, so positivity of intersections
gives [v,]-[v}] = 0. It could still happen in theory that v_ is equivalent to one of v/, or v’ ;
say the latter, without loss of generality. Then [v_]-[v" ] = —1 by the above computation,
while [vi] - [v_] = [v4] - [v"] =1 and [/ ] - [v"] = [v/] - [v—] = 1, thus

0=[S]-[S] = ([ve] + [v-]) - ([0 ] - [W']) = [ws] - [0 ] + [oi ] - [ ] + [v-] - [ ] + [o-] - [0 ]

>0+14+1-1=1,

giving a contradiction. The only remaining possibility is that each of vy is not equivalent
to each of v/, so their intersections are all positive, and the expansion above implies that
they are all zero, thus both curves in {v,,v_} are disjoint from both curves in {v/ v’ }.
The proof of Lemma is now complete.

To conclude our discussion of the closed case, let us note which properties of the inter-
section theory we made essential use of in the above argument:

e The pairing [u] - [v] is homotopy invariant.

e The condition [u] - [v] = 0 guarantees that two curves u and v with non-identical
images are disjoint; moreover, if they have a known intersection, then [u] - [v] = 1
guarantees that that intersection is transverse.

e There is a homotopy invariant number §(u) > 0 defined for simple curves w, which
can be computed in terms of [u] - [u] and whose vanishing guarantees that u is
embedded.

In order to produce a useful theory for studying contact 3-manifolds, we will want the
intersection theory defined in the next two lectures for punctured holomorphic curves to
have all of these same properties.

2.3. Contact manifolds, symplectic fillings and cobordisms

The goal for the remainder of these lectures will be to explain a generalization of the
intersection theory described above that has applications in 3-dimensional contact topology.
One way to motivate the study of contact manifolds is by considering symplectic manifolds
with boundary.

A vector field V on a symplectic manifold (M, w) is called a Liouville vector field if
it satisfies

Lyw = w,
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i.e. its flow rescales the symplectic form exponentially. By Cartan’s formula for the Lie
derivative, this is equivalent to the condition

d\ = w, where A := 1pw,

and the primitive A is then called a Liouville form. We say in this case that A is w-dual
to V.

DEFINITION 2.12. Suppose (W, w) is a symplectic manifold with boundary. A boundary
component M < ¢0W is called convex/concave if a neighborhood of M admits a Liouville
vector field that points transversely outward/inward respectively at M.

EXERCISE 2.13. Suppose M is an oriented hypersurface in a 2n-dimensional symplectic
manifold (W,w), and V is a Liouville vector field defined near M, with w-dual Liouville
form A. Show that V' is positively/negatively transverse to M if and only if the restriction
of A A (dN)""! to M is a positive/negative volume form respectively.

EXERCISE 2.14. Show that in the situation of Exercise 2.I3] the spaces of Liouville
forms A defined near M < (W,w) such that A A d\" |7y, is a positive or negative volume
form are convex.

Exercise 2.13] leads directly to the notion of a contact manifold: we say that a 1-form
a on an oriented (2n — 1)-dimensional manifold is a (positive) contact form if

(2.9) a A (da)" ' >0,

and a (positive, co-oriented) contact structure is any smooth co-oriented hyperplane dis-
tribution £ < T'M that can be defined by £ = ker a for some contact form «. Exercises
and 2T show that whenever M < W is a convex/concave boundary component of a sym-
plectic manifold (W,w), the oriented manifold +M inherits a positive® contact structure,
which is unique up to deformation through families of contact structures. Whenever M is
closed, Gray’s stability theorem (see e.g. [Gei08]) then implies that the induced contact
structure on M is in fact canonical up to isotopy.*

EXERCISE 2.15. Show that up to issues of orientation, the contact condition (29 is
equivalent to the condition that « is nowhere zero and da restricts to a nondegenerate
2-form on £ := ker v, i.e. it makes (£, da) — M a symplectic vector bundle.

DEFINITION 2.16. Given two closed contact manifolds (M, ,&,) and (M_, &) of the
same dimension, a symplectic cobordism from® (M_,¢ ) to (M, ,£&,) is a compact

3We are assuming M carries its canonical orientation as a boundary component of the symplectic
manifold (W, w), but also using the notation —M to mean the same manifold with reversed orientation—
thus a positive contact structure on —M is in fact a negative contact structure on M.

4Gray’s stability theorem states that any smooth 1-parameter family of contact structures on a closed
manifold arises from an isotopy. It is specifically true for contact structures and not contact forms, and
this is one good reason why we regard the contact structure on a convex/concave boundary of a symplectic
manifold as a well-defined object, whereas the contact form is only auxiliary data.

5Certain orientation conventions are not universally agreed upon: there is a vocal minority of authors
who would describe what we are defining here as a “symplectic cobordism from (M, €4) to (M_,€-).
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symplectic manifold (W,w) with
aW - _M_ L M_;,_,
such that a neighborhood of W admits a Liouville form A with

ker ()\|TMi) = gi'

If M_ = ¢, we call (W,w) a (strong) symplectic filling of (M, ,&,), and if M, = ¢F, we
say (W,w) is a symplectic cap for (M_, ¢ ).

There are many interesting questions one can ask about contact manifolds and the
existence of symplectic fillings or cobordisms. The strongest results in this area are typically
specific to dimension three, though there has also been considerable recent progress in
higher dimensions. Here is a brief sampling of known results:

(1) Martinet [Mar71] proved that every closed oriented 3-manifold admits a con-
tact structure. This result was recently extended to all dimensions by Borman-
Eliashberg-Murphy [BEM15], given the obviously necessary topological condition
that an almost contact structure exists.

(2) A combination of results due to Gromov and Eliashberg [Gro85/[E1i90,[Eli89] im-
plies that any contact structure on any closed 3-manifold M is homotopic through
oriented 2-plane fields to a contact structure ¢ for which (M, &) admits no sym-
plectic filling. These are the so-called overtwisted contact structures. This notion
has also recently been generalized to all dimensions in [BEM15].

(3) A result of Lisca [Lis98] even gives examples of closed oriented 3-manifolds on
which no contact structure is symplectically fillable. Etnyre and Honda [EHOT]
later extended this to find 3-manifolds on which every contact structure is over-
twisted.

(4) In contrast to fillings, Etnyre and Honda [EHO2] showed that symplectic caps
do exist for any closed contact 3-manifold, and in fact they come in infinitely
many distinct topological types. The existence of caps in all higher dimensions
was established only very recently, in parallel work of Conway-Etnyre [CE] and
Lazarev [Laz].

(5) Etnyre and Honda [EHOZ2] also showed that every closed overtwisted contact 3-
manifold admits a symplectic cobordism to every other closed contact 3-manifold.
The higher-dimensional analogue of this result was recently established by Eliash-
berg-Murphy [EM].

Let us state more carefully two further results along these lines that will be discussed in
Lecture[l. We say that two symplectic manifolds (W, w) and (W', w') with convex boundary
are symplectically deformation equivalent if there is a diffeomorphism ¢ : W — W’
such that p*w’ can be deformed to w through a smooth 1-parameter family of symplectic
forms that are all convex at the boundary. The standard contact structure &q on

Whichever convention one prefers, one must be consistent about it—unlike topological cobordisms, the
existence of a symplectic cobordism in one direction does not imply that one in the other direction also
exists!
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S3 is defined by identifying S® with the boundary of the unit ball B* with its standard
symplectic form on the 4-ball

2
Wetd := Z dx; A dy;

J=1

and Liouville form
2

3 (wy dy; — y; day)

j=1

)\std =

N —

By this definition, (B*, wgyq) is a symplectic filling of (53, &44q), and one can trivially produce
other fillings of (53, &,q) with different topological types by blowing up (B*, wgq) in its
interior. This procedure however produces a fairly limited range of topological types for
manifolds W with 0W = S3. Note that in terms of smooth topology, almost anything can
have boundary S3: just take any closed oriented 4-manifold, remove a ball and reverse the
orientation. Symplectically, however, the situation is very different:

THEOREM 2.17 (Gromov [Gro85|). Every symplectic filling of (S3,&xa) is symplecti-
cally deformation equivalent to a blowup of (B*, wq)-

Similarly, S' x S? and the lens spaces L(k,k —1) for k € N each carry standard contact
structures as convex boundaries of certain symplectic manifolds, and their fillings are also
unique in the above sense:

THEOREM 2.18. The contact manifolds (S* x S% &xa) and (L(k,k —1),&4q) for ke N
each have unique symplectic fillings up to deformation equivalence and blowup.

Theorem was proved for S x S? originally by Eliashberg [EIi90], and the unique-
ness for L(k,k —1) up to diffeomorphism was proved by Lisca [Lis08]. In the forms stated
above, Theorems 217 and are both easy applications of a more general result from
[Wen10Db], that can be thought of as an analogue of McDuff’s Theorem for symplectic
fillings of certain contact 3-manifolds. This will be the main subject of Lecture

2.4. Asymptotically cylindrical holomorphic curves

It is not usually useful to consider closed holomorphic curves in symplectic cobordisms—
for example, the symplectic form on a cobordism could be exact, in which case Stokes’ the-
orem implies that all closed holomorphic curves for a tame almost complex structure are
constant. A useful alternative is to consider noncompact holomorphic curves with cylin-
drical ends, and the proper setting for this is the noncompact completion of a symplectic
cobordism. The study of holomorphic curves in this setting is a large subject known as
symplectic field theory (see [EGHO00,[Wenb] ), and we shall only touch upon a few aspects
of it here.

Assume (W, w) is a symplectic cobordism from (M_,&_) to (M., &, ), with a neighbor-
hood of 0W admitting a Liouville form A such that

& =keray, where ay = A|ra, .
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([0,00) x M, ,d(e*ay))

((—€,0] x My, d(e*ay))

(W,w)

([0,€) x M_,d(e*a_))

((—00,0] x M_,d(e*a))

FIGURE 2.2. The completion of a symplectic cobordism is constructed by
attaching half-symplectizations to form cylindrical ends.

EXERCISE 2.19. Show that the flow from A, along the Liouville vector field dual to A
identifies collar neighborhoods N (My) < W of My with the models

(N(M-i-)a)‘) = ((_an] X M+,68a+),
(N(M_),A) = ([0,¢) x M_,e’a_)
for sufficiently small € > 0, where s denotes the real coordinate in (—e¢, 0] or [0, €).
For any contact manifold (M, § = ker a), the exact symplectic manifold (R x M, d(e*«))
is called the symplectization of (M, ¢); one can show that its symplectomorphism type
depends on & but not on the choice of contact form . A choice of a does however determine

a distinguished vector field that spans the characteristic line fields of the hypersurfaces
{s} x M: we define the Reeb vector field to be the unique vector field R,, on M satisfying

da(Ra,-) =0 and «a(R,) =1.

The symplectic completion of the cobordism (W,w) is defined by attaching halves
of symplectizations along the collar neighborhoods from Exercise .19, producing the non-
compact symplectic manifold (see Figure [2.2]).

(2.10)  (W,Q) := ((—=0,0] x M_,d(e*a_)) unr (W,w) unr, ([0,0) x My, d(e*a)).

Informally, the symplectization of (M,¢) can also be thought of as the completion of a
trivial symplectic cobordism from (M, €) to itself.
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Given a choice of contact form « for &, (R x M, d(e®a)) carries a special class J(«) of
compatible almost complex structures J, defined by the conditions
e J(0s) = Ry;
o J(§) = ¢ and J|¢ is compatible with dag;
e J is invariant under the translation action (s, p) — (s + ¢, p) for all ¢ € R.

For any J € J(«), a periodic orbit  : R — M of R, with period 7" > 0 gives rise to a
J-holomorphic cylinder

u:RxS' >R x M: (s,t) — (Ts,x(Tt)).

Such curves are referred to as orbit cylinders (sometimes also trivial cylinders), and
they serve as asymptotic models for the more general class of holomorphic curves that we
now wish to consider. .

Indeed, on the completion (W, ) as defined above, let J(w, ay,a_) denote the space
of almost complex structures that are compatible with w on W and belong to J(a4) on
[0,0) x M, and (—o0,0] x M_ respectively. A choice of J € J(w,ay,a_) makes (I//I\/, J)
into an almost complex manifold with cylindrical ends. A Riemann surface with
cylindrical ends can likewise be constructed by introducing punctures into a closed Riemann
surface. Namely, suppose (X, 7) is closed, and I' ¢ ¥ is a finite set partitioned into two
subsets I' = I'" L '™, which we will call the positive and negative punctures, writing
the resulting punctured surface as

> =2\
Near each z € 't one can identify a closed neighborhood D, = ¥ of z biholomorphically
with the standard unit disk (DD, 7) such that z is identified with the origin, and then identify
D\{0} in turn with a half-cylinder via the biholomorphic map

[0,00) x ST — D\{0} : (s,t) > e 2"F  for z e T,
(—0,0] x ST — D\{0} : (s,t) — > for z e,

We will refer to this identification as a choice of cylindrical coordinates near z € I'*.
Making such a choice for all punctures, this determines a decomposition

(2.11) ¥ = ((~90,0] x C_) ue_ S ue, ([0,0) x Cy)

analogous to ([ZI0), where ¥ := X\ |, 1 D, can be regarded as a cobordism with 0%, =
—C_ u C between two disjoint unions of circles C'y, and the complex structure on the
cylindrical ends is always the standard one, i.e. with id, = 0, in cylindrical coordinates
(s,t).

We say that a smooth map w : S W is (positively or negatively) asymptotic at
z € I'F to a T-periodic orbit = : R — My of R,, if there exists a choice of cylindrical
coordinates as above in which u near z takes the form

u(s,t) = exp s ooy P(s,1) € R x My for |s| large,

where the exponential map is defined with respect to a translation-invariant choice of
Riemannian metric on R x My, and h(s,t) is a vector field along the orbit cylinder that
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[0,00) x M

(—00,0] x M_

FIGURE 2.3. An asymptotically cylindrical map w : S — Wofa punctured
surface of genus 2 into a completed cobordism, with one positive puncture
z € X asymptotic to a Reeb orbit v, in M, and two positive punctures
w, ¢ € X asymptotic to Reeb orbits 7, and v, in M_.

decays to 0 with all derivatives as s — +00. We say that wu : S — M is asymptotically
cylindrical if it is positively/negatively asymptotic to some closed Reeb orbit in M, or
M_ respectively at each of its positive/negative punctures; see Figure 2.3

Observe that the completion W admits a natural compactification as a compact topo-
logical manifold with boundary:

W= ([—00,0] x M_) up. W ung, ([0,00] x My).

In the same way, the decomposition (2.11]) allows us to define the circle compactification
Y of 3, a compact topological 2-manifold with boundary whose interior is identified with 3.
It follows then from the definition above that any asymptotically cylindrical map u : ¥ —
W extends naturally to a continuous map

u:x—->W
which takes each component of 03 to a closed Reeb orbit in {+o0} x M.

If the set of punctures is nonempty, then an asymptotically cylindrical map u : ¥ — W
does not represent a homology class in Hy(WW), but one can use the compactifications
described above to assign it a relative homology class. Concretely, let

Nt < {+w} x My < oW

denote the union of all of the images of the positive/negative asymptotic orbits of wu;
topologically, this is a disjoint union of embedded circles. The relative homology class
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of w is then defined as
[u] == u.[X] € Hy(W,5" u77),

where [X] € Hy(%, 03) denotes the relative fundamental class of . The long exact sequence
of the pair (W,~4* U ~~) implies that any two asymptotically cylindrical maps having the
same asymptotic orbits with the same multiplicities have relative homology classes that
differ by a unique absolute homology class, that is, a class in the image of the natural map
Hy(W) — Hy(W,~4* U ~7); note that the latter is injective since Hy(3* u~~) = 0. In
most situations, it is convenient to apply the obvious deformation retraction W — W and
regard [u] as an element of Hy(W, 5+ U 47), with 4 now regarded as submanifolds of
My < 0W. In the special case where (17[\/, W) is just the symplectization of a single contact
manifold (M, §), we take this one step further and retract R x M to {0} x M, so that [u]
lives naturally in Hy(M, 5" U4 ~). In the following we will state definitions assuming that
(W, ) is a completion of a nontrivial cobordism instead of a symplectization, but one can
make obvious modifications to accommodate the latter case.

Moduli spaces of punctured J-holomorphic curves are now defined as follows. Choose
finite ordered sets of closed Reeb orbits

+ +

Y=, ) in My and v =(v,...,7. ) in M_,

and a relative homology class A € Hy(W,5" U 47), where 4% denotes the union of the
images of the orbits 77, ... ,fy,‘,—;. We then define

MW, Tyt ) = {5, T T )/ ~
where

e (3,7) is a closed connected Riemann surface of genus g;

o It = (25, ... 2 ) are disjoint finite ordered sets of pairwise distinct points in %,
defining a punctured surface ¥ := X\(I't U T7);

e The map u: (3,]) — (ﬁ\/, J) is J-holomorphic, asymptotic to v;° at z" € 't for
1 =1,...,r4, and represents the relative homology class A;

e Two such tuples are considered equivalent if they are related by a biholomorphic
map that preserves the sets of positive and negative punctures, along with their
orderings.

We shall denote unions of these spaces over all possible choices of data by
MW, Jiy T y7) = [T MW 7y,
AeHy(WATUYT)
Magir (WD) o= [ MW Tiv*, 7).
IvE[=rs

MW7) = [ Mg, (W, ).

ry,r—=0
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A topology on Mg(w, J) can be defined by saying that a sequence [(Z, jx, 't , Ty, uk)]
converges to an element [(3, 7, T, '~ u)] if there exist representatives (X, j., I'", T, u}) ~
(Xk, Jr, T, T, ug) such that

Jr — j in C* (%), w, — u in CZ, (3, W), and 4y — @ in C°(X, W).
Our goal for the next pair of lectures will be to write down generalizations of the ho-

mological intersection number and the adjunction formula for curves in Mg(l//I\/, J). These
will be instrumental in the proof of Theorems 217 and 218
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If uy € ./\/lg(w, J;v7,v7) and uy € ./\/lg(w, J;v35 .5 ) are two asymptotically cylindri-
cal holomorphic curves in a 4-dimensional completed symplectic cobordism, it remains true
as in the closed case that intersections of u; with wuy are isolated and positive unless both
curves have identical images (i.e. they cover the same simple curve up to parametrization).
Since the domains are no longer compact, however, it is not obvious whether the number
of intersections is still finite. If it is finite, then one can define an algebraic intersection
number

U1°UQEZ

which is guaranteed to be nonnegative, and strictly positive unless the two curves are
disjoint. Such a number is not very useful though\unless it is homotopy invariant, i.e. we
would like to know that for any family us € M (W, J;~47,~7) that depends continuously
(with respect to the topology of the moduli space) on a parameter s € [0,1], we have
Ug -+ Uy = Uy - ug. This turns out to be false in general, as the noncompactness of the
domains can allow intersections to escape to infinity and disappear under homotopies (see
Figure BJ]). It is a very powerful fact, first suggested by Hofer and then worked out in
detail by Siefring [Sie05.[Sie08|[Siel1], that this phenomenon can be controlled: one can
define for any two distinct punctured holomorphic curves a count of wvirtual intersections
that are “hidden at infinity,” such that the sum of this number with u; - us is homotopy
invariant. We will define this precisely in the next lecture and explain some applications
in Lecture Bl As a preliminary step, it is necessary to gain a fairly precise understanding
of the asymptotic behavior of punctured holomorphic curves, so that will be the topic for
this lecture.

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic
Curves and Intersection Theory by Chris Wendl. This pre-publication version is free to view and download
for personal use only. Not for re-distribution, re-sale or use in derivative works. (©Chris Wendl, 2019.
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REMARK 3.1. While all results in this and the next lecture are stated in the setting
of symplectizations of contact manifolds and (completed) symplectic cobordisms between
them, they are valid in somewhat greater generality: they continue to hold namely when-
ever contact forms are replaced by stable Hamiltonian structures, so long as one can still
assume that all closed Reeb orbits are nondegenerate (or Morse-Bott—see the footnote

attached to Theorem [LJ]). The main results are restated in this more general form in
Appendix [C]

3.1. Holomorphic half-cylinders as gradient-flow lines

Historically, the study of punctured holomorphic curves arose from an analogy with
Floer’s interpretation of Morse theory as the study of gradient-flow lines of a Morse function
(see e.g. [Sal99/[AD14]). In Morse theory, one considers a manifold M with a smooth
function f : M — R, which is called a Morse function if its Hessian at every critical
point p € Crit(f)

Hess, := Vdf(p) : T,M x T,M — R

is nondegenerate; here V denotes the covariant derivative for any choice of connection
on M, but the Hessian does not depend on this choice since df(p) = 0. Recall that the
Hessian is automatically a symmetric bilinear map, and if we choose a Riemannian metric g
with Levi-Civita connection V and consider instead the covariant derivative of the gradient,
we can then identify Hess, with the linear map

Ap = V(Vf)(p): T,M — T,M,

which is symmetric with respect to the inner product defined by g. One way of proving the
classical Morse inequalities on M is by defining a homology theory with a chain complex
generated by critical points in Crit(f), and a differential defined by counting isolated
solutions to the gradient-flow problem

M(py,p-) = {:1: R—> M ‘ & = Vf(z) and SEIPOOx(s) = p+} :
for p4 € Crit(f). In particular, one can show that the resulting homology theory is isomor-
phic to the usual singular homology H,.(M), thus giving relations between the topology
of M and the set of critical points of f, see e.g [Sch93|[AD14].

Since the Hessian A, = V(V f)(p) is symmetric, its eigenvectors in 7,M are orthogonal
and its eigenvalues are real. Another way of expressing the Morse condition is to say
that 0 ¢ o(A,) for all p € Crit(f), and the Morse index of p is then the algebraic count
of negative eigenvalues in o(A,). It turns out that the spectrum o(A,) also controls the
asymptotic behavior of gradient-flow lines approaching p: the following result from the
theory of ordinary differential equations makes this statement precise.

PROPOSITION 3.2. Suppose f : M — R is a Morse function on a Riemannian manifold
(M,g), and x € M(py,p_) is a gradient-flow line between two critical points p,p_ €
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A O A g N

2 i Z
e e e e i —
d(u) >0 d(u) >0 d(u) =0

F1GURE 3.1. The condition of two asymptotically cylindrical holomorphic
curves (or two ends of the same curve) being disjoint is not homotopy in-
variant, as intersections can escape to infinity if the two asymptotic Reeb
orbits coincide.

Crit(f). Let hy(s) € T, M denote the unique smooth functions defined for s sufficiently
close to £ by

z(s) = exp,, h+(s).
Then there exist unique nontrivial eigenvectors vy € T, M of A, with

Ay vr = Ay, A <0 and A_ >0,
such that hy(s) and h_(s) satisfy the exponential decay formula
hi(s) = eM5(vye +74(s))  for s near +oo,
where r4(s) € T, M are functions satisfying r1(s) — 0 as s — +o0.

EXERCISE 3.3. Try to prove the following lemma in the background of Proposition 3.2}
suppose S is a real symmetric n-by-n matrix, A(s) is a smooth matrix-valued function
with A(s) — S as s — o and v(s) € R" is a smooth function that is defined for large s,
satisfies the linear ODE v(s) — A(s)v(s) = 0 and decays to 0 as s — oo0. Then v(s) satisfies

v(s) = e (vy +7(s))

for a unique eigenvector v, of S with Sv, = Av, and A < 0, and a function r(s) with
r(s) — 0 as s — 0.

One consequence of Proposition is that the direction of approach of a gradient-flow
line to a nondegenerate critical point is always determined by an eigenvector of the Hessian.
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We will not discuss this result any further here, but it will serve as motivation for some
similar results about asymptotics of J-holomorphic half-cylinders, which can be proved
using methods of elliptic regularity theory.

To see what this discussion has to do with holomorphic curves, consider a contact
manifold (M, &) with contact form « and translation-invariant almost complex structure
J € J(a) on the symplectization (R x M, d(e®«)). Denote the positive/negative half-
cylinders by

Z,=10,00) x S',  Z_:=(-00,0] x S

with their standard complex structures defined by id; = ¢, in the coordinates (s,t). We
defined in §2.4] what it means for a J-holomorphic half-cylinder w : (Z1,i) — (Rx M, J) to
be asymptotic to a closed Reeb orbit. We claim that such half-cylinders can be regarded
in a loose sense as gradient-flow lines of a functional on C*(S!, M) whose critical points
are closed Reeb orbits. To see this, let 7, : TM — £ denote the projection along the Reeb
vector field. Then the nonlinear Cauchy-Riemann equation dsu + J(u) d;u = 0 satisfied by
amap u = (f,v): Zr —> R x M is equivalent to the three equations

Osf — a(dw) =0,
(3.1) Of +a(dsv) =0,

To0sU + J To 0 = 0.

Consider the contact action functional
Dy CP (S, M) > R:v— [ ~*a
Sl
EXERCISE 3.4. Show that for any smooth 1-parameter family of loops v, : ST — M
with 7 := 79 and 7 := 0s7s[s=0 € T(v*TM),

d
dq’a(V)Tl = %q)a('%)

- |, aatato) 560 a

Deduce that v € C*(S', M) is a critical point of ®@,, if and only if ¥(t) € ker da for all ¢,
meaning 7 is everywhere proportional to R,,.

Observe that &, has a very large symmetry group: it is independent of the choice of
parametrization for a loop v : S' — M, and correspondingly, d®,()n vanishes for any
variation 7 in the direction of the Reeb vector field. Since the main point of this discussion
however is to study asymptotic approach to Reeb orbits, we can limit our attention to
loops that are C'°-close to Reeb orbits: such loops are always immersions transverse to &,
and all nearby loops are obtained (up to parametrization) via perturbations along . We
shall therefore consider d®,(v) restricted to sections of y*¢. Define an L*-inner product

on I'(y*§) by

(3.2) (i Tedre = f das(i (8), T (8)) dit:
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this is nondegenerate and symmetric since J|¢ is compatible with dalc. Now for any
v e C®(SY, M) and n e T'(v*¢), we have

dq)a(fy)n = <—J7Ta")/, 77>L27

thus we can sensibly define Vé®,(v) := —Jm,y and interpret the third equation in (B.1))
as a gradient flow equation for the family of loops v(s) := v(s, ) € C*(St, M),
(3.3) Talsv(s) = VE®,(v(s)).

This interpretation is mostly formal, as equations like ([B3]) typically do not yield well-
defined flows on infinite-dimensional Fréchet manifolds such as C*(S*, M); in reality, one
must study these equations as PDEs rather than ODEs and use elliptic theory to obtain
results, but the gradient-flow interpretation provides something of a blueprint indicating
what results one should try to prove.

For example, it is now reasonable to expect that the asymptotic behavior of solutions
to (BJ) might be controlled by the spectrum of some symmetric operator interpreted as
the “Hessian” of ®,. We deduce the form of this operator as follows. Assume v : S* — M
parametrizes a Reeb orbit with period 7" > 0 such that a(%(t)) = T for all t. Suppose s
is a smooth l-parameter family of loops with vy = v and 0y7s|s=0 =: 7 € I'(7*¢). Then
choosing any symmetric connection V on M, the Hessian of &, at v should map 7 to the
covariant derivative of V¢®,, in the direction 7: a computation gives

(384) V (Vi) (1)1 i= Vo (VE®o) (3)]_y = Vi (—Imadis)lscg = = (Vi = TV, Ra).

Note that since V¢®,(y) = 0, this expression is independent of the choice of connection.
This motivates the following definition.

DEFINITION 3.5. Given a Reeb orbit v : ST — M parametrized so that a(y) =T > 0
is constant, the asymptotic operator associated to v is

A, T(VE) = T(vE) i > —J(Vin = TV, R,).
EXERCISE 3.6. Fill in the gaps in the computation (3.4)).

Let H'(v*¢) denote the Sobolev space of sections S — ~v*¢ of class L? that have
weak derivatives also of class L?. The operator A, then extends to a continuous linear
map H!'(v*¢) — L2(7*¢). By a similar argument as with the usual Hessian of a smooth
function on a finite-dimensional manifold, one can show that A, is always symmetric with
respect to the L*-inner product ([3:2)), and in fact:

ProproSITION 3.7 ([HWZ95), §3]). For every Reeb orbit v, the asymptotic operator A.,
determines an unbounded self-adjoint operator on L*(v*€) with dense domain H'(v*€). Its
spectrum o(A.) consists of real eigenvalues that accumulate at —o0 and +00, and nowhere
else.

The natural analogue of the Morse condition for ®,, is now the following.

DEFINITION 3.8. A Reeb orbit 7 is called nondegenerate if ker A, = {0}.
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EXERCISE 3.9. Show that for any contact form «, the flow ¢ of the Reeb vector field
preserves « for all ¢, so in particular, it preserves ¢ = ker a and the symplectic bundle
structure da|e. Then show that a Reeb orbit v : S' — M of period T > 0 is nondegenerate
if and only if

dpR. e, * €0 = &)

does not have 1 as an eigenvalue. Deduce from this that nondegenerate Reeb orbits are
(up to parametrization) always isolated in C*(S*, M).

3.2. Asymptotic formulas for cylidrical ends

We shall now state some asymptotic results analogous to Proposition B.2] but for
holomorphic curves instead of gradient-flow lines. In the form presented here, these re-
sults are due to Siefring [Sie05|Sie08], and they are generalizations and improvements
of earlier results of Hofer-Wysocki-Zehnder [HWZ96a[HWZ96b|, Kriener [Kri98] and
Mora [Mor03]. The proofs are lengthy and technical, so we will omit them, but the results
should hopefully be believable via the analogy with Morse theory discussed above.

The basic workhorse result of this subject is an asymptotic analogue of the similarity
principle (Theorem [L2]]), in the spirit of Exercise To state this, recall that for any
closed Reeb orbit v : S' — M on a (2n + 1)-dimensional contact manifold (M, ¢ = ker «),
one can find a unitary trivialization of the bundle v*¢ — S| identifying dal and J|¢ with
the standard symplectic and complex structures on R?" = C". If .J; : R — R?" denotes
the standard complex structure, the asymptotic operator A, : I'(v*§) — I'(y*{) is then
identified with a first-order differential operator

(3.5) A = —JO% — S :C*(SY R*™) - C°(S', R*™),

where S : S' — End(R?") is a smooth loop of real 2n-by-2n matrices, and symmetry of A
with respect to the standard L% inner product translates into the condition that S(t) is a
symmetric matrix for all £. The following statement and the two that follow it should each
be interpreted as two closely related statements, one with plus signs and the other with
minus signs.

THEOREM 3.10. Suppose S : Z4 — End(R?") is a smooth family of 2n-by-2n matrices

satisfying
S(s,t) — S(t)  wuniformly int as s — +o0,
where S : ST — End(R?") is a smooth family of symmetric matrices such that the asymp-
totic operator A defined in [B3) has trivial kernel. Suppose further that f : Z. — R*™ is
a smooth function that is not identically zero and satisfies
(3.6)
Osf(s,t) + JoOrf(s,t) + S(s,t)f(s,t) =0, and f(s,-) — 0 uniformly as s — +0.

Then there exists a unique nontrivial eigenfunction vy € C*®(SY, R*) of A with

Av, = )\’U)\, +A < 0,
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and a function r(s,t) € R* satisfying r(s,-) — 0 uniformly as s — +oo, such that for
sufficiently large |s|,

(3.7) f(s,t) = e [ua(t) +r(s,1)].

Now assume v : S' — M is a nondegenerate T-periodic Reeb orbit in (M, ¢ = ker a),
parametrized so that a(y) = 7. Nondegeneracy implies that the asymptotic operator A,
has trivial kernel. Fixing J € J(a), recall that in §2.4] we defined a J-holomorphic half-
cylinder u: Zy > R x M oru:Z_ — R x M to be (positively or negatively) asymptotic
to v if, after a possible reparametrization near infinity,

(3.8) u(s,t) = exprs 4z h(s,t)  for |s] large,

where the exponential map is assumed translation-invariant and h(s,t) is a vector field
along the orbit cylinder with A(s, ) — 0 in C*(S') as s — +oo. In particular, as |s| — oo,
u(s,t) becomes C*-close to the orbit cylinder (s,t) — (T's,7(t)), which is an immersion
with normal bundle equivalent to v*£. After a further reparametrization of Z,, we can
then arrange for (B.8)) to hold for a unique section

h(S, t) € g‘/(t)’

which we will call the asymptotic representative of u. Note that the uniqueness of h
depends on our choice of parametrization 7 : S' — M for the Reeb orbit; different choices
will change h by a shift in the ¢-coordinate.

The relation ([B.8)) is a special case of the following general scenario. We have an almost
complex manifold (W, J) with two immersed .J-holomorphic curves v : (3, j) — (W, J) and
u: (X, 5") — (W, J), together with a (not necessarily holomorphic) “reparametrization”
diffeomorphism ¢ : ¥ — ¥’ and a section h of the normal bundle N, — ¥ to v such that

uop =-exp,h, orequivalently u = €XPyoy 1

where we define ¢ := ¢! and 7 := h o), the latter being a section of the induced bundle
*N, — X', Tt turns out (see Proposition in Appendix B:22.2)) that in this situation,
one can always view 7 as a solution of a linear Cauchy-Riemann type equation, hence its
local behavior is governed by the similarity principle—or in the asymptotic setting, by
Theorem above. In the present context, this idea can be used to prove:

THEOREM 3.11. Suppose u : Zy — R x M s a J-holomorphic half-cylinder posi-
tively/negatively asymptotic to the nondegenerate Reeb orbit v : S* — M, and let h,(s,t) €
&yt denote its asymptotic representative. Then if hy, is not identically zero, there exists a
unique nontrivial eigenfunction fx of A, with

A"/f)\ :)\f)\a i)\<07

and a section r(s,t) € &) satisfying r(s,-) — 0 uniformly as s — +o0, such that for
sufficiently large |s|,

ha(s,t) = ¥ [fa(t) +7(s,1)].
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In the situation of Theorem B.I1] we will say that u(s,t) approaches the Reeb orbit
v along the asymptotic eigenfunction f, and with decay rate |\|. Observe that this
theorem can be viewed as describing the asymptotic approach of two J-holomorphic half-
cylinders to each other, namely u(s,t) and the orbit cylinder (T's,v(t)). A similar result
holds for any two curves approaching the same orbit, and one can then establish a lower
bound on the resulting “relative” decay rate. For our purposes, this result can be expressed
most conveniently as follows.

THEOREM 3.12. Suppose u,v : Zy — R x M are two J-holomorphic half-cylinders,
both positively/negatively asymptotic to the nondegenerate Reeb orbit v : S* — M, with
asymptotic representatives h, and h,, asymptotic eigenfunctions f,, f, and decay rates
|Auls |Ao| respectively. Then if h, — h, is not identically zero, it satisfies

hu(87 t) - h’v(87 t) = eAS [f)\(t> + T(Sv t)]
for a unique nontrivial eigenfunction f\ of A, with
A"/f)\ :)\f)\a i)\<07

and a section r(s,t) € &) satisfying v(s,-) — 0 uniformly as s — +o00. Moreover:
o If fu= fu, then |\ > |Au] = |\
e Otherwise, |\| = min{|\,|, |\,|}.

We say in the situation of Theorem that v and v approach each other along the
relative asymptotic eigenfunction f, with relative decay rate |\|.

Observe that if u and v are two asymptotically cylindrical curves with a pair of ends for
which h, — h, = 0 in Theorem BI2] then standard unique continuation arguments imply
that v and v have identical images, i.e. they both cover the same simple curve. In all other
cases, the asymptotic formula provides a neighborhood of infinity on which A, — h, must
be nowhere zero, so u and v have no intersections near infinity. If v and v are asymptotic
to different covers of the same orbit, then one can argue in the same way by replacing each
with suitable covers

(s, t) := u(ks, kt), 0(s,t) = v(ls, £t)

whose asymptotic Reeb orbits match. In this way, one can deduce the following important
consequence, which was not previously obvious:

COROLLARY 3.13. Ifu : (3,j) — (I//I\/, J) and v : (¥, 5) — (W, J) are two asymptot-
weally cylindrical J-holomorphic curves with non-identical images, then they have at most
finitely many intersections.

Similarly:

COROLLARY 3.14. Ifu : (Z,j) — (17[\/, J) is an asymptotically cylindrical J-holomorphic
curve which is simple, then it is embedded on some neighborhood of the punctures.

Proor. If u has two ends asymptotic to covers of the same orbit, we deduce as in
Corollary B.13 that their images are either identical or disjoint near infinity, and the former
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is excluded via unique continuation arguments if u is simple. There could still be double
points near a single end asymptotic to a multiply covered Reeb orbit, i.e. suppose Z+ < X
is an end on which u|z, is asymptotic to

Y(t) = 0(kt),

where k& > 2 is an integer and 7, : S — M is an embedded Reeb orbit. Then writing
u(s,t) = exp(ps (k) P(s, 1) on Zy as in Theorem B.11], the reparametrizations u;(s,t) :=
u(s,t+ j/k) for j =1,...,k — 1 are each also J-holomorphic half-cylinders asymptotic to
7, with asymptotic representatives h;(s,t) := h(s,t+ j/k), and Theorem implies that
hj — h is either identically zero or nowhere zero near infinity for j = 1,...,k — 1. The
former is again excluded via unique continuation if u is simple. O

3.3. Winding of asymptotic eigenfunctions

When dim M = 3, the asymptotic eigenfunctions in the above discussion are nowhere
vanishing sections of complex line bundles v*¢ — S!, so they have well-defined winding
numbers relative to any choice of trivialization. This defines the notion of the asymptotic
winding of a holomorphic curve as it approaches an orbit. It is extremely useful to observe
that these winding numbers come with a priori bounds.

THEOREM 3.15 ([HWZ95]). Suppose S : S* — End(R?) is a smooth loop of symmetric
2-by-2 matrices and A : C*(S',R?) — C*(S',R?) denotes the model asymptotic operator

d
A= _—-J — —
Jodt S)

with spectrum o(A) < R. Then there exists a well-defined integer-valued function
wind : 0(A) —> Z

determined by wind()\) := wind(vy), where vy € C* (S, R?) is any nontrivial eigenfunction
with eigenvalue X\. Moreover, this function is monotone increasing and attains every value
in Z exactly twice (counting multiplicity of eigenvalues).

EXERCISE 3.16. Verify Theorem B.IH for the special case where S(t) is a constant mul-
tiple of the identity matrix. (The general case can be derived from this using perturbation

theory for self-adjoint operators; see [HWZ95| Lemma 3.6] or [Wenbl, Chapter 3].)

Given a closed Reeb orbit v in a contact 3-manifold (M, & = ker a), one can now choose
a trivialization

7% — ST x R?
and define

wind” : 0(A,) = Z
by wind™(\) := wind(f) where f : S' — R? is the expression via 7 of any nontrivial
eigenfunction f) € I'(y*¢) with A, fy = Afy. It follows immediately from Theorem
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that wind”™ is a monotone surjective function attaining all values exactly twice. Since
eigenvalues of A, do not accumulate except at +00, we can then define the integers:

a’ (y) := min {wind"(\) | A e o(A,) n (0,0)},
(3.9) al(y) := max {wind"(A) [ A € 0(A,) N (=0, 0)},

p(y) i= 7. (7) — a7 ().

As implied by this choice of notation, a% (y) each depend on the choice of trivialization 7,
but p(vy) does not. If v is nondegenerate, hence 0 ¢ o(A.,), it follows from Theorem
that p(7y) is either 0 or 1: we shall say accordingly that - is even or odd respectively, and
call p(v) the parity of .

The winding invariants we’ve just defined have an important relation with another
integer associated to nondegenerate Reeb orbits, namely the Conley-Zehnder index

pez () € Z,

a Maslov-type index that was originally introduced in the study of Hamiltonian systems (see
[CZ83|ISZ92]) and can also be defined for nondegenerate Reeb orbits in any dimension. It
can be thought of as a measurement of the degree of “twisting” (relative to 7) of the nearby
Reeb flow around . We refer to [HWZ95|, §3] or [Wenbl, Chapter 3] for further details
on u1fy; for our purposes in the 3-dimensional case, the following result from [HWZ935, §3]
can just as well be taken as a definition:

PROPOSITION 3.17. For any nondegenerate Reeb orbit v : S — M in (M, & = ker a)
with a trivialization T of v*&,

poz () = 227 (7) + ply) = 227 () — p(7).

EXERCISE 3.18. To any closed Reeb orbit of period T' > 0 parametrized by a loop
v : St — M with 4 = T - Ro(7), one can associate a Reeb orbit of period kT for each
k € N, parametrized by

AP ST M ot (k).

We say 7% is the k-fold cover of v, and it is multiply covered if k& > 2. We say 7 is
simply covered if it is not the k-fold cover of another Reeb orbit for any k& > 2.

(a) Given a Reeb orbit v, check that the k-fold cover of each eigenfunction of A, is
an eigenfunction of A x. Assuming 7 is the pullback under S' — S' : ¢ — kt
of a trivialization of v*¢ — S, deduce from Theorem that a nontrivial
eigenfunction f of A is a k-fold cover if and only if wind”(f) is divisible by k.

(b) Under the same assumptions, show that for any nontrivial eigenfunction f of A,

cov(f) := max{m € N | f is an m-fold cover} = ged(k, wind"(f)).

(c) Show that if v is a Reeb orbit that has even Conley-Zehnder index, then so does
every multiple cover 7* of ~.
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3.4. Local foliations and the normal Chern number

We now address a generalization of the question considered in §L3F if (W, w) is a
completed symplectic cobordism of dimension 4, what conditiong\ can guarantee that a
2-parameter family of embedded punctured holomorphic curves in W will form a foliation?
There are several issues here that do not arise in the closed case: for example, if

u:Z=Z\(F+uT_)—>W

is embedded, it is not guaranteed in general that all nearby curves wu, : S — W are also
embedded, e.g. © may have multiple ends asymptotic to the same Reeb orbit, allowing u,
to have double points near that orbit which escape to infinity as u. — u. We will address
this issue in the next lecture and ignore it for now, as we must first deal with the more
basic question of how to count zeroes of sections on the normal bundle N, — 3. Indeed,
let us consider as in §L.3] a 1-parameter family of J-holomorphic curves u, near ug := u,
presented as exp, 1, for sections 7, € I'(N,). One can then show that

(3.10) ni= —uUy e I'(V,)

satisfies a linear Cauchy-Riemann type equation. We would like to know when such sections
are guaranteed to be nowhere zero. Write the positive and negative contact boundary
components of the cobordism (W,w) as

AW,w) = (M, &) U (M, &),

Since u is always transverse to the contact bundles &4 near infinity, one can identify N,
with u*£4 on the cylindrical ends. By the similarity principle, zeroes of 7 are isolated and
positive, but the total algebraic count of them is not a homotopy invariant since they may
escape to infinity under homotopies; in fact, there could in theory be infinitely many. It
turns out however that on any cylindrical end Z; < ¥ near a puncture z € I'* where u is
asymptotic to an orbit v,, the relevant linear Cauchy-Riemann type equation has the same
form as in Theorem 310, with A, as the relevant asymptotic operator. The theorem thus
implies that 7 is nowhere zero near each puncture z, and it has a well-defined asymptotic
winding relative to any choice of trivialiation 7 of v¥¢{,,

wind" (n; 2) € Z,

defined simply as wind" (vy) where vy € I'(7*£4) is the asymptotic eigenfunction appearing
in (37). This implies that n~*(0) = ¥ is finite, so we can define the algebraic count of
ZEroes

(3.11) Z(n):= > ord(n;2) e,
zen=1(0)

where ord(n; z) denotes the order of each zero, and the similarity principle guarantees
that Z(n) = 0, with equality if and only if 7 is nowhere zero. This number is still not
homotopy invariant, because zeroes can still escape to infinity under homotopies. However,
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the crucial observation is that we can keep track of this phenomenon via the asymptotic
winding numbers: by Theorem BIH, wind” (n; z) satisfies the a priori bounds
wind"(n;2) < o’ (v.), ifzel™,

3.12 -
(3.12) wind"(n; z) = ol (v,), ifzel .

This motivates the definition of the asymptotic defect of 7, as the integer
(3.13) Zp(n) = > [a7(7:) — wind"(n; 2)] + > [wind"(n; 2) — o ()] ,

zel't zel'—

where the trivializations 7 of 77§, can be chosen arbitrarily since each difference aZ (v.) —
wind” (n; z) does not depend on this choice. By construction, any n € I['(V,) satisfying a
Cauchy-Riemann type equation as described above now has both Z(n) = 0 and Z,(n) = 0,
and their sum turns out to give the closest thing possible to a homotopy invariant count
of zeroes:

PROPOSITION 3.19. For any section n € I'(N,) with only finitely many zeroes, the sum
Z(n) + Zx(n) depends only on the bundle N, and the asymptotic operators A, for z € T,
not on n. In particular, this gives an upper bound on the algebraic count of zeroes of any

section n appearing in (B.10).

This result motivates the interpretation of Z,(n) as a count of virtual or “hidden zeroes
at infinity.” We will prove Proposition by defining another quantity that is manifestly
homotopy invariant and happens to equal Z(n) + Z,(n): this will be a generalization of
the normal Chern number, which we defined for closed holomorphic curves in §2.11

We must first define the notion of a relative first Chern number for complex vector
bundles over punctured surfaces. Suppose first that £ — Yisa complex line bundle, and
7 denotes a choice of trivializations for F over the cylindrical ends of Y, i.e. over small
neighborhoods of each puncture. Such trivializations always exist since complex vector
bundles over S! are always trivial. In fact, £ — S is globally trivializable if the set of
punctures is nonempty, because 3 is then retractable to its 1-skeleton—mnonetheless, a given
set of trivializations 7 over the ends may or may not be globally extendable over the rest
of . An obstruction to such extensions is given by the relative first Chern number of
E with respect to 7: we define it as an algebraic count of zeroes,

q(E):=2Z(n)elZ

where Z(n) is defined as in ([B.I1)) for a section n € I'(£) with finitely many zeroes, and we
assume that n is constant and nonzero near infinity with respect to 7. It follows by standard
arguments as in that ¢ (F) does not depend on the choice n: the point is that any
two such choices are homotopic through sections that are nonzero near infinity, so zeroes
stay within a compact subset under the homotopy. Observe that in the special case where
> = Y is a closed surface without punctures, there is no choice of asymptotic trivialization
7 to be made and the above definition matches the usual first Chern number ¢; (£). When
there are punctures, ¢ (F) depends on the choice 7.
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For a higher rank complex vector bundle £ — Y with a trivialization 7 near infinity,
¢7(E) can be defined by assuming the following two axioms:

(1) 97 (By @® Bn) = i (Bn) + ¢ (B);
(2) ¢[(E) = ¢] (E') whenever E and E’ admit a complex bundle isomorphism identi-
fying 7 with 7.

The following exercise shows that this is a reasonable definition.

EXERCISE 3.20. Show that for any complex vector bundle £ over a punctured Riemann
surface X of rank n with an asymptotic trivialization 7, there exist complex line bundles

Ey, ..., E, — X with asymptotic trivializations 7, ..., 7, such that
(E,7) =~ (F1®.. ®E, 1 ®...®1),
and if F{,..., E/ and 7{,...,7 are another n-tuple of line bundles and asymptotic trivi-

alizations with this property, then

TUE) + ...+ P(By) = HE) + ...+ (B,

n

From now on, let 7 denote a fixed arbitrary choice of trivializations of the bundles v*¢4
for all Reeb orbits v; several things in the calculations below will depend on this choice, but
the most important expressions typically will not. Since the normal bundle N, matches
&+ near infinity, 7 determines an asymptotic trivialization of N,, allowing us to define the

relative first Chern number ¢](N,). More generally, if u : ¥ — W is any asymptotically
cylindrical map, not necessarily immersed, then it is still immersed and transverse to &4
near infinity, so 7 also determines an asymptotic trivialization of the rank 2 complex vector

bundle (u*TW, J) — 3, by observing that the first factor in the splitting
T(R x M) = (R®RR.,) ®E:
carries a canonical complex trivialization. We shall denote the resulting relative first Chern

number for w*TW by c{(u*TW).

EXERCISE 3.21. Show that if u : (Z,j) — (17[\/, J) is an asymptotically cylindrical and
immersed J-holomorphic curve, with complex normal bundle N, — X, then

(3.14) G TW) = x(2) + ¢ (N,).

DEFINITION 3.22. For any asymptotically cylindrical J-holomorphic curve w : (Z, j)—

(W, J) asymptotic to Reeb orbits v, in M, at its punctures z € 't we define the normal
Chern number of u to be the integer

en(u) = [ TW) = x(2) + Y. a7 (1) = Y o7 (7).

EXERCISE 3.23. Show that the definition of ¢y (u) above is independent of the choice
of trivializations 7.
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The normal Chern number ¢y (u) clearly depends only on the homotopy class of u as an
asymptotically cylindrical map, together with the properties of its asymptotic Reeb orbits.
When wu is immersed, we can rewrite it via (B14) as

(3.15) en(u) = f(N,) + )} al(n.) - Z_ a’l(72)-

Proposition B.19 then follows immediately from:

THEOREM 3.24. Suppose u : (Z,j) — (W, J) is an immersed asymptotically cylindrical
J-holomorphic curve, and n € IT'(N,) is a smooth section of its normal bundle with at most
finitely many zeroes. Then

Z(n) + Zo(n) = en(u).

In the situation of interest, we already know that both Z(n) and Z,(n) are nonnegative,
so this yields:

COROLLARY 3.25. If u : (Z,j) — (W, J) is an immersed asymptotically cylindrical
J-holomorphic curve and n € I'(N,) is a section of its normal bundle describing nearby
J-holomorphic curves as in (B10), then

Z(n) < en(u);

in particular, if cx(u) = 0 then every such section is zero free.

Proor or THEOREM [3.24] Let 7y denote the unique choice of asymptotic trivializa-
tion of N, such that
wind™(n;z) =0 forall z eI

Note that if u has multiple ends approaching the same orbit v in M, this choice may
require non-isomorphic trivializations of v*¢; for different ends, but this will pose no
difficulty in the following. For this choice, we have

Z(n) = e (Nu),
thus using ([B.I5) and the definition [BI3)) of Z,(n),
Z() + Zoo(n) = P (NJ) + D) a(12) = D) af(r)
zel'+ zel'~
= cn(u).
U

Corollary [3.29] tells us that in order to find 2-dimensional families of embedded J-
holomorphic curves that locally form foliations, one should restrict attention to curves
satisfying cy(u) = 0. To see what kinds of curves satlsfy this condition, recall (see Appen-

dix [A2) that a general .J-holomorphic curve u : 3 — W in a 2n-dimensional cobordism

W, with positive/negative punctures z € I' := I'* U I'~ asymptotic to nondegenerate Reeb
orbits 7., is defined to have index

ind(u) = (n = 3)x(2) + 2 (@ TW) + Y wig(r) = 3 ():

zel't zel'—
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As usual, all dependence on the trivialization 7 in terms on the right hand side cancels out
in the sum. This index is the virtual dimension of the moduli space of all curves homotopic
to u, and for generic .J, the open subset of simple curves in this space is a smooth manifold
of this dimension. Let us restrict to the case dimW = 4, so n = 2, and let g denote the
genus of ¥, hence

(3.16) ind(u) = —x () + 2] (W TW) + ) 4iy(12) = D 1(72)-
zel'+ zel'—

and

(3.17) X(2) =2 —2g — #I.

There is also a natural partition of I' into the even and odd punctures
I'= Feven Y Fodda

defined via the parity of the corresponding orbit as defined in §3.3] or equivalently, the
parity of the Conley-Zehnder index.! Now combining (B.I6), ([B.IT), Definition B.22 and
the Conley-Zehnder/winding relations of Proposition B.I17 we have

2¢en(u) = 2¢] (u *TW —2x(2 Z 2a” (7,) Z 207, (7.)

zel't zel'—

= 2] (u*TW) = X(2) = (2 =29 = #) + Y [nly(1:) — p(7)]

= > [u&p(r:) + p(12)]

zel'™
= ll’ld(U) -2+ 29 + #F — #Fodd
= ind(u) — 2+ 29 + #leven-

Since we are interested in 2-dimensional families of curves, assume ind(u) = 2. Then
the right hand side of (B.I8)) is nonnegative, and vanishes if and only if g = #eyen = 0,

(3.18)

i.e. X is a punctured sphere and all asymptotic orbits have odd Conley-Zehnder index. This
leads to the following result. We state it for now with an extra assumption (condition (iv)
below) in order to avoid the possibility of extra intersections emerging from infinity—this
can be relaxed using the technology introduced in the next lecture, but the weaker result
will also suffice for our application in Lecture

THEOREM 3.26. Suppose u : (E,j) — (W, J) is an embedded asymptotically cylindrical
J-holomorphic curve such that:
(i) ind(u) =
(ii) ¥ has genus 0;
(iii) all asymptotic orbits of u have odd Conley-Zehnder indez;
(iv) all the punctures are asymptotic to distinct Reeb orbits, all of them simply covered.

!Note that while the Conley-Zehnder index Loy (77) € Z generally depends on a choice of trivialization
7 of the contact bundle along ~, different choices of trivialization change the index by multiples of 2, thus
the odd/even parity is independent of this choice.
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Then some neighborhood of u in the moduli space Mo(ﬁ\/, J) is a smooth 2-dimensional

manifold consisting of pairwise disjoint embedded curves that foliate a neighborhood of u(E)
m W. 0
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We are now ready to explain the intersection theory introduced by Siefring [Siell]
for asymptotically cylindrical holomorphic curves in 4-dimensional completed symplectic
cobordisms. The theory follows a pattern that we saw in our discussion of the normal Chern
number in §3 4t the obvious geometrically meaningful quantities such as u - v (counting
intersections between u and v) and §(u) (counting double points and critical points of u) can
be defined, and are nonnegative, but they are not homotopy invariant since intersections
may sometimes escape to infinity. In each case, however, one can add a nonnegative count
of “hidden intersections at infinity,” defined in terms of asymptotic winding numbers, so
that the sum is homotopy invariant.

4.1. Statement of the main results

Throughout this lecture, we assume (W, w) is a four-dimensional symplectic cobordism
with (W w) = (—M_, - = kera_) u (M, &, = keray), (17[\/, w) is _its completion and
J e J(w,ay,a). For two asymptotically cylindrical maps w : Y Wandv:Y - W
with at most finitely many intersections, we define the algebraic intersection number

u-v = Z u,z;v,() €,
u(z)=v(¢)

and similarly, if u has at most finitely many double points and critical points, then it has
a well-defined singularity index

5(u):=% Z t(u, 25 u, Q) + Z(Suz

u(z)=u((), 2#¢ du(z)=

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic
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for personal use only. Not for re-distribution, re-sale or use in derivative works. (©Chris Wendl, 2019.
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i.e. the sum of the local intersection indices for all double points with the local singularity
index at each critical point (cf. Lemma[20]). If v and v are both asymptotically cylindrical
J-holomorphic curves, then we saw in Corollaries and B.I4] that u - v is well defined if
u and v have non-identical images, and d(u) is also well defined if u is simple. Moreover,
the usual results on positivity of intersections (Appendix [Bl) then imply

u-v =0,
with equality if and only if u and v are disjoint, and
d(u) =0,

with equality if and only if u is embedded. So far, all of this is the same as in the closed case,
but the crucial difference here is that neither u - v nor §(u) is invariant under homotopies,
which makes them harder to control in general. For example, there is no reasonable
definition of “u - u” since trying to count intersections of u with a small perturbation of
itself (as one does in the closed case) may give a number that depends on the perturbation.
The situation is saved by the following results from [Siell].

THEOREM 4.1. For any two asymptotically cylindrical maps u : S Wandv: Y — W
with nondegenerate® asymptotic orbits, there exists a pairing

uxv e

with the following properties:

(1) u=v depends only on the homotopy classes of u and v as asymptotically cylindrical
maps; . .

(2) Ifu: (3,5) = (W,J) and v : (%,5) — (W,J) are J-holomorphic curves with
non-identical images, then

UV =U-V+ Lop(u,v),

where 1y (u,v) is a nonnegative integer interpreted as the count of “hidden in-
tersections at infinity.” Moreover, there exists a perturbation J. € J(w,ay,a_)
which is C*-close to J, and a pair of asymptotically cylindrical J.-holomorphic
curves u : (2, jo) — (W, J.) and v : (2, ]]) — (17[\/, Je) close to w and v in their
respective moduli spaces, such that

Ue * Ve = U * V.

The last statement in the above theorem, involving the perturbations u, and v., helps
us interpret u=v as the count of intersections between generic curves homotopic to u and v.
That particular detail is not proved in [Siell], nor anywhere else in the literature—it has

ITheorems Bl and E-4] both also hold under the more general assumption that all asymptotic orbits
belong to Morse-Bott families, as long as one imposes the restriction that asymptotic orbits of curves are
not allowed to change under homotopies. (This assumption is vacuous in the nondegenerate case since
nondegenerate orbits are isolated.) One can also generalize the theory further to allow homotopies with
moving asymptotic orbits, in which case additional nonnegative counts of “hidden” intersections must be

introduced; see [Wen10al §4.1] and [SW].
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the status of a “folk theorem,” meaning that at least a few experts would be able to prove
it as an exercise, but have not written down the details in any public forum. The proof
involves Fredholm theory on exponentially weighted Sobolev spaces, as explained e.g. in
[HWZ99, Wen10a|, and we will not prove it here either, but have included the statement
mainly for the sake of intuition. It is not needed for any of the most important applications

of Theorem (.1l such as:

COROLLARY 4.2. If uw and v are J-holomorphic curves satisfying u v = 0, then any
two J-holomorphic curves that have non-identical images and are homotopic to u and v
respectively are disjoint.

In order to write down the punctured version of the adjunction formula, we must
introduce a little bit more notation. Suppose v : S! — M is a Reeb orbit in a contact
3-manifold (M, ¢ = ker «v), and k € N. This gives rise to the k-fold covered Reeb orbit

ST M ot y(kt),

and we define the covering multiplicity cov(v) of a general Reeb orbit 7 as the largest
k € N such that v = ~¥ for some other Reeb orbit v,. Similarly, if f € T'(y*¢) is an
eigenfunction of A, with eigenvalue A € R, then the k-fold cover

frel((M)e),  fH) = fkt)

is an eigenfunction of A, with eigenvalue £\, and for any Reeb orbit « and nontrivial
eigenfunction f of A, we define cov(f) € N to be the largest integer k£ such that f is a
k-fold cover of an eigenfunction for a Reeb orbit covered by . Observe that, in general,
1 < cov(f) < cov(y), and cov(f) always divides cov(y). Note also that any trivialization
7 of 4*¢ naturally determines a trivialization of (4*)*¢, which we shall denote by 7*.

REMARK 4.3. Exercise B8 implies that if v : S' — M is a simply covered (i.e. em-
bedded) Reeb orbit in a contact 3-manifold (M, £ = ker o) and 7 is a trivialization of v*¢,
then for any £ € N and a nontrivial eigenfunction f of A x with WiIldi< f) > 0, cov(f)

depends only on k& and Windi( f), in fact:
cov(f) = ged (k,windi(f)).

We now associate to any Reeb orbit v in a contact 3-manifold (M, = ker «) the
spectral covering numbers

a+(7) == cov(fs) €N,
where fi € I'(y*{) is any choice of eigenfunction of A, with wind™(f;) = a%(vy). Re-

mark implies that o4 () does not depend on this choice. Finally, if u : ¥ — W is an
asymptotically cylindrical map with punctures z € I't asymptotic to orbits 7, in M., we
define the total spectral covering number of u by

5’(U) = Z 6—(72:) + 2 54—(’72)'

zel't zel'—
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Observe that a(u) really does not depend on the map u, but only on its sets of positive
and negative asymptotic orbits. It is a positive integer in general, and we have

G(u) — #T > 0,

with equality if and only if all of the so-called “extremal” eigenfunctions at the asymptotic
orbits of u are simply covered. This is true in particular whenever all asymptotic orbits of
u are simply covered.

The next statement is the punctured generalization of the adjunction formula (Theo-
rem [Z8)): it relates u=u to d(u), the spectral covering number &(u), and our generalization
of the normal Chern number cy(u) from §3.4 (see Definition B.22)).

THEOREM 4.4. If u : (E,j) — (W, J) is an asymptotically cylindrical and simple J-
holomorphic curve with punctures I' < 33, then there exists an integer

0o (u) =0,
interpreted as the count of “hidden double points at infinity,” such that
(4.1) uxu=2[0(u) + dp(u)] + en(u) + [(u) — #I].

In particular, §(u) + 0, (u) depends only on the homotopy class of u as an asymptotically
cylindrical map. Moreover, there exists a perturbation J. € J(w, ay, a_) which is C*-close

to J, and a J.-holomorphic curve u, : (E,je) — (I//I\/, J.) close to u in the moduli space,
such that dx(u.) = 0.

COROLLARY 4.5. Ifu € Mg(ﬁ\/, J) is simple and satisfies §(u) = doo(u) = 0, then every
simple curve in the same connected component of M,(W,J) is embedded.

REMARK 4.6. It is important to notice the lack of the words “and only if” in Corol-
lary LBk an embedded curve u always has §(u) = 0 but may in general have 4 (u) > 0, in
which case it could be homotopic to a simple curve with critical or double points.

The remainder of this lecture will be concerned with the definitions of u = v, 1o (u,v)

and 64 (u), and the proofs of Theorems [A.1] and .41

REMARK 4.7. The reader should be aware of a few notational differences between
these notes and the original source [Siell]. One relatively harmless difference is in the
appearance of the adunction formula (Equation ({I]) above vs. [Sielll Equation (2-5)]),
as Siefring does not define or mention the normal Chern number, but writes an expression
that is equivalent due to ([BI8). A more serious difference of conventions appears in the
formulas we will use to define u = v and d(u) below, e.g. (£4) and ([AI2) contain “+”
and “F” symbols that do not appear in the equivalent formulas in [Siell]. The reason
is that alternate versions of these numbers need to be defined for asymptotic orbits that
appear at positive or negative ends; Siefring handles this issue with a notational shortcut,
formally viewing Reeb orbits that occur at negative ends as orbits with negative covering
multiplicity. In these notes, covering multiplicities are always positive.
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4.2. Relative intersection numbers and the *-pairing

For the remainder of this lecture, fix a choice of trivializations of the bundles y*¢; — S*
for every simply covered Reeb orbit v : S' — M,. Wherever a trivialization along a
multiply covered orbit 7% is needed, we will use the one induced on (vy*)*¢. — S! by our
chosen trivialization of v*¢,, and denote this choice as /1\1$ual by 7. .

For two asymptotically cylindrical maps w : Y>> Wandv:Y — W, we define the
relative intersection number

ue,v:=u-v €2,

where v7 : 3 — W denotes any C%small perturbation of v such that v and v™ have at
most finitely many intersections and v7 is “pushed off” near +oo in directions determined
by 7, i.e. if v approaches the orbit v : S — M, asymptotically at a puncture z, then v”
at the same puncture approaches a loop of the form exp, en(t), where € > 0 is small and
n € I'(v*¢4) satisfies wind™ () = 0. Since v™ asymptotically approaches loops that may
(without loss of generality) be assumed disjoint from the asymptotic orbits of u, it follows
from Exercise 1] that this definition is independent of the choice of perturbation, and it
only depends on the homotopy classes of u and v (as asymptotically cylindrical maps) plus
the trivializations 7. The dependence on 7 indicates that u e, v is not a very meaningful
number on its own, so it will not be an object of primary study for us, but like the relative
first Chern numbers in §3.4] it will provide a useful tool for organizing information.

EXERCISE 4.8. Show that we, v =ve_u.

Suppose u : ¥ — W and v : Y — W are asymptotically cylindrical and have finitely
many intersections, so u - v is well defined. Then u e, v can be computed with the per-
turbation v™ assumed to be nontrivial only in some neighborhood of infinity where u and
v are disjoint, so that w - v counts the intersections of u with v, plus some additional
intersections that appear in a neighborhood of infinity when v is perturbed to v”. We shall
denote this count of additional intersections near infinity by ¢7 (u,v) € Z, so we can write

ue, v =1u- v+t (u,v)

whenever u - v is well defined.

The number 7 (u,v) also depends on 7 and is thus not meaningful on its own, but
it is useful to observe that it can be computed in terms of relative asymptotic winding
numbers—this observation will lead us to the natural definitions of the much more mean-
ingful quantities u * v and ¢y (u, v), which do not depend on 7. To see this, denote the
punctures of w and v by 'y, =I't 0T, and I', = '} U ', respectively, and for any z € I,
or I, denote the corresponding asymptotic orbit of u or v by 7%+, where we assume 7, is
a simply covered orbit and k, € N is the covering multiplicity. A contribution to ¢7, (u,v)
may come from any pair of punctures (z, () € 't x 't so we shall denote this contribution
by 7 (u, z; v,() and write

(4.2) 1o (u,v) = Z v (u, 25 v, Q).

(2,0)elE xIF
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REMARK 4.9. In ([A2)) and several other expressions in this lecture, the summation
should be understood as a sum of two summations, one with + = + and the other with
+=—.

If 7. # 7¢, then w and v™ have no intersections in neighborhoods of these particular
punctures, implying
v (u,z50,0) =0 if v, # .
Now assume 7 := 7, = 7, and let 7" > 0 denote the period of 7. We shall parametrize
punctured neighborhoods of z and ¢ by half-cylinders Z, and consider the resulting maps
u(s,t),v(s,t) e R x My,

defined for |s| sufficiently large and asymptotic to 4%+ and "< respectively. We first consider
the special case where both asymptotic orbits have the same covering multiplicity, so let

k:=k, =k
Asymptotic approach to v¥ means we can write

u(8,t) = xXPrs (kty) Muls 1), (8, 1) = eXP(rrs (k) Mo(8, 1),
for sections h, and h, of &4 along the orbit cylinder such that both decay uniformly to 0 as

s — o0, The assumption that u and v have no intersections near infinity implies moreover
that for some sy > 0, each of the sections

(s,t) — hy(s,t+ j/k) — hy(s, 1), j=0,... k-1
has no zeroes in the region |s| = sg. The perturbation v” can now be defined as

UT(‘Sv t) = CXP(kTs,(kt)) [hv<87 t) + 677(87 t)] )
where € > 0 is small and 7(s,t) € & can be assumed to vanish for |s| < so and to satisfy
n(s,t) = ne(kt) as s — oo, with 1, € I'(7*¢4) a nowhere vanishing section satisfying
wind”(n,) = 0. Intersections of v™ with w in the region |s| = sy are now in one-to-one
correspondence with solutions of the equation

Fi(s,t) := hy(s,t + j/k) — hy(s,t) —en(s,t) = 0,
for arbitrary values of j € {0,...,k — 1}. Notice that F; admits a continuous extension to
s = Hoo with Fj(4+00,t) = —eny(kt). Since wind" (1) = 0 and € > 0 is small, the algebraic
count of zeroes of F; on the region {|s| = s} is thus
+ [wind” (Fj(£w0,-)) — wind" (F;(+so, )] = F wind" (hy(xso, - + j/k) — hy(£s0,-)),
i.e. it is the relative asymptotic winding number of v about the reparametrization (s, t +

j/k), with respect to the trivialization 7. Summing this over all such reparametrizations
gives

k=1
(4.3) Z Fwind” (hy(s, -+ j/k) — ho(s, ")),

where the parameter s can be chosen to be any number sufficiently close to +00. If k., # k¢,
then the above computation is valid for the covers u*<(s,t) := u(k¢s, kct) and v*=(s,t) :=
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v(k.s, k.t), both asymptotic to v** and (&3] must then be divided by k.k; to compute
13 (u, 25 v, C).

REMARK 4.10. The computation above can be interpreted in terms of braids: namely,
if u and v have at most finitely many intersections, then their asymptotic behavior at a pair
of punctures with matching asymptotic orbit (up to multiplicity) determines up to isotopy
a pair of (perhaps multiply covered) disjoint connected braids, whose linking number with
each other is (up to a sign) 7 (u, z; v, (). It appears in this form in the work of Hutchings
on embedded contact homology; see Appendix for further discussion.

The discussion thus far has been valid for any pair of asymptotically cylindrical maps. If
we now assume u and v are also J-holomorphic, then Theorem B.12]expresses the summands
in ([A3) as winding numbers of certain relative asymptotic eigenfunctions for ~v*<*¢, and
these winding numbers satisfy a priori bounds due to Theorem B.I8l Specifically, assume
u(s,t) and v(s,t) approach their respective covers of v along asymptotic eigenfunctions f,
and f, with decay rates |\,| and |\,| respectively, so by (B3] we have

Fwind"(f,) = iozﬂ——r(fykz), Fwind"(f,) = ia}r(fy’%).
Then the covers u*<(s,t) and v*+(s,t) approach v**¢ along asymptotic eigenfunctions ffg
and f*: with decay rates k¢|\,| and k,|\,| respectively, and the winding is bounded by
. . o .
Fwind” (fu*) = Fheal (%), Fwind” (f}*) = Fhk.al (7).

Theorem now implies that the relative decay rate controlling the approach of v(s,t) to
any of the reparametrizations u(s, t+j/k) is at least the minimum of k¢|\,| and k.|, |, thus
the corresponding winding number is similarly bounded due to Theorem We conclude
that each of the summands in ([@3) is bounded from below by the integer Q7 (v, %),
where for any &k, m € N we define

(4.4) Q7 (v*F,9™) := min {FkaZ(v™), FmaZ (")}

Adding the summands in ([@3) for j = 0, ..., k.k.—1 and then dividing by the combinatorial
factor k.k. produces the bound

T T z k 1
[’oo<u7z; UaC) 291(75 7/7(C) 1f/7z = Y-
If we extend the definition of Q7 by setting

QL (7,7 :=0  whenever v, # 7,

then a universal lower bound for ¢, (u, v) can now be written in terms of asymptotic winding
numbers as

(4.5) L) =Y QL)

(2,0)eld xI'F
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DEFINITION 4.11. For any asymptotically cylindrical maps w : Yo Wandv: Y — W
with finitely many intersections, define

Lo (u,v) 1= 1] (u,v) — Z ar (yfz,vfc).

(2,0)elE xI'

Similarly, for any asymptotically cylindrical maps u and v (not necessarily with finitely
many intersections), we can define

k
UV i=Ue U — Z Q;(vfz,ycg).
(2,0)eTs xI's

When it is well defined, ¢ (u,v) is sometimes called the asymptotic contribution to
U * V.

EXERCISE 4.12. Check that neither of the above definitions depends on the choice of
trivializations .

Definitions involving Q7% (7*,7™) may seem not very enlightening at first, and they
are seldom used in practice for computations, but it’s useful to keep in mind what these
terms mean: they are theoretical bounds on the possible relative asymptotic winding of
ends of u around (all possible reparametrizations of) ends of v. We will say that a given
winding number is extremal whenever it achieves the corresponding theoretical bound.
We conclude, for example:

THEOREM 4.13 (asymptotic positivity of intersections). If u and v are asymptotically
cylindrical J-holomorphic curves with non-identical images, then i (u, v) = 0, with equality
if and only if for all pairs of ends of u and v respectively asymptotic to covers of the same
Reeb orbit, all of the resulting relative asymptotic eigenfunctions have extremal winding. [

It is also immediate from the above definition that u=v is homotopy invariant and equals
U -V + top(u,v) whenever u - v is well defined. This completes the proof of Theorem [A.T]
except for the claim that one can always achieve u - v = u = v after a perturbation of
the data. This can be proved by observing that the subset of MQ(W, J) x Mg/(ﬁ\/, J)
consisting of pairs (u,v) with ¢y (u, v) > 0 consists precisely of those pairs that share an
asymptotic orbit at which some relative asymptotic winding number is not extremal. By
Theorem [B.15, this means that the relative decay rate of some pair of ends approaching
the same orbit is an eigenvalue other than the one closest to 0. One can then use Fredholm
theory with exponential weights (cf. [HWZ99.[Wen10alHry12]) to show that the moduli
space of pairs of curves satisfying this relative decay condition has strictly smaller Fredholm
index than the usual moduli space, thus for generic data, it is a submanifold of positive
codimension.

4.3. Adjunction formulas, relative and absolute

In order to generalize the adjunction formula, we begin by computing u e, u for an
immersed simple J-holomorphic curve u : (X, j) — (W, J) with asymptotic orbits

{sz }zef‘i s
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where the notation is chosen as in the previous section so that v, is always a simply
covered orbit and k, € N is the corresponding covering multiplicity. Choose a section 7 of
the normal bundle N, — ¥ with finitely many zeroes and such that, on each cylindrical
neighborhood Z, < S of a puncture z € I'¥,

n(s,t) = Np(k.t) uniformly in t as s — +00,

for some nonzero 7, € I'(yF¢€4) satisfying wind” (n,) = 0. We can also assume the zeroes

of n are disjoint from all points z € 3 at which u(z) = w(({) for some ( # z. Then
we,.u=u-u", where

u”(2) = expy () €(2)

for some € > 0 small. As we saw in §2.1] there are two obvious sources of intersections
between v and u™:

(1) Each transverse double point u(z) = u(¢) with z # ¢ contributes two transverse
positive intersections, one near z and one near (. More generally, the algebraic
count of intersections contributed by each isolated double point is twice its local
intersection index.

(2) Each zero n(z) = 0 contributes an intersection at z, with local intersection index
equal to the order of the zero. The algebraic count of these zeroes is the relative
first Chern number ¢j(V,) € Z.

Unlike in the closed case, there are now two additional sources of intersections. As we saw
in the previous section, if z, € I'" are two distinct punctures with v, = 7,, then perturbing
u to u” will cause ¢ (u, z; u,() € Z additional intersections of u and u” to appear near
infinity along the corresponding half-cylinders, and this number is also bounded below by
a0y (fyfafyf(), defined in (4) in terms of winding numbers of asymptotic eigenfunctions.
Additionally, near any z € I'* with k., > 1, u may intersect different parametrizations of
u” near infinity. To see this, we can again parametrize a neighborhood of z in > with the
half-cylinder Z, and write

u(8,t) = exXP(rs (k) M5, 1)

for large |s|, where k := k,, v := 7., T > 0 is the period of v and h(s,t) € &4 decays to 0
as s — 4o0. Since u is simple, it has no double points in some neighborhood of infinity,
which means that for some sy > 0, we have

h(s,t) # h(s,t +j/k) forall |s| = sy, te S, je{l,....k—1}.
The perturbation u” on this neighborhood may be assumed to take the form
uT(Sa t) = eXp(kTs,'y(kt)) [h(87 t) + Enw(kt)] )

for some € > 0 small, where again wind" (n,) = 0. Thus intersections of u with u™ on the
region {|s| = so} correspond to solutions of

Fi(s,t) == h(s,t +j/k) — h(s,t) —eny(kt) =0



66 4. INTERSECTION THEORY FOR PUNCTURED HOLOMORPHIC CURVES

for arbitrary values of j = 0,...,k — 1. For 7 = 0, this equation has no solutions. For
j=1,....,k—1, we observe that F}; extends continuously to s = oo with F;(+0,t) =
—eny (kt) and obtain the count of solutions

+ [WindT (Fj(iOO, )) — wind” (Fj(iSQ, ))] = F wind” (h(iSO, -+ j/k’) — h(iSQ, )) .
The count of additional intersections of u with «” in a neighborhood of z is therefore

k.—1

(4.6) Oo(u,z) = F 2 wind” (h(s, -+ j/k) — h(s,-)),

where s is any number sufficiently close to +co0, and we can then write the total count of
asymptotic contributions to u e u as

D= Y dwzud+ Y )
z,(elE z#¢ 2el*

This yields the computation
weru=26(u)+ ci(Ny) + o (u),

and since ¢ (N,,) = c{(u*TW) — x(2), we deduce from this a relation that is valid for any
(not necessarily immersed) simple and asymptotically cylindrical J-holomorphic curve,
called the relative adjunction formula

(4.7) weru=25(u) + f(WTW) = x (%) + 7 (u).
This version of the adjunction formula first appeared in [Hut02].

REMARK 4.14. As with 7 (u, z; v, () (cf. Remark [I0), ¢7 (u, 2) can be given a braid-
theoretic interpretation: it is (up to a sign) the writhe of the braid defined by identifying a
neighborhood of the framed loop 7. with S* x D and projecting the embedded loop u(s, -)
to My for any s close to +00; see Appendix

As we did with 7 (u,v) in the previous section, it will be useful to derive a theoretical
bound on ¢7 (u). We already have 7 (u, z; u, () = €0} (752, 7?4)’ and must deduce a similar
bound for 7, (u, 2). Let v := v, and k := k., and write u(s,t) = exp(p_ k) 1(s,1) as usual,
and for j =1,...,k—1, let

uj(s,t) == u(s,t + j/k) = exp(ps ey hi(s,t),  where hj(s,t) := h(s,t + j/k).
By theorem B.IT], h(s,t) is controlled as s — +o0 by some eigenfunction f of A« with
eigenvalue A, and by (B8.9)),
Fwind”(f) > Faz(¥").

The reparametrizations h;(s, t) are similarly controlled by reparametrized eigenfunctions

[i(t) = f(t+j/k)
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with wind”(f;) = wind"(f) and the same eigenvalue, and the relative decay rates con-
trolling h; — h are then at least || due to Theorem B.I2] implying (via Theorem B.17) a
corresponding bound on the relative winding terms in (E.0]), thus

i (u, 2) = F(k — 1) wind"(f) = F(k — 1)al (¥¥).

The bound established above is only a first attempt, as we will see in a moment that
a stricter bound may hold in general. If wind”(f) is not extremal, i.e. Fwind"(f) >
TaZ(y*) + 1, the above computation gives

(4.8) o (u, 2) = F(k—1aZ (") + k- 1.

Alternatively, suppose wind” (f) is extremal, hence equal to a7 (%), and let m = cov(f),
so k = m{ for some ¢ € N and

ft) = g™(t) := g(mt)
for some eigenfunction g of A, which is simply covered. It follows that for j = 1,... k-1,
f; = fifand only if j € £Z. When j is not divisible by ¢, Theorem B.I2now gives a relative
decay rate equal to |A| and thus relative winding equal to wind”(f), so adding up these
terms for the m(¢ — 1) values of j not in ¢Z contributes

(4.9) Fm((l— 1)0&(7’“)
to 17 (u, 2).
For j =1,...,m — 1, we claim that the asymptotic winding of h;, — h is stricter than
the bound established above, i.e. for large |s|,
(4.10) + wind” (hje(s,-) — h(s, ")) = Fal(v") + 1.

By Theorem B2 there is a nontrivial eigenfunction ¢; € T'((7*)*¢4) of A x with eigenvalue
A\ such that

hﬂ(sa t) - h(S, t) = eV [‘pj (t) + ’I“/(S, t)] )
for large |s|, with r/(s,-) — 0 uniformly as s — +oo. Now if the claim is false, then

T

wind™(p;) = aZ(¥*) = wind"(f). Since f is an m-fold cover, this means wind(y;) is

+
divisible by m, and Remark then implies that ¢, is also an m-fold cover, thus
(4.11) @;(t+1/m) = ;) foralltes"

But observe:

m—1

S oo 50 sl D] B ) e )

r=0

implying
@it +7r/m)=0 foralltesS"
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Since ¢, is not identically zero, this contradicts (A1) and thus proves the claim.
Adding to (ZL3) the m — 1 terms bounded by (I0), we conclude

o (u,2) = Fm(l = 1)al (V) + (m = 1) [FaZ(v*) + 1] = F(k = 1)af(¥*) + (m - 1).
This bound is weaker than ([4.8]), but the latter is valid only when wind” (f) is non-extremal,
thus the former is the strongest possible bound in general. Recall that the covering multi-
plicity m = cov(f) is precisely what we denoted by 7+ (7*) in &1l To summarize, we now
define for any simply covered orbit v and k € N,

(4.12) OL(v") == F(k = 1)al(v") + [0z (+*) — 1]
The above computation then implies

(4.13) 0 (u, 2) = QF (759,

DEFINITION 4.15. For any asymptotically cylindrical map u : S — W that is embedded
outside some compact set, we define the asymptotic contribution to the singularity
index by

NP PAT RS YR LR/ B R Ol

z,(elE ) z#¢ zel't

EXERCISE 4.16. Check that the above definition does not depend on the trivializa-
tions 7. Then try to convince yourself that it’s an integer, not a half-integer.

Like Theorem .13 in the previous section, the following is now immediate from the
computation above:

THEOREM 4.17. If u is an asymptotically cylindrical and simple J-holomorphic curve,
then 0 (u) = 0, with equality if and only if:
(1) For all pairs of ends asymptotic to covers of the same Reeb orbit, the resulting
relative asymptotic eigenfunctions have extremal winding;
(2) For all ends asymptotic to multiply covered Reeb orbits, the relative asymptotic
eigenfunctions controlling the approach of distinct branches to each other have
extremal winding.

The proof of the absolute adjunction formula in Theorem K4 now consists only of
plugging in the relevant definitions and computing.

EXERCISE 4.18. Show that for any simply covered Reeb orbit v and k£ € N,
D1 (v") = (N FaZ(vh) = (47 - L.
PrROOF OF THEOREM [L.4l. Plugging the relative adjunction formula (A7) into the def-
inition of u * u (Definition A.IT]) gives

UxU=UOU— 2 QT(Vzafyz)
(z,0)elE <t
= 26(u) + f(WTW) = x(8) + L (w) — > QL(vk48).

(2,0)elExI'*
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Now replacing c] (u*TW) —x(2) with ¢y (1) plus some extra terms from Definition 322 and

17, (w) with 26, (u) plus extra terms from Definition EI5] all terms of the form Q7F (%2, fy?g)
with z # ¢ cancel and the above becomes

weu=2[0(u) + 0 (u)] +enlu) + Y [QF(35) — QL (35,78) F aZ(427)] -

zel't

The result then follows from Exercise O

EXERCISE 4.19. Assume 7 : S — M is a nondegenerate Reeb orbit in a contact 3-
manifold (M,¢ = kera), and given J € J(a), let u, : R x S' — R x M denote the
associated J-holomorphic orbit cylinder.

(a) Show that cy(u,) = —p(7), where p(y) € {0, 1} is the parity of the Conley-Zehnder
index of 7.

(b) Show that w, * u, = —cov(y) - p(7).

(c) Deduce from part (b) that if u* denotes a k-fold cover of a given asymptotically
cylindrical J-holomorphic curve u, it is not generally true that u® « v* = kf(u *v).
Remark: One can show however that in general, u* « v* > kf(u * v), cf. Proposi-
tion [C 2

(d) Use the adjunction formula to show the following: if v is a multiple cover of a
Reeb orbit with even Conley-Zehnder index, and J’ is an arbitrary almost complex
structure on R x M that is compatible with d(e*a) and belongs to J(«) outside
a compact subset, then there is no simple J’-holomorphic curve homotopic to u.,
through asymptotically cylindrical maps.






LECTURE 5

Symplectic fillings of planar contact 3-manifolds

Contents
5.1. Open books and Lefschetz fibrations [z1]
5.2. A classification theorem for symplectic fillings [zd
5.3. Sketch of the proof 8

In this lecture, we will explain an application of the intersection theory of punctured
holomorphic curves to the problem of classifying symplectic fillings of contact 3-manifolds.
The main result is stated in §5.2 as Theorem [5.6] and it may be seen as an analogue of
McDuft’s Theorem in a slightly different context—indeed, the structure of the proof
is very similar, but the technical details are a bit more intricate and require the machinery
developed in Lecture[d Before stating the theorem and sketching its proof, we review some
topological facts about Lefschetz fibrations, open books, and symplectic fillings.

5.1. Open books and Lefschetz fibrations

As we saw in Lecture [I symplectic forms on 4-manifolds can be characterized topo-
logically (up to deformation) via Lefschetz fibrations. The natural analogue of a Lefschetz
fibration for a contact manifold is an open book decomposition. If M is a closed
oriented 3-manifold, an open book is a pair (B, ), where B — M is an oriented link and

m: M\B — S!

is a fibration such that some neighborhood NV (y) € M of each connected component v c B
admits an identification with S! x D in which 7 takes the form

Ty 1 81 x (DV{0}) — 5T+ (6, (r, ) — ¢.
Here (7, ¢) denote polar coordinates on the disk I, with the angle normalized to take values
in S = R/Z. We call B the binding of the open book, and the fibres 7=!(¢) = M are its

pages; these are open surfaces whose closures are compact oriented surfaces with oriented
boundary equal to B. Figure £.1] shows simple examples on S and S x S2.

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic
Curves and Intersection Theory by Chris Wendl. This pre-publication version is free to view and download
for personal use only. Not for re-distribution, re-sale or use in derivative works. (©Chris Wendl, 2019.
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=)

=R3 U {0} x 52

FIGURE 5.1. Simple open book decompositions on S? and S! x §?, with
pages diffeomorphic to the plane and the cylinder respectively.

A contact structure £ on M is said to be supported by the open book 7 : M\B — S!
if one can write ¢ = ker o some contact form o« with

alpp >0  and  da|pages > 0.

Equivalently, one can require that the components of B are closed Reeb orbits with respect
to «a, and everywhere else the Reeb vector field is positively transverse to the pages. This
definition is due to Giroux, and contact forms that satisfy these conditions are sometimes
called Giroux forms.

The following contact analogue of Theorems and [L.8 is a translation into modern
language of a classical result of Thurston and Winkelnkemper:

THEOREM 5.1 (Thurston-Winkelnkemper [TWT5]). Every open book on a closed ori-
ented 3-manifold supports a unique contact structure up to isotopy.

A much deeper result known as the Girouz correspondence [Gir02] asserts that the set
of contact structures up to isotopy on any closed 3-manifold admits a natural bijection to
the set of open books up to a topological operation called positive stabilization. We will
not need this fact in the discussion below, but it is worth mentioning since it has had a
major impact on the modern field of contact topology; see e.g. [Etn06] for more on this
subject.

In order to discuss symplectic fillings, we will also need to consider a more general class
of Lefschetz fibrations, in which both the base and fibre are allowed to have boundary.
Specifically, assume W is a compact oriented 4-manifold with boundary and corners, where
the boundary consists of two smooth faces

OW = 0, W U 0, W,

the horizontal and vertical boundary respectively, which intersect each other at a corner
of codimension 2. Given a compact oriented surface > with nonempty boundary, we define
a bordered Lefschetz fibration of W over X to be a smooth map

Im:w —-X
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with finitely many interior critical points Wit := Crit(II) W and critical values Yt ;=
[I(Weit) = 3 such that:

(1) As in Example [LH critical points take the form TI(zy,20) = 2% + 23 in complex
local coordindates compatible with the orientations;
(2) The fibres have nonempty boundary;
(3) II1(0%) = 0,W and
H|6UW : @UW — 0%

is a smooth fibration;

(4) oW = .ex @ (IT71(2)), and
H|ahW . @hW — X

is also a smooth fibration.

In the following, we assume the base is the closed unit disk (see Figure (.2]),
Y:=DcC.

In this case, the vertical boundary is a connected fibration of some compact oriented surface
with boundary over dD = S*,

7= I|o,w : O, W — S,

and the horizontal boundary is a disjoint union of circle bundles over D; since bundles over
D are trivial, the connected components of d,W can then be identified with S' x D such
that 7 on the corner W n d,W = d(,W) = [ [(S' x dD) takes the form 7(6,p) = ¢.
This means that after smoothing the corners of dW, the latter inherits from I1: W — D
an open book decomposition 7 : dW\B — S! uniquely up to isotopy, with 0, regarded
as a tubular neighborhood of the binding B := [ [(S! x {0}).

Recall that for any surface fibration F' < M — S that is trivial near the boundaries
of the fibres, the parallel transport (with respect to any connection) along a full traversal
of the loop S* determines (uniquely up to isotopy) a diffeomorphism ¢ : F — F that
is trivial near 0F'; we call this the monodromy of the fibration. One can thus define
the monodromy of a Lefschetz fibration along any loop containing no critical values—in
particular, the monodromy along JD is also called the monodromy of the open book induced
at the boundary.

It is a basic fact about the topology of Lefschetz fibrations that the monodromy along
a loop can always be expressed in terms of positive Dehn twists; see e.g. [GS99]. For our
purposes, the relevant version of this statement is the following. Let zp = 1 € JD and
denote the fibre at zg by F := I17'(2;). Pick a set of smooth paths

7. :[0,1] - D, for each z € D™,

from 7,(0) = zy to 7.(1) = 2, intersecting each other only at zy. Then for each z € D™
and p € Wit A TI71(2), there is a unique isotopy class of smoothly embedded circles

SlngcF
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/. . .
° °

DcC

FIGURE 5.2. A bordered Lefschetz fibration over the unit disk D < C,
where the regular fibres have genus 2 and two boundary components, and
there are two singular fibres, each with two irreducible components. The
boundary inherits an open book with pages of genus 2 and two binding
components.

that can be collapsed to p under parallel transport along +.; this is called the vanishing
cycle of p. We then have:

ProOPOSITION 5.2. IfII1 : W — D is a bordered Lefschetz fibration, then the monodromy
F — F of the induced open book at the boundary is a composition of positive Dehn twists
along the vanishing cycles C, = F' for each critical point p € Wit

EXAMPLE 5.3. Suppose II : W — D has regular fibre F' =~ [—1,1] x S and exactly
k > 0 singular fibres, each consisting of two disks connected along a critical point (see
Figure 53] left). The resulting open book on dW then has pages diffeomorphic to R x S1
and monodromy 8%, where J denotes the positive Dehn twist along the separating curve
{0} x S, which generates the mapping class group of R x S1. If we blow up W at a regular
point in the interior, then by Exercise [LTI] we obtain a new bordered Lefschetz fibration
with one additional singular fibre consisting of an annulus connected to an exceptional
sphere (Figure[5.3] right). This blowup operation obviously does not change the open book
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20, 84
| |

|

FiGURE 5.3. Two bordered Lefschetz fibrations with regular fibre diffeo-
morphic to the annulus. The picture at the right is obtained from the one
at the left by blowing up at a regular point.

on 0W, which is consistent with Proposition 5.2 since the additional Dehn twist introduced
by the extra critical point is along a contractible vanishing cycle, and is therefore isotopic
to the identity.

Let us denote the contact manifolds supported by the open books on ¢W in Exam-
ple by (Mg, &). It is not too hard to say precisely what these contact manifolds are:
topologically, we have M, =~ S' x S%, M; =~ S3, and M, for k > 2 is the lens space
L(k,k —1). All of these carry standard contact structures that can be defined as follows.
We defined (53, &,q) already in §2.3] by identifying S® with the boundary of the unit ball
in R* with coordinates (1, y1, Ta,y2) and writing q = ker (Asta|7s3) = T'S3, where

12
Astd 1= 5 2, (g dy; =y day).
j=1
Under the natural identification R* — C? : (21, Y1, T2, y2) — (21 +1iy1, X2 +1Yy9), this contact
structure is invariant under the action of U(2), thus the standard contact structure £q on
any lens space L(p, q) for two coprime integers p > ¢ = 1 can be defined via the quotient

(L(pa Q)a gstd) = (537 gstd)/Gp,qa
where G, © U(2) denotes the subgroup

Gy im {(g Qf’q) e U(2) ‘ v = 1}.

Finally, on S* x S2, we use the coordinates (1,0, ¢), where n € S' = R/Z and (0, ¢) €
[0, 7] x (R/27Z) are the natural spherical coordinates on S?, and write

Esra = ker [f(6) dn + g(6) d¢]
for a suitably chosen loop (f, g) : R/7Z — R?\{0} that is based at the point (f(0),g(0)) =
(1,0) and winds exactly once counterclockwise around the origin. Any two choices of (f, g)
that make the above expression a smooth contact form on S! x S? and have the stated
winding property produce isotopic contact structures; see e.g. [Gei08]. The following can
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now be verified by constructing explicit open books that support these contact structures
and then computing the monodromy.

PROPOSITION 5.4. There are contactomorphisms (Mg, &) = (St x 8% &xa), (M1, &) =
(53, &xa), and (My, &) = (L(k, k —1),&44q)) for each k = 2.

We will say that a symplectic form w on W is supported by a bordered Lefschetz
fibration IT: W — D if the following conditions hold:

(1) Every fibre of |y e : W\W™* — D is a symplectic submanifold;

(2) On a neighborhood of Wit ) tames some almost complex structure J that pre-
serves the tangent spaces of the fibres;

(3) On a neighborhood of 0W, w = dA for some 1-form X such that Ay, w) and
Alr,wy are each contact forms, and the induced Reeb vector field on J,W is
tangent to the fibres (in the positive direction).

Observe that for the contact form A on the smooth faces of W in the above definition,
d\ = w is necessarily positive on the pages of the induced open book, and A is also positive
on the binding in 0,1V, so that A|sy satisfies a variation on the conditions for a Giroux
form. The natural analogue of Theorem in this context is the following:

THEOREM 5.5. On any bordered Lefschetz fibration I1 : W — D, the space of supported
symplectic forms is nonempty and connected, and the corner of 0W can be smoothed so
that (W,w) becomes (canonically up to symplectic deformation) a symplectic filling of the
contact structure supported by the induced open book at the boundary.

We note one additional detail about this construction: a symplectic form w on W
may sometimes be exact since 0W # ¢, but the condition of w being positive on fibres
imposes contraints that may make this impossible. In particular, w can never be exact if
any singular fibre of I1 : W — D contains an irreducible component that is closed—this
would violate Stokes’ theorem. We say that a bordered Lefschetz fibration is allowable
if no such components exist, which is equivalent to saying that all the vanishing cycles
are homologically nontrivial. For example, the Lefschetz fibration in Figure is not
allowable, due to the presence of a closed irreducible component in the singular fibre at the
right, but one can show that this component is an exceptional sphere, thus an allowable
Lefschetz fibration could be produced by blowing it down (cf. Exercise [LTT]).

It turns out that if IT : W — D is allowable, one can always construct w so that it is
not only exact but also arises from a Weinstein structure, a much more rigid notion of a
symplectic filling. We will not discuss Weinstein and Stein fillings any further here (see

[Etn98/[0S04al[CE12]), except to mention the following related result:

THEOREM 5.5, IfI1: W — D is an allowable bordered Lefschetz fibration, then (W, w)
in Theorem [53 can be arranged to be a Weinstein filling of the contact manifold (OW,¢§)
supported by the open book induced at the boundary. In particular, (0W, ) is Stein fillable.

Theorems and 5.5 can be found in a variety of forms in the literature but are usually
not stated quite so precisely as we have stated them here—complete proofs of our versions
(including also cases where ¥ # D) may be found in [LVWal.
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5.2. A classification theorem for symplectic fillings

An open book decomposition of a 3-manifold is called planar if its pages have genus 0,
i.e. they are punctured spheres. We then call (M,¢) a planar contact manifold if M
admits a planar open book supporting £&. The planar contact manifolds play something
of a special role in 3-dimensional contact topology, similar to the role of rational and
ruled surfaces among symplectic 4-manifolds (see [McD90,[Wen18]). It is not always
easy to recognize whether a given contact structure is planar or not, but many results in
either direction or known: Etnyre [Etn04] showed for instance that all overtwisted contact
structures are planar, and by an obstruction established in the same paper, the standard
contact structures on unit cotangent bundles of oriented surfaces with positive genus are
never planar. As we saw in Proposition [5.4] the standard contact structures on S3, S! x S?
and L(k,k—1) for k > 2 are all planar, as are all contact structures that arise on boundaries
of bordered Lefschetz fibrations with genus 0 fibres.

For an arbitrary contact 3-manifold (M, &), the problem of classifying all of its symplec-
tic fillings is often hopeless—many examples are known for instance which admit infinite
(but not necessarily exhaustive) lists of pairwise non-homeomorphic or non-diffeomorphic
Stein fillings [Smi01[OS04b.[AEMSO08|. On the other hand, many of the earliest results
on this question gave finite classifications, and sometimes even uniqueness (up to certain
obvious ambiguities) of symplectic fillings, e.g. for S* [Gro85[ELi90], S! x S? [EL90], the
unit cotangent bundle of S? [Hin00], and lens spaces [McD90,Hin03][Lis08]. Most of

these finiteness results can now be deduced from the theorem stated below.

We will say that a symplectic filling (W,w) of a contact 3-manifold (M, &) admits a
symplectic Lefschetz fibration over D if there exists a bordered Lefschetz fibration
IT: F — D with a supported symplectic form wg such that, after smoothing the corners
on 0F, (F,wg) is symplectomorphic to (W,w). Whenever this is the case, the Lefschetz
fibration determines a supporting open book on (M, ¢) uniquely up to isotopy.

THEOREM 5.6 ([WenlObl]). Suppose (W,w) is a symplectic filling of a contact 3-
manifold (M, &) which is supported by a planar open book ™ : M\B — S'. Then (W, w)
admits a symplectic Lefschetz fibration over D, such that the induced open book at the
boundary is isotopic to m : M\B — S'. Moreover, the Lefschetz fibration is allowable if
and only if (W,w) is minimal.

One can say slightly more: [Wenl0b|] shows in fact that the isotopy class of the Lef-
schetz fibration produced on (W, w) depends only on the deformation class of the symplectic
structure, hence the problem of classifying fillings up to deformation reduces to the problem
of classifying Lefschetz fibrations that fill a given open book. In some cases, this provides
an immediate uniqueness result, for instance:

COROLLARY 5.7. The symplectic fillings of (S?, &sa), (ST xS?, Exa) and (L(k, k—1), {xa)

for k = 2 are unique up to symplectic deformation equivalence and blowup.

PRrROOF. By Proposition 4] the contact manifolds in question all admit supporting
open books with cylindrical pages and monodromy equal to 6 for some k > 0, where §
is the positive Dehn twist that generates the mapping class group of R x S!. The only
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allowable Lefschetz fibration that produces such an open book at the boundary is the one
with fibre [—1,1] x S and exactly k singular fibres of the form pictured in Figure at
the left. Theorem then implies that all the minimal symplectic fillings in question are
supported by Lefschetz fibrations of this type, which determines their symplectic structures
up to deformation equivalence via Theorem O

Further uniqueness results along these lines have been obtained in papers by Plamenevskaya
and Van Horn-Morris [PV10], and Kaloti and Li [KL16], each by studying the factoriza-
tions of mapping classes on planar surfaces into products of positive Dehn twists and then
applying Theorem In a slightly different direction, Wand [Wan12] used Theorem
to establish a new obstruction for a contact 3-manifold to be planar.

Theorem (.5 implies another quite general consequence of the above result:

COROLLARY 5.8. Fvery symplectic filling of a planar contact manifold is deformation
equivalent to a blowup of a Stein filling. In particular, any contact manifold that is both
planar and symplectically fillable is also Stein fillable.

Ghiggini [Ghi05] gave examples of contact 3-manifolds that are symplectically but
not Stein fillable, hence Corollary (.8 implies that Ghiggini’s examples cannot be planar.
Similarly, Wand [Wan15] and Baker, Etnyre and Van Horn-Morris [BEV12] have given
examples of Stein fillable contact manifolds with (necessarily non-planar) supporting open
books that cannot arise from boundaries of Lefschetz fibrations.

REMARK 5.9. Theorem and Corollary can be generalized to allow Lefschetz
fibrations over arbitrary compact oriented surfaces with boundary [LVWDb]. In this form,
they apply to a larger class of contact manifolds, including many that are not planar; a
prototypical example of this is the uniqueness (proved originally in [WenlOb]) of strong
fillings of the 3-torus, whose tight contact structures are never planar. Generalizing in a
different direction, [NW11] shows that both results also remain valid (but only specifically
for planar contact manifolds) if the symplectic filling condition on (M, ¢) is weakened to
the existence of a compact symplectic manifold (W,w) with 6W = M and w|¢ > 0. Such
objects are known as weak symplectic fillings of (M, ¢), and they have been extensively
studied, but at present, the planar contact manifolds are the only class for which any
meaningful classification of weak fillings is known to be feasible.!

5.3. Sketch of the proof

As in our proof of McDuft’s result on ruled surfaces, the main idea for Theorem is
to consider a moduli space of holomorphic curves whose intersection theory is sufficiently
well behaved to view them as fibres of a Lefschetz fibration. The first step is thus to define
the moduli space and show that it is nonempty. This rests on a construction known as the

IThe loophole in this statement is that by a frequently used lemma of Eliashberg [ELi91] Prop. 3.1],
weak fillings for which w is exact near the boundary can always be deformed to strong fillings, thus
whenever M happens to be a rational holomogy 3-sphere, the classification of weak fillings is the same as
that of strong fillings. This is, however, an essentially topological phenomenon that has little to do with
contact geometry.
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holomorphic open book; the following result was first stated in [ACHO35], and two proofs
later appeared in independent work of Abbas [Abb11] and the author [Wen10c].

THEOREM 5.10 (Holomorphic open book construction). Suppose (M,§) is supported
by a planar open book w : M\B — S. Then there exists a Girouz form o and an almost
complex structure J, € J(«) such that:

(1) Each connected component v < B is a nondegenerate Reeb orbit with uf,(vy) =1,
where T 1s any trivialization in which the pages approach v with winding number 0.
(2) Each page P < M lifts to an embedded asymptotically cylindrical J, -holomorphic

curve up : X — R x M with all punctures positive, and ind(up) = 2.

Observe that pages of an open book come always in 1-parameter families, but when
we lift them to the symplectization R x M, an additional parameter appears due to the
translation-invariance. Thus Theorem B.10l produces a 2-dimensional moduli space

My © Mo(R x M, J,.)

of J,-holomorphic pages; it is diffeomorphic to R x S! and admits a free action by R-
translations, so that
MGp/R = S

The curves in MJy have the “correct” index, in the sense that the actual and virtual
dimensions match. In [Wen10c], it is shown in fact that for suitable (non-generic!) choices
of data, an open book with pages of any genus g > 0 admits a 2-parameter family of
pseudoholomorphic lifts, but they have index 2 —2¢, which is the correct virtual dimension
only when g = 0. This is why Theorem fails in general for open books of positive genus
(cf. Remark [A.9)).

Now suppose (W,w) is a symplectic filling of (M, &), where the latter is supported by
a planar open book. By modifying w near dW, we can assume without loss of generality
(possibly after rescaling w) that it takes the form d(e®a) in a collar neighborhood of the
boundary, where « is the contact form provided by Theorem Let (W, W) denote the
resulting symplectic completion, and choose an @-compatible almost complex structure J
which is generic in W and matches J, (from Theorem BI0) on [0,00) x M. Since the
Jy-holomorphic pages in R x M have no negative punctures, each can be assumed to lie
in [0,00) x M after some R-translation, so these give rise to a 2-dimensional family of
embedded J-holomorphic curves living in the /C\ylindrical end of W, which we shall refer to

henceforward as the J-holomorphic pages in W. Let
Mop = Mo(W, J)

denote the connected component of the moduli space Mo(ﬁ\/, J) that contains these .J-
holomorphic pages, and let Mgpp denote its closure in the compactified moduli space
Mo(W,J) (see Appendix [A.2). Theorem [5.6 can be deduced from the following:

PROPOSITION 5.11. The compactified moduli space Mog is diffeomorphic to the 2-disk,
and the elements of Mogp can be described as follows.
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e The smooth curves in Mog are all embedded and pairwise disjoint, and they foliate
W outside a finite union of properly embedded surfaces.
e There is a natural identification

where each R-equivalence class of Jy-holomorphic pages up € Mg in R x M is
wdentified with a holomorphic building that has empty main level and a single upper
level consisting of up.

e There are at most finitely many elements of Mog\Mog in the interior of Mog,
and they are pairuise disjoint nodal curves in W, each having exactly two connected
components, which are embedded and intersect each other exactly once, trans-
versely. Any such component that is closed also has homological self-intersection
number —1.

Every point in W lies in the image of a unique (possibly nodal) curve in the interior

Of MOB-

To prove this, notice first that all curves in Mg are guaranteed to be simple, since their
asymptotic orbits are all distinct and simply covered. By Theorem 17 all u € Mg then
satisfy do(u) = 0, as double points can only be hidden at infinity if there exist multiply
covered asymptotic orbits or two distinct punctures asymptotic to coinciding orbits. Since
d(u) + 6o (u) is homotopy invariant (Theorem [£.4]), and the J-holomorphic pages up are
embedded and thus satisfy d(up) = 0, we conclude

0(u) =dp(u) =0 for all u e Mo,

hence all curves in Mgog are embedded. Theorem B.26 then implies slightly more: since
the curves in Mg also have index 2 and genus 0 and all their asymptotic orbits have odd
Conley-Zehnder index, we have:

LEMMA 5.12. For each u € Mogg, there is a neighborhood U < Mg such that the
curves in U are all embedded and their images foliate a neighborhood of the image of u in

—~~

w.

The self-intersection number u = u for any curve u € Mopp can now be computed easily
from Siefring’s adjunction formula (I): since all asymptotic orbits are simply covered,
the spectral covering term &(u) — #I" vanishes, and so does ¢y (u) due to formula (B.IF),
thus

uxu=2[0(u) + d0p(u)] + en(u) + [0(u) — #I'] = 0.
This result can alternatively be deduced as an immediate corollary of Lemma below.
By Theorem (1] we conclude:

LEMMA 5.13. Any two distinct curves in Mogp are disjoint.

°It is standard to define the space of holomorphic buildings MQ(W, J) such that two buildings are
considered equivalent if they differ only by an R-translation of one of the symplectization levels; see

[BEHT03].
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Combining that with Lemma [B.12] it follows that the curves in Mgp form a smooth
foliation of some open subset of W.

LEMMA 5.14. Assume up € My is a J,-holomorphic page in Rx M, and u., : Rx St —
R x M s the orbit cylinder for an embedded Reeb orbit v that is a component of the
binding B. Then
up * Uy = 0.

Proor. The page P < M is always disjoint from the binding B < M, thus up-u, = 0,
so it only remains to show that to(up,u,) = 0. By Theorem .13 this is true if and only
if the asymptotic eigenfunction controlling the approach of the relevant end of up to v has
extremal winding. Let 7 denote the trivialization of v*¢ in which pages approach v with
winding number 0, hence by construction, the winding (relative to 7) of the eigenfunction
in question is 0. Combining Theorem with Proposition B.17, we also have

1= pgz(v) = 2aZ(7) + p();
hence the extremal winding is also a” () = 0, and this implies o, (up, 1) = 0 as claimed.

O

LEMMA 5.15. Assume up € M{g is a Jy-holomorphic page in R x M and v : N
R x M s any Jy-holomorphic curve whose positive ends are all asymptotic to embedded
Reeb orbits in the binding B. Then up = v = 0.

PRrROOF. The argument depends only on the following facts:

(1) up has no negative ends;
(2) By Lemma G514 up * u, = 0 for all orbits v that appear at positive ends of v,
where ., denotes the orbit cylinder over +.

Figure 5.4l shows a homotopy through asymptotically cylindrical maps for two curves sat-
isfying the above conditions (up has positive genus in the picture, which has no impact
on the argument). After a homotopy, we may assume namely that up lives entirely in
[0,0) x M, while the portion of v living in [0,0) x M is simply a disjoint union of orbit
cylinders u., for which Lemma [E.T4 implies u = u, = 0. Using the homotopy invariance® of
the #-pairing, we conclude that u = v equals a sum of terms of the form wu * u,, all of which
vanish. O

LEMMA 5.16 (cf. [Sielll Theorem 5.21]). Other than the J,-holomorphic pages up €
MEg and the orbit cylinders over embedded orbits in B, there exist no J,-holomorphic
curves in R x M that are asymptotic to embedded orbits in B at all their positive punctures.

ProoF. Any such curve v : > — R x M must intersect one of the pages up, as these
foliate R x (M\B), hence
Up*v = up-v >0,
and this contradicts Lemma 5.1 O

3Note that the homotopy in our proof of Lemma[B.18lis not a homotopy through J-holomorphic curves,
but only through asymptotically cylindrical maps.



82 5. SYMPLECTIC FILLINGS OF PLANAR CONTACT 3-MANIFOLDS

homotopy

—_—

FIGURE 5.4. A homotopy through asymptotically cylindrical maps for the
Proof of Lemma

We are now in a position to justify the description of the compactification Mog given
in Proposition B.11)

LEMMA 5.17. Suppose u,, € Mop is a sequence convergent to a holomorphic building
with at least one nontrivial upper level. Then the main level of the limit is empty, and its
upper level is a J-holomorphic page in M{g.

PRrooF. If the lemma is false, then we obtain a holomorphic building whose top level
contains a Jy-holomorphic curve in R x M that is not in Mg but has all its positive
punctures asymptotic to orbits in the binding B (see Figure [.5]). This is impossible by
Lemma O

We can now identify dMop with MG, /R =~ St as described in Proposition [.11], and
the above lemma says that all other elements of Mog\Mop must be buildings with no
upper levels, i.e. nodal J-holomorphic curves in W. The components of these nodal curves
have only positive ends (if any), all asymptotic to distinct simply covered orbits in the
binding B. These orbits all have have Conley-Zehnder index 1 relat/ix\/e to the canonical
trivialization. Now ([A.H) gives the index of such a curve v : ¥\I" — W as

ind(v) = —x(S\IY) + 2] (0*TW) + Z 18y (1) = —x () + 26T (V¥ TW).
zel”
This matches the index formula for the closed case closely enough that one can now repeat
the compactness argument in the proof of Lemma [[.T7 (see Appendix [A.T]) more or less
verbatim,* thus proving:

LEMMA 5.18. There exists a finite set of simple curves B < MO(W, J), with indez 0,
such that every nodal curve in Mog has exactly two components vy, v_ € A. O

4There are two main differences from the closed case: first, it is trivial to prove that non-closed curves
in % are simple, since their asymptotic orbits are distinct and simply covered, while for closed components
one must apply the same argument as before. Second, proving compactness (and hence finiteness) of 2

requires first ruling out holomorphic buildings with nontrivial upper levels—this works the same way as
in Lemma 517
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(Rx M,J,)
(M,§)
\\/
Y (B x M, J,)
[ —
ug, —

P NI

(W, J)

FiGURE 5.5. A hypothetical degeneration of a sequence up € Mog to a
holomorphic building in Mog. This scenario is ruled out by Lemma [5.16]
which says that the two curves in the top level that are not orbit cylinders
cannot exist.

To finish the proof, we must study the intersection-theoretic properties of the compo-
nents of nodal curves {v,,v_} € Mog. Given such a curve as limit of a sequence uy € Mog,
we have

(5.1) 0=ug*up =0vy *vp +0_xv_ + 2(vy *v_).
EXERCISE 5.19. Verify (5.]), using the definition of the *-pairing from Lecture [l

Observe that v, and v_ cannot be the same curve up to parametrization, as they are
required to have distinct sets of asymptotic orbits. This implies that they have at least
one isolated intersection, so by Theorem [4.1],

(5.2) vy sv_ = vy -vo = 1.
Since ind(v+) = 0 and all asymptotic orbits of vy have odd Conley-Zehnder index, (3.1I8)
gives

en(vy) = —1.

Now applying Siefring’s adjunction formula (Theorem [£.4]), the spectral covering numbers
o(v4) are each equal to the number of punctures since all orbits are simply covered, so
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U,

FIGURE 5.6. Two possible degenerations of a sequence u;, € Mop to nodal
curves in Mgog. The second scenario includes a J-holomorphic exceptional
sphere and is thus only possible if (W, w) is not minimal.

these terms vanish from the adjunction formula and we have

v * vy = 2[0(vg) + doo(ve)] + en(vs) = 2[6(vs) + deo(vg)] — 1.
Combining this with (51I) gives

0= 22 [0(vs) 4+ 0o (V)] + 2(v4 *v_ — 1),

so in light of (52), we have
d(v4) = 0 (v4) =0, vyxv_=wv,-v_ =1, and wvy=vy =—1,

implying that vy are both embedded and intersect each other exactly once, transversely.
Moreover, if either component is closed, then its homological self-intersection number is
now v4 - vy = v4 *v4 = —1, hence it is a J-holomorphic exceptional sphere; see Figure 5.6l
In the same manner, one can show that the nodal curves in Mog are all fully disjoint from
each other and from the smooth curves in Mog.
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Arguing as in the proof of Theorem [LLI6] let F' < W denote the union of the images of
the curves in A, which are finitely many properly embedded surfaces. Then let

X = {p € W\F ‘ p is in the image of a curve in MOB} )

The lemmas proved above imply that X is an_open and closed subset of W\F thus
X = W\F and we see that every point in W is in the image of a unique (possibly
nodal) curve in Mog, giving a surjective map

11 : W - MQB\aMOB
Since the J,-holomorphic pages [up] € MJs/R = dMop also foliate M\B under_the

projection R x M — M, we can extend II to the natural compactification W : - Wu
({oo} x M) as a surjective map

11 : W\B - MOB,

whose smooth fibres are the compact symplectically embedded surfaces with boundary
obtained as the images of maps @ : ¥ — W for u € Mgog, and we are treating B as
a submanifold of {o0} x M = 0W. There is still a small amount of work to be done
in identifying the above construction with something that one can regard as a smooth
symplectic Lefschetz fibration; details (in a more general setting) may be found in [LVWD].
One detail in Proposition [(.11] has not yet been verified: we’ve seen that Mg is an
oriented 2-dimensional manifold, compactified by adding finitely many interior points (the
nodal curves) and the boundary oMo = MJz/R =~ S, hence Mop is a compact oriented
surface with one boundary component, but we claim in fact that it is a disk. To see this,
choose a smooth loop 7 : S — M near a binding component that meets every page of the
open book exactly once transversely. Viewing v as a loop in {0} x M = dW, the loop

ITo Yol S i MOB
then parametrizes OMog. N ow, 7 is obviously not contractible in M \B, but we can easily
assume it is contractible in W\B: indeed, v can be chosen Corlt\ractible in M, and then
translating downward from {0} x M to a level {s} x M < W for s € [0,0) gives a
contractible loop in W. Composing this contraction with II, we conclude
[GWOB] =0¢ T (MOB),
hence Mop = D.






APPENDIX A

Properties of pseudoholomorphic curves

Contents
A.1. The closed case @
A.2. Curves with punctures lo4

In this appendix we will summarize (without proofs) the essential global analytical
results about pseudoholomorphic curves that are used in various places in these lectures.
The first section covers results on closed holomorphic curves that are needed in Lectures 1
and 2, and A2 then states the generalizations of these results to punctured curves in
completed symplectic cobordisms. For more details on each, we refer to [MS12] or [Wenal]
for the closed case and [Wenb] for the punctured case.

A.1. The closed case

Given a closed symplectic manifold (M, w) with a compatible! almost complex structure
J, we defined in 1.2l the moduli space M;‘(M ,J) of (equivalence classes up to parametriza-
tion of ) J-holomorphic curves with genus g > 0 homologous to A € Hy(M). We shall now
summarize the main analytical properties of this space and use them to prove Lemma [[LT7]

The virtual dimension of M;‘(M ,J), also sometimes called the index of a curve
ue M2 (M,J) and denoted by ind(u) € Z, is defined to be the integer

(A1) vir-dim M (M, J) := (n — 3)(2 — 2g) + 2¢1(A),

where ¢;(A) is shorthand for the evaluation of the first Chern class ¢;(T'M, J) € H*(M)
on the homology class A. This definition of vir-dim M;‘(M ,J) is justified by Theorem [A.3]
below.

Recall that closed J-holomorphic curves u : (X, j) — (M, J) are always either simple
or multiply covered, where the latter means u = v o ¢ for some closed J-holomorphic
curve v : (X', 5') — (M, J) and holomorphic map ¢ : (3, 7) — (¥, ') of degree deg(y) > 1.

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic
Curves and Intersection Theory by Chris Wendl. This pre-publication version is free to view and download
for personal use only. Not for re-distribution, re-sale or use in derivative works. (©Chris Wendl, 2019.

IThe vast majority of the results we will state here can also be generalized for almost complex structures
that are tamed by w but not necessarily compatible. Such generalizations become much less straightforward
whenever asymptotic analysis is involved, thus in the punctured case, it is best always to assume J is
compatible and not just tame.

87
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By a slight abuse of terminology (see Remark [2.3]), we refer to a point z € 3 in the domain
of a J-holomorphic curve u : ¥ — M as a critical point if du(z) = 0; the alternative
is that du(z) : 1.3 — T,)M is injective, in which case we call z an immersed point.
Combining general topological arguments with the local properties of J-holomorphic curves
(e.g. Theorem [B.23in Appendix [B), one can show:

THEOREM A.l. Fwvery monconstant, closed and connected J-holomorphic curve u :
(3,7) — (M, J) has at most finitely many critical points. Moreover, if u is simple, then
it also has at most finitely many double points, hence it is embedded outside of some finite
subset of 3.

The following related result is sometimes referred to as the unique continuation
principle:

THEOREM A.2. If u and v are two closed J-holomorphic curves that are both sim-
ple, then they are either equivalent up to parametrization or have at most finitely many
intersections.

The automorphism group of a triple (X, j, u) representing an element of M;‘(M J)
is defined as

Aut(X, j,u) = {p: (2,7) — (£, ) biholomorphic | u = u o ¢}.

This group is always finite if u : X — M is not constant, and Theorem [A 1] implies that it
is trivial whenever « is simple.

The following result is dependent on a definition of the term Fredholm regular, which
is rather technical and therefore we will not give it—this is obviously a terrible thing to do,
but hopefully Theorems [A.4] and below will make up for it. The proofs of these results
depend on the regularity theory of elliptic PDEs; see [MS12] or [Wena] for details.

THEOREM A.3. The subset of Mﬁ(M, J) consisting of all curves that are Fredholm
reqular and have trivial automorphism groups is open, and moreover, it naturally admits

the structure of a smooth oriented finite-dimensional manifold, with dimension equal to
vir-dim M2 (M, J).

Recall that for any topological space X, a subset ¥ < X is said to be comeager if
it contains a countable intersection of open dense sets.? If X is a complete metric space,
then the Baire category theorem implies that every comeager subset of X is also dense.

THEOREM A.4. Suppose (M,w) is a closed symplectic manifold, U < M is an open
subset, and Jy is an w-compatible almost complex structure on M. Let J (U, Jo) denote the
space of all smooth w-compatible almost complex structures J on M such that J = Jy on
M\U, and assign to J (U, Jy) the natural C*-topology. Then there exists comeager subset
TE(U, Jo) © T(U, Jo) such that for all J € T™(U, Jy), every simple curve u e M (M, .J)
that intersects U is Fredholm regular.

2It is common among symplectic topologists to say that comeager subsets are “Baire sets” or are “of

second category,” but this seems to be slightly inconsistent with the standard usage of these terms in other
fields.
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Results such as Theorem [A4] that hold for all data in some comeager subset are of-
ten said to hold for generic data, so one can summarize the two theorems above by
saying that the moduli space of simple .J-holomorphic curves is a smooth manifold of
the “correct” dimension for “generic” J. This fact is true even for moduli spaces with
vir-dim M;‘(M ,J) < 0, implying that in such spaces, no Fredholm regular curves exist:

COROLLARY A.5. For generic w-compatible almost complex structures J in a closed
symplectic manifold (M, w), every simple J-holomorphic curve u satisfies ind(u) = 0.

Theorem [A.4]is a “transversality” result, i.e. it follows from an infinite-dimensional ver-
sion (the Sard-Smale theorem) of the standard fact from differential topology that any two
submanifolds intersect each other transversely after a generic perturbation. Occasionally,
one also needs transversality results for non-generic data. Such results exist—they follow
from the Riemann-Roch formula in certain fortunate situations—but their utility is typi-
cally limited to dimension 4 and genus 0. The following theorem of Hofer-Lizan-Sikorav

[HLS97] is closely related to the question of local foliations discussed in L3l

THEOREM A.6. Ifdim M = 4 and J is any almost complex structure on M, then every
immersed J-holomorphic curve u e M2 (M, .J) with ind(u) > 2g — 2 is Fredholm regular.

The moduli space M;‘(M ,J) is not generally compact, but if M is closed and J is
compatible with a symplectic form w, then it has a natural compactification. The energy
of a curve u e M, (M, J) can be defined as

E(u) = L wrw

for any parametrization u : ¥ — M; the taming condition implies that E(u) = 0 for all
J-holomorphic curves, with equality if and only if the curve is constant. Observe that E(u)
only depends on [u] € Hy(M).

The moduli space of stable nodal J-holomorphic curves of arithmetic genus g
homologous to A € Hy(M) is defined as

My (M, ) = {(Sjou A)} / ~,

where:

e (S,7) is a (possibly disconnected) closed Riemann surface;
e The set of nodes, A < 5, is a finite unordered set of pairwise distinct points
organized into pairs

A= {{217 '\731}7 tr {27’7\2/7"}}

such that the singular surface
S = S/ijzj forj=1,...,r

is homeomorphic to a (possibly singular) fibre of some Lefschetz fibration with
regular fibres of genus g;
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e u: (S,7) — (M,J) is a pseudoholomorphic map with [u] = A that descends to
the quotient S=5 / ~ as a continuous map S—M ;
e Every connected component of S\A on which u is constant has negative Euler
characteristic;
o We write (5, 7,u,A) ~ (5,5, u/, A) if there is a biholomorphic map ¢ : (S, j) —
(S7,7") such that u = u' o p and ¢ maps pairs in A to pairs in A’.
The condition on the Euler characteristics of constant components is called stability—its
effect is to exclude certain ambiguities that would otherwise cause non-uniqueness of limits

for the natural topology on mj(M, J). Assuming A # 0 so that elements of M (M, .J)

are never constant, there is a natural inclusion M2 (M, .J) < M:(M ,J) defined by setting
A = & for any [(Z,j,u)] € M (M,J). We denote the union over all A € Hy(M)
by M, (M, J).

THEOREM A.7 (Gromov’s compactness theorem). For each A € Hy(M), g = 0 and
each w-compatible almost complex structure J on a closed symplectic manifold (M, w),
M?(M, J) admits a natural topology as a compact metrizable space. Moreover, any se-
quence uy, € My(M,J) of curves satisfying a uniform energy bound E(uy) < C has a
subsequence convergent to an element of M,(M, J).

REMARK A.8. The second statement in the above theorem does not impose any direct
restriction on the homology classes [ux| € Ho(M), but it implies the existence of a subse-
quence with constant homology. Observe that the required energy bound is automatic if
all uy, represent a fixed homology class.

It will not be necessary for our purposes to give a complete definition of the topol-
ogy of m;(M ,J), but we can describe the convergence of a sequence of smooth curves
[(3k, jk, k)] € M (M, J) to a nodal curve [(S, j,u,A)] € ﬂ;(M, J) as follows. (See Fig-
ure [AT] for an example.) Let S” denote the compact topological 2-manifold with boundary
(Figure [A.2] lower left) obtained from S by replacing each point z € A < S with the circle

C.:=T.S/R,,

where R, := (0,0) acts on TS by scalar multiplication. The smooth structure of S\A does
not have an obviously canonical extension over S’ but each boundary component C, < 05’
inherits from the conformal structure of (S, j) a natural class of preferred diffeomorphisms
to S'. Now since the points in A come in pairs {Z, ¥}, we can make a choice of preferred
orientation-reversing diffeomorphisms C; — C' for each such pair and glue corresponding
boundary components of S’ to define a closed surface (Figure [A.2] lower right),

5:=8')C:~ Cs.

This is naturally a closed topological 2-manifold and it also carries a smooth structure and
a complex structure on S\C' = S\A, where

C:zUC’ch.

zEA
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FIGURE A.1. A sequence of genus 3 holomorphic curves degenerating to a
nodal curve of arithmetic genus 3, with four nodes, two connected compo-
nents of genus 0 and one of genus 1.

Since u(Z) = u(Z) for each pair {Z,%} = A, u extends from S\C to a continuous map
w:S — M.
The convergence [(Xy, jk, ur)] — [(S,J,u,A)] can now be defined to mean that for
sufficiently large k there exist homeomorphisms
op S — Sk
whose restrictions to S\C' are smooth and have smooth inverses, such that
Oigr — jin CP.(S\O), upopr — uin CZ(S\C, M), and wugow, — uin C°(S, M).
The analytical toolbox is now complete enough to fill in the following gap from §1.2]
Proor oF LEMMA [[LT7. By construction, M([)S](M ,J) contains an embedded curve
ug, defined as the inclusion of S. The almost complex structure J cannot be assumed
“generic” in the sense of Theorem [A.4] since we chose it specifically to have the property
of preserving 7'S. We claim however that ug is nonetheless Fredholm regular due to

Theorem [ALGl Indeed, it has trivial normal bundle Ng — S? since [S] - [S] = 0, so the
natural splitting of complex vector bundles

(usTM, J) = (TS j) ® (Ns, J)

implies

c1([9]) == er(uETM) = ¢ (T'S?) + e1(Ng) = x(S?) + 0 = 2.
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C,Ca
s’

FIGURE A.2. Four ways of viewing the nodal holomorphic of Figure [A.1]
At the upper left, we see the disconnected Riemann surface (.S, j) with nodal
pairs {Z;, Z;} for i = 1,2,3,4. To the right of this is a possible picture of the
image of the nodal curve, with nodal pairs always mapped to identical points.
The bottom right shows the surface S’ with boundary, obtained from S by
replacing the points z;, Z; with circles Cj, CV'Z Gluing these pairs of circles
together gives the closed connected surface S at the bottom right, whose
genus is by definition the arithmetic genus of the nodal curve.

Plugging ¢;([S]) = 2 and n = 2 into the index formula (A.)) now gives
ind(ug) = =2+ 2¢1([5]) = 2,

hence vir-dim M([)S](M ,J) = 2. Since ug also is immersed, it now satisfies the hypotheses
of Theorem [AL6] so Fredholm regularity follows.

To achieve smoothness near the rest of the simple curves in M([]S](M ,J), it suffices to
choose a generic perturbation J’ of J on the open subset M\S. Indeed, for any such J’,
assuming J' = J along S ensures that ug is also J’-holomorphic, so unique continuation
(Theorem [A.2)) then implies that no other J’-holomorphic curve in M can be contained
entirely in S unless it is a multiple cover of ug. In particular, ug itself is the only such
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curve that is either simple or homologous to [S]. Tt follows then by Theorem [A. 4] that every
other simple curve in My(M, J') is also Fredholm regular, so by Theorem [A.3] the subset
MES]’*(M A e M([)S](M ,J") of simple curves is an oriented 2-dimensional manifold. To
simplify the notation, we relabel J := J’ from now on.

By Gromov’s compactness theorem (Theorem [A.7), any sequence wuy € M([]S]’*(M ,J)

with no convergent subsequence in M([)S](M ,J) converges to a nodal curve with arithmetic
genus 0. The genus condition implies that its connected components are all spheres, so

we can regard the nodal curve simply as a finite set of J-holomorphic spheres vy, ..., vy €
Mo(M, J) with N = 2, satisfying the condition

(AQ) [Ul] + ...+ [UN] = [S]

These spheres cannot at first be assumed to be simple, but for each 7 = 1,..., N, thereis a

simple curve w; € Mg, (M, J) and an integer k; € N such that v; is a k;-fold cover of w;; here
we adopt the convention w; = v; if k; = 1. If k; > 1, then v; factors through a holomorphic
map S? — ¥, of degree k;, where X, is a closed connected surface with genus g;; but
no such map exists if g; > 0 since the universal cover of ¥, is then contractible, implying
m2(3g,) = 0, so we conclude that each w; has genus 0. Now since all simple .J-holomorphic
curves in M are Fredholm regular, Corollary and the index formula (A1) give

ind(w;) = =2 4 2¢1([w,]) = 0,
hence ¢;([w;]) = 1. Since ¢;([S]) = 2, (A2) now gives
(A3) kl + -+ /{ZN < klcl([wl]) + ...+ /{;Ncl([wN]) = 2,

thus N =2 and k; = ky = ¢1([v1]) = e1([v2]) = 1. We conclude that the nodal curve has
exactly two components, both simple, and since [v1] + [v2] = [S], they satisfy the uniform
energy bound

(A4) E(vy) = (W], [v;]) < (W], [oa]) + ([l [va]) = {[w], [ST)

for j =1, 2.

Finally, we claim that the set of simple curves v € My(M, J) with ¢;([v]) = 1 is finite.
By Theorems and [A4] this set is a 0-dimensional manifold, i.e. a discrete set, so
finiteness will follow if we can show that it is compact. This follows essentially by a repeat
of the argument above; note that Gromov’s compactness theorem is applicable due to the
energy bound (A.4)). Now if a sequence of such curves converges to a nodal curve with
more than one component, then it produces an inequality like (A.3]) but with 1 on the right
hand side, which gives a contradiction. The only remaining possibility is that a sequence
vy of curves with ¢;([vg]) = 1 converges to a smooth but multiply covered curve v, but this
is immediately excluded since ¢;([v]) = 1, so [v] is a primitive homology class. O

REMARK A.9. Let us see what goes wrong if one tries to prove an analogue of McDuff’s
theorem about ruled surfaces under the assumption of a symplectically embedded surface
S < (M,w) with [S]-[S] = 0 and genus g > 0. One can still construct an embedded

J-holomorphic curve ug € MEJS](M ,J), and since its normal bundle Ng — S is necessarily
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trivial, the splitting u*T'M = T'S @ Ng now gives ¢;([S]) = x(5) = 2 — 2¢, so (A now
gives
vir-dim MM, ) = —(2 — 2g) + 2¢,([S]) = 2 — 2g.

This answer is desirable when g = 0 because 2 is the right number of dimensions to
foliate a 4-manifold by holomorphic curves—but if ¢ > 0, one cannot hope to find a 2-
parameter family of holomorphic curves homologous to [S], and in fact the curves should
disappear entirely after a generic perturbation if ¢ > 1. The failure of the proof is thus
attributable essentially to the Riemann-Roch formula, from which the dimension formula
(A1) is derived. It is more than a failure of technology, however, as the theorem is false
when g > 0.

A.2. Curves with punctures

A general reference for the contents of this section is [Wenb].
Assume (W,w) is a 2n-dimensional symplectic cobordism with

a(VV) CU) = (_M—vg— = kera_) U (M-‘rag-i- = kera+),

(W, &) denotes its completion and J € J(w, oy, v ); see §2.4 for the relevant definitions.
Consider an asymptotically cylindrical J-holomorphic curve u : (X = S\I', j) — (W J)
asymptotic to nondegenerate® Reeb orbits v, in M, at its positive/negative punctures
z € I't = . The index formula for u can be expressed in terms of the Conley-Zehnder
indices of its asymptotic orbits, but this requires a choice of normal trivialization along
each orbit. We shall therefore fix an arbitrary choice of trivialization of y*£4 for every
Reeb orbit v in M4, and denote this choice collectively by 7. The Conley-Zehnder index
of  relative to 7 will then be denoted by &y, (7), and we write the index of u as

(A.5) ind(u) = (n = 3)x(2) + 2[ (W TW) + 3. ply(v:) = O 1y (),

zel't zel'—

where cl( *TW) denotes the relative first Chern number of the complex vector bundle
(u “TW, J) — %; of. 84 One can check that the sum on the right hand side of (AJ)

does not depend on the choice 7. As with closed curves, ind(u) is also called the virtual

dimension of the connected component of ./\/lg(l//I\/, J) containing u; one can show in fact

that it only depends on the Reeb orbits, the genus, and the relative homology class of u.
A curve u : (3,5) — (W, J) in M (W J) is multiply covered whenever it can be

written as u = v o ¢ for some v : (¥, ') — (W J)in M, (W J) and a holomorphic map

P (%)= (X)) with ¢(X) =%,
having degree deg(p) > 1. The automorphism group Aut(X,j,I',u) can be defined
similarly as the group of biholomorphic maps ¢ : (X,7) — (X,7) that fix each point in

3Most of this discussion can also be generalized to allow Reeb orbits in Morse-Bott nondegenerate
families, though the index formula becomes more complicated (see e.g. [Bou02,[Wen10al). In general,
the linearized Cauchy-Riemann operator is not Fredholm (and thus the moduli space is not well behaved)
unless some nondegeneracy condition is imposed on the ends.



A.2. CURVES WITH PUNCTURES 95

I' and satisfy u = w o ¢. If u is not multiply covered, it is called simple, and then it
necessarily has trivial automorphism group. A straightforward combination of standard
arguments for the closed case (e.g. [MS12] Prop. 2.5.1]) with Siefring’s relative asymptotic
formula (Theorem BI2]) proves:

THEOREM A.10. Theorems [A1 and [A2 also hold for asymptotically cylindrical J-
holomorphic curves in W.

A proof of the following generalization of Theorem [A.3]is sketched in [Wenl10a, The-

orem 0:

THEOREM A.11. The subset of/\/lg(ﬁ\/, J) consisting of all Fredholm regular curves with
trivial automorphism group is open and admits the structure of a smooth finite-dimensional

manifold, whose dimension near any given curve u € Mg(w, J) is ind(u).

We have intentionally omitted the word “oriented” from Theorem [A Tl as the question
of orientations is somewhat subtler here than in the closed case; see [BM04] or [Wenb
Chapter 11]. Theorem [A.4] generalizes as follows:

—~

THEOREM A.12. Assume U < W is an open subset with compact closure, fix Jy €
J(w,ay,a ), and define

TU, o) = {J e J(w,as,a )| J=Jy on W\u}

with its natural C*-topology. Then there exists a comeager subset J"8(U, Jo) < T (U, Jo)

such that for all J € J"8(U, Jy), every simple curve u € My(W,J) that intersects U is
Fredholm regular.

There is a further variation on the theme of “generic transversality” that only makes
sense in the translation-invariant setting of a symplectization: a perturbation of a translation-
invariant structure J € J(«) on R x M that is generic in the sense of Theorem [A.12] cannot
generally be assumed translation-invariant, but Dragnev [Dra04] (see also the appendix

of [Bou06] or [Wenb, Chapter 8]) proved:

THEOREM A.13. Suppose (M,& = kera) is a closed contact manifold, U < M is an
open subset and Jy € J(«), and denote

JU, Jo) ={JeT(a)| J=JyonRx (MU)}.

Then there exists a comeager subset J*¢(U, Jo) < T (U, Jo) such that for all J € T*&(U, Jy),
every simple curve u e My(R x M, J) that intersects R x U is Fredholm regular.

Observe that in the symplectization, the translation-invariance of J € J(«) turns any
curve u € M (R x M, J) that isn’t a cover of an orbit cylinder into a 1-parameter family,
so Theorem [A.13] implies a slightly different analogue of Corollary [A.5

COROLLARY A.14. For generic J € J(«) on the symplectization of a closed contact
manifold (M, & = ker«v), every simple J-holomorphic curve that is not an orbit cylinder
satisfies ind(u) > 1.
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The punctured generalization of our previous “automatic” transversality result (The-
orem [A.0]) is again valid only in dimension 4, and is most easily stated in terms of the
normal Chern number (see §3.4)):

THEOREM A.15 ([Wenl0al Theorem 1]). If dimW = 4 and J € J(w, oy, ), then

every immersed J-holomorphic curve u € M}W,J) with ind(u) > cn(u) is Fredholm
reqular.

Before stating the generalization of Gromov’s compactness theorem, we must define the
energy of a curve u € M (W, J). The obvious definition (by integrating u*®) is not quite
the right one, as for instance orbit cylinders u,(s,t) = (T's,v(t)) in the symplectization

(R x M,d(e’)) satisfy
J uld(e’a) = oo.
RxS1

Instead, denote
T :={¢:R— (-1,1) smooth | ¢'(s) > 0 for all s € R and ¢(s) = s near s = 0},
and observe that for every ¢ € T, the 2-form on W defined by
w on W,

w, =14 d(e?®ay)  on [0,00) x M,
d(e’®Pa_) on (—m,0] x M_

is symplectic, and any J € J(w, ay, a_) is w,-compatible. We then define

(A.6) E(u) := sup L wtw,

peT

for any parametrization u : ¥ — W of a curve in Mg(l//I\/, J).

The natural compactification of Mg(l//I\/, J) is the space Mg(l//l\/, J) of stable J-holomorphic
buildings

+ + - -
(UN, s 01 V0, U1 5oy U ),

which have N, > 0 upper levels, N_ > 0 lower levels and exactly one main level.
Each of the levels is a (possibly disconnected) asymptotically cylindrical nodal curve that

is stable in the sense defined in §A.T], where

e v/ fori=1,...,N, live in R x M, and are J,-holomorphic, with
Sy = Jloyxm, € T(ay);

e g lives in W and is J-holomorphic;
ey, fori=1,...,N_live in R x M_ and are J_-holomorphic, with

J_ = J|(foo,0]><M_ € j(a_).
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,dvf‘ (RXM+7J+)
Vo (WN])
',, ra X
= =
Rx M_, J_
p (B x M)
=
vy (Rx M_,J.)
==l
Vg (RXM_,J_)
\

O/

FIGURE A.3. Degeneration of a sequence u; of punctured holomorphic
curves with genus 2, one positive end and two negative ends in a symplectic
cobordism. The limiting holomorphic building (v;, v, vy, v, v5 ) in this ex-
ample has one upper level, a main level and three lower levels, each of which
is a (possibly disconnected) punctured nodal holomorphic curve. The build-
ing has arithmetic genus 2 and the same numbers of positive and negative
ends as uy.

The levels also connect to each other, meaning that the data of a building includes a
bijection between the positive ends of each level and the negative ends of the level above it
such that matching ends are asymptotic to the same Reeb orbit—orbits that appear in this
way are not considered asymptotic orbits of the building itself, but are sometimes called
breaking orbits (see Figure[A.3)). The arithmetic genus g = 0 can be characterized by
the following condition: if S denotes the space obtained from the domains of all the levels
by filling in all punctures and then identifying any two nodal points that belong to the
same node and any two punctures between levels that are matched by the aforementioned
bijection, then S is homeomorphic to a (possibly singular) fiber of some Lefschetz fibration
with closed regular fibers of genus g. Equivalence of holomorphic buildings is defined via the
obvious notion of biholomorphic equivalence (preserving nodes and matching punctures),
with the additional feature that upper and lower levels may be translated freely, i.e. two
levels that are identical after an R-translation of an upper or lower level are considered
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equivalent. Finally, the stability condition is enhanced with the stipulation that none of
the levels v may consist exclusively of orbit cylinders without any nodes; this is necessary
in order to make sure that the natural topology of MQ(W, J) is Hausdorff.
The natural inclusion . .
M9<W7 J) - Mg(Wv J)
regards any smooth curve u € Mg(W, J) as a building that has no upper or lower levels
and no nodes.

THEOREM A.16. For every g = 0 and every J € J(w,aq, o), Mg(ﬁ\/, J) admits a
natural topology as a metrizable space, and its connected components are compact. More-
OVET, any Sequence Uy € MQ(W, J) of curves satisfying a uniform energy bound E(uy) < C
in the sense of ([A.G) has a subsequence convergent to an element of MQ(W, J).

A small modification is appropriate in the case where (17[\/, J) is the completion of a
trivial symplectic cobordism, i.e. an R-invariant symplectization R x M. In this case the
levels are still ordered, but there is no distinguished main level, nor a distinction between
“upper” and “lower” levels, and the notion of equivalence allows R-translations in all
levels—the latter means in particular that mg(]R x M, J) is not a compactification of
My(R x M, J), but rather of My (R x M, J)/R. For full details on these matters, including
a precise definition of the notion of convergence to a holomorphic building, we refer to

[BEH"03].
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In this appendix we explain the local results in the background of the standard theorems
of §2.1] on positivity of intersections and the adjunction formula. Readers wishing to
understand the geometric picture without worrying about the analytical details may read
the statement of Theorem [B.23]in §B.2l and then skip ahead to §B.3] which proves positivity
of intersections using the local representation formula of Theorem as a black box. The
main tool in proving the latter is the similarity principle, which is explained (along with
the necessary background on elliptic regularity) in §B.1l

Since all important results in this appendix are local, we will mostly discuss functions
defined on the domains

D:={zeC||z|<1} and D,:={zeC||z| <p}
for p > 0.

B.1. Regularity and the similarity principle

The similarity principle can be thought of as a linearized version of positivity of inter-
sections: it gives a local description of solutions to linear Cauchy-Riemann type equations
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for personal use only. Not for re-distribution, re-sale or use in derivative works. (©Chris Wendl, 2019.
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near their zeroes, proving in particular that they qualitatively resemble complex-analytic
functions. The proof given in this section is more or less self-contained—it requires some
understanding of the theory of distributions and Sobolev spaces, but avoids using the
harder aspects of elliptic regularity theory such as the Calderén-Zygmund inequality. It
is based in large part on arguments that were explained to the author by Jean-Claude
Sikorav.

B.1.1. Linear Cauchy-Riemann type operators. Linear Cauchy-Riemann equa-
tions on vector bundles arise naturally from infinitessimal perturbations of J-holomorphic
curves.

DEFINITION B.1. Suppose (X, 7) is a Riemann surface, £ — X is a smooth complex
vector bundle, and F' — ¥ denotes the complex vector bundle

F :=Hom¢(T%, F)

whose sections are the complex-antilinear bundle maps 7% — E. A (smooth) linear
Cauchy-Riemann type operator is a first-order real-linear partial differential operator
D : T'(EF) — I'(F) that satisfies the Leibniz rule

D(fn) = (@f)n+ fDn forall nel(E), feC*(ER),
where Jf € Q% (TY) denotes the complex-valued 1-form df + i df o j.

REMARK B.2. If D : I'(E) — I'(F) in the above definition is also complex linear, then
it satisfies a complex version of the Leibniz rule, namely

D(fn) = (0f)n+ fDn forall nel(E), feC®(%,C).

It is important however to allow the possibility that D : I'(E) — I'(F) is only real and not
complex linear, even though F and F' both carry complex structures. Unless one restricts
attention to complex manifolds with integrable complex structures, most of the linearized
Cauchy-Riemann operators that arise in the context of J-holomorphic curve theory are not
complex linear.

REMARK B.3. It is easy to check that if D : ['(F) — I'(F') is a Cauchy-Riemann type
operator and A : E — F'is a smooth real-linear bundle map, then D + A is also a Cauchy-
Riemann type operator. Moreover, for any two Cauchy-Riemann type operators D and D’
on E, the map D' — D : I'(E) — I'(F) is C*-linear and thus arises from a smooth bundle
map A : F — F, meaning D’ = D + A. This proves that the space of all Cauchy-Riemann
type operators on E is an affine space over I'(Homg(E, F)).

Given an open subset 4 < ¥ with a holomorphic coordinate z = s+ it :  — C
identifying (U, j) with (ID,i) and a complex trivialization of Ely, there is a naturally
induced trivialization of F|y; such that if n € T'(E|y) is represented by the function f :
D — C", then the same function also represents the section & € T'(F|y) given by {(X) =
dz(X)n(p) for pe U and X € T,X. These choices identify the spaces of sections of E and
F over U with C*(DD,C") such that the map

0, + 18, : C*(D,C") — C*(D, C")
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represents a linear Cauchy-Riemann type operator on E|y,. It follows via Remark that
every Cauchy-Riemann type operator D : I'(E|y) — I'(F|y) is in this way identified with
a map of the form

(B.1) 0, +i0, + A : C*(D,C") — C*(D,C")

for some smooth function A : D — Endg(C™). With this local picture understood, it will
sometimes also be useful to consider Cauchy-Riemann type operators on complex vector
bundles that are not equipped with a smooth structure, e.g. pullbacks of smooth bundles
along non-smooth (but differentiable) maps. In general, one says that a vector bundle is
of class C* if it is equipped with an atlas of local trivializations whose transition maps
are all of class C*. One can then speak of sections of class O™ for any m < k but not
for m > k; the former notion makes sense due to the fact that for m < k, the product of
a C*-smooth function with a C™-smooth function is also of class C™. In the following,
we shall allow non-smooth vector bundles £/ — > but continue to assume that the base
is a smooth Riemann surface, i.e. the almost complex structure j on ¥ is smooth, so that
holomorphic local coordinate charts on X are automatically also smooth. For this reason,
F := Hom¢(T'Y, E) always inherits from £ and ¥ an atlas of local trivializations with the
same regularity as . If E is of class C*, then the notion of a differential operator from E
to F' of order r € N makes sense as long as r < k.

DEFINITION B.4. Suppose (X, 7) is a Riemann surface, £ — X is a complex vector
bundle of class C* for some k € N u {w}, F = Home(TS, E), and m < k — 1 is a
nonnegative integer. A linear Cauchy-Riemann type operator of class C™ is a first-
order real-linear partial differential operator D from F to F such that under arbitrary
choices of local holomorphic coordinates and trivializations as described in the previous
paragraph, D locally takes the form 05 + id; + A for some A € C™(D, Endg(C")).

REMARK B.5. The condition m < k — 1 is required in the above definition since
the transformation of the zeroth-order term in a Cauchy-Riemann type operator under a
transition map depends in general on the first derivative of the transition map, i.e. if the
latter is only of class C*, then the condition A € C*~! is coordinate-invariant but A e C*
would not be. The same remark applies to connections on a bundle of class C*.

REMARK B.6. For functions of Sobolev class W#?_ there is also a well-defined continu-
ous product pairing C* x W*P — W P due to the fact that products of continuous functions
with LP-functions are also in LP. As a consequence, one can also speak of Cauchy-Riemann
type operators of class W*? whenever the bundle is of class C*+1.

ExampLE B.7. If E — ¥ is endowed with a holomorphic vector bundle structure, then
it carries a canonical (complex-)linear Cauchy-Riemann type operator D : I'(E) — I'(F)
such that the local holomorphic functions n € T'(E|;) on open sets U < X are precisely
those which satisfy Dn = 0. This operator takes the form d, +i0; with respect to any choice
of local holomorphic coordinates and holomorphic trivialization, and the holomorphicity
of the transition maps guarantees that this definition does not depend on any choices.



102 B. LOCAL POSITIVITY OF INTERSECTIONS

ExaMPLE B.8. For any connection V on E — X, Dn := Vn +iVnoj defines a linear
Cauchy-Riemann type operator.

ExamMpLE B.9. If w : (3,7) — (M, J) is a J-holomorphic curve, then linearizing the
nonlinear operator d;(u) := du + J o du o j along a smooth family of maps {u, : ¥ —
M} pe(—e) With ug = w and n 1= Oyu,|,_, € I'(u*T'M) gives rise to a linear Cauchy-
Riemann type operator of the form

T(u*TM) 2% T (Home (TS, u*TM)),
n—Vn+JuoVnoj+(V,J)oTuoj,
where V is an arbitrary choice of symmetric connection on M.

B.1.2. Elliptic regularity. In the following we will consider C"-valued functions of
one complex variable z = s+ it, for which we denote the standard local models of Cauchy-
Riemann and anti-Cauchy-Riemann type operators by

0= 05 + 10}, 0:= 05 — 10;.

NOTATION (Sobolev spaces). In this appendix, the Sobolev space of functions f : D —
C" admitting weak derivatives of class LP up to orderk > 0 is denoted by W*?(D), and
for the case p = 2 we abbreviate the Hilbert spaces H*(D) := W"?2(D). The larger vector
spaces Wi-P(D) and Hf (D) consist of all functions on I whose restrictions to compact
subsets of the interior of ID are of class W*? or H* respectively. An important special case
of this is LL (D) = W (D), the space of all locally integrable functions on D. We write
the space of smooth compactly supported functions on the interior of D as C° (D).

Since ¢ and 0 are first-order differential operators with constant coefficients, they define
bounded linear maps
0,0 : Wh(D) — WH1P(D)
for each k € N and p € [1,00]. We will need to use the “easy” (p = 2) case of the following
nontrivial fact from elliptic regularity theory.

PROPOSITION B.10. For eachp € (1,0), the operator ¢ : W'P(D) — LP(D) is surjective
and admits a bounded right inverse T : LP(D) — WP(D).

SKETCH OF THE PROOF FOR p = 2. The locally integrable function K : C — C de-
fined almost everywhere by

1
27z
is a fundamental solution for the equation du = f, meaning it satisfies 0K = ¢ in the sense
of distributions, so in particular, one can use convolution to associate to any f € C°(C) a
function u := K = f € O°(C) satisfying du = f. Since CF(D) = C(C) is dense in LP(D),
the desired right inverse 7' : LP(D) — W'?(D) can be defined as the unique bounded linear
extension of CF(D) — C*(D) : f — (K = f)|p after establishing an estimate of the form

| K = flwrrm) < el flee forall  feCF(D).

K(z):
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This is equivalent to three estimates,

(B:2) K« fleew) < clfler, 10K = )l < el flze, 10K « )]z <l flr,

each again for f € C(D). The third of these is immediate since d(K * f) = f. The
first estimate is a minor variation on the standard Young’s inequality for convolutions (see
e.g. [LLO1, §4.2]), and admits a similar proof based on the Holder inequality and Fubini’s
theorem—the crucial assumptions here are only that K is locally integrable and D < C
is bounded. The hard part in general is the second estimate, though in the case p = 2, a
straightforward argument is possible using the Fourier transform.

The idea is to interpret both sides of the equation 0K = § as tempered distributions on
C, which then have well-defined Fourier transforms in the sense of distributions. Expressing
these Fourier transforms as functions of a variable ¢ € C, the Fourier transform K (() of
K (z) gets multiplied by 2mi( to produce the Fourier transform of 0K (z), so 0K = § implies

(B.3) 2miC K (¢) = 6(¢) = 1.

If fe CP(C) and we define another function on C by u := K * f, then u also defines a
tempered distribution, whose Fourier transform @ then satisfies

i=Kxf=Kf,

so by (B.3]) we have 2mi¢u(¢) = f((’ ). Denoting the Lebesgue measure on C for functions
of ¢ € C by du((), Plancherel’s theorem now implies

|dKam;®<wma@=L@Mm%mo=me@mfw«>
=27miCu(C)

:J‘(Cg

and the last expression is the same as || f H%Q(D) if we assume f € C°(D), hence the remaining
estimate is proven.

The case p # 2 requires totally different arguments, which begin by writing 0(K = f) =
0K = f as a principal value integral

2
(O = | 1 auc) = 173ae) = 171

1 f©)
. - AV

(K = [)(2) - el_lf(% (C—ele (z— () dp(C),
in which the right hand side can be interpreted as the convolution of a distribution 0K
with a smooth function f. The limit in this expression is necessary because in contrast
to 1/z, the function 1/2% that arises by differentiating K (z) is not locally integrable on C,
and for this reason, simple convolution inequalities do not apply. Estimates in LP for
transformations given by singular integrals of this type are the subject of a much harder
analytical result, the Calderén-Zygmund inequality. Details on this and the rest of the
argument sketched above may be found in [Wenal, Chapter 2|; we shall not present them
here since the p # 2 case, while important for the general theory of pseudoholomorphic
curves, is not needed in our discussion of intersection theory. O
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REMARK B.11. A closely related result is the existence of an estimate
(B.4) luwir < c|oulpr  for all  ue CF(D).

This can be derived from Proposition [B.I10 using a bit of extra knowledge about the fun-
damental solution K (z) = 1/27z, but in the case p = 2 it also admits the following simple
proof borrowed from Sikorav [Sik94]. The bound on |u|y1.» is again equivalent to three
bounds, namely on |ulz», |0u|z» and |Ou|z», where the third is immediate. Since u is
assumed to be smooth with compact support, the first bound follows from a standard
Sobolev estimate, the Poincaré inequality (see e.g. [AF03] §6.30]). To achieve the second
bound, it is convenient to write z = s + it € C and consider the complex partial derivative

operators
o 1 o 1<

AT . A
(/Z = = — az = — = —0
oz 27 oz 2

along with the corresponding complex-valued 1-forms
dz = ds + v dt, dz = ds — i dt.
For any smooth compactly supported function u : C — C, we can now write
du = d,udz + dsudz,
and the complex-valued 1-form u du has compact support in C, so applying Stokes’ theorem

to d(udu) = du A du on a sufficiently large disk Dr < C gives

0= J udu = J du A du = f (C,udz + d;udz) A (O,udz + dsudz)
oDp Dr Dr

1 _
= —f (Joul® = |oul?) dz A dz,
4 Jp,,
proving |ou 2 = |ou .
Note that by applying (B.4) to derivatives 0*u with arbitrary multi-indices a and using
the fact that 0* commutes with ¢, one obtains the easy generalization

|ullyrr < clOufyr1p forall ue CP(D)
for every k € N. By density, this extends to
(B.5) lulyre < c|oulyir, forall we WEP(D),

where WE?(D)  WH?(D) denotes the closed subspace defined as the W*-closure of
Cy (D).

Note that if p > 2 and f € LP(D), then the statement of Proposition gives a
solution u := T'f € W'P(D) to the equation du = f, and u is then continuous by the
Sobolev embedding theorem. We will need this fact for certain applications, but since we
did not prove the p > 2 case of Proposition [B.10, the continuity of solutions to du = f € LP
for p > 2 needs to be proved separately. This turns out to be not so hard.
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~ PROPOSITION B.12. Let T : L*(D) — H'(D) denote the bounded right inverse of
0 : HY(D) — L*(D) provided by Proposition[B10, defined as an extension of the convolution
operator f — K= f. Then for pe (2,0), T sends any f € LP(D) < L*(D) into C°(D), and
it restricts to a bounded linear operator

T : LP(D) — C°(D).

PROOF. Observe that the fundamental solution K (z) = 1/27z belongs to L{ (C) when-
ever 1 < ¢ < 2, and in fact the Li-norm of K on the unit disk D(z) < C about a point
z € C satisfies

| Koy < ©
for some constant C' > 0 that depends on ¢ but not on z. In particular if p > 2, this is
true for g € (1,2) such that 1/¢ + 1/p = 1. Now if f € C3°(D), Holder’s inequality implies
that for every z € C,

K+ f(2)) = Lmz COF(Q) dp(0)] < f K(z— Q)] [£(O) du(C)

<Kz =) - 1 flem < ClflLr@),
hence |Tf|r= < C|f|rr. By standard results on convolutions of smooth functions with
distributions (see e.g. [LLO1l §6.13]), K = f is a smooth function for each f € CF°(D), thus
the map f +— K = f extends to a bounded linear map from LP(D) to the L*-closure of the

space of bounded smooth functions, which is C°(D). Since L?(D) embeds continuously into
L*(D), this extension is necessarily the same as T': L?(D) — H'(D) for all f € LP(D). O

Here is the first of several applications of these estimates.

PROPOSITION B.13. If g € HE (D) for some integer k = 0, then every weak solution

f € LL.(D) to the equation Of = g is also in HET'(D). In particular, f is smooth whenever

g 18 smooth.

SKETCH OF THE PROOF. One starts by showing that if £ > 1 and f is already known
to be in HY(D,) for some r > 0, then f will also in H**}(D,.) for every 7’ € (0,7), and it
satisfies an estimate of the form

(B.6) Iz, < lflam.) + clglarw,)-

To show for instance that f is in H?*(ID,), it suffices to show that both of the partial
derivatives 0, f and 0;f are in H'(ID,~), and for this purpose one can approximate them by
difference quotients, e.g.

f(s+h,t)— f(s,1)

h
for h € R\{0} close enough to 0 so that this definition makes sense on a neighborhood
of D,s. These difference quotients are automatically of class H! since f is, and the main
task is to show that they satisfy a uniform H'-bound on D,» as h — 0, as the Banach-
Alaoglu theorem then implies that they converge weakly to a function in H! as h — 0,
implying that J,f (or 0.f respectively) is indeed of class H'. The required uniform bound

D'f(s,t) =
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comes from the basic elliptic estimate (B.H): to apply it, one chooses a smooth function
g : D, — [0,1] that equals 1 on D, and has compact support in the interior of D, so that
BD! f is now of class Hy on Dy, thus |D!f| g ) < |B8D2f|mi(p,) is bounded in terms of
10(BDL f)| r2m,). This in turn can be bounded in terms of |D”f||;2 and |D%g]|;2, which
are both uniformly bounded as h — 0 because f and g are both of class H'. If k > 1, then
one can now repeat this argument with the knowledge that f is of class H? on D,,, and
continue repeating it on smaller disks at each step until f is shown to be of class H**!,
with the estimate (B.6]) as a quantitative expression of this fact. This argument shows in
particular that if f is of class H[_ and Jf is of class Hf_, then f is also of class H{Zjl.

Before weakening the hypothesis on f further, it is useful to notice that the previ-
ous paragraph makes possible a generalization of Proposition [B. 10t for every k& € N, the
operator ¢ : H*(D) — H* (D) admits a bounded right inverse

Ty : H* (D) — H*(D).

The proof of this is by induction on k, with Proposition [B.10 as the case k& = 0. If
one fixes some R > 1 and assumes that a right inverse T} : H*?(Dr) — H*1(Dp)
of 0 : H*1(Dr) — H*2(Dg) exists, then a right inverse T, : H* (D) — H*(D) for
0: H*(D) — H* (D) can be defined in the form

Th.f = Tk*lﬂn
for f e H*1(D) ¢ H*2(D), where
H*'YD) - H* Y(Dg): f— f

is any choice of bounded linear extension operator, i.e. satisfying f|D = f. The reason
this defines a bounded operator H*"1(D) — H*(D) is that if u = T} f, then u is the
restriction to a smaller disk D < Dp of a function Ty_if € H F=1(Dg) which satisfies
0Ty, f = f € H*1(Dy), thus the previous paragraph implies that  is also in H*(D), and
([B.6) produces the required estimate on |[u g ).

Finally, if f € LY(D,) and 0f = g € H*(DD,.), one can now take the bounded right inverse
Ty : HE(D,) — H**Y(ID,) and consider the function h := f — Ty 19, which is in L*(DD,)
and is a weak solution to the equation 0h = 0. The real and imaginary parts of h are then
weak solutions to the Laplace equation, and by convolution with an approximate identity,
one can approximate them in L'(ID,) by smooth solutions to the Laplace equation. The
latter are characterized by the mean value property (see [Eva98, §2.2.3]), which behaves
well under L!-convergence, implying that the real and imaginary parts of h also satisfy the
mean value property and are therefore smooth. In particular, i then belongs to HF(DD,.),

loc

and therefore so does f = h + Ty,19. O

COROLLARY B.14. Suppose E is a complex vector bundle of class C**1 over a Riemann
surface ¥, and D : T'(E) — I'(Home (T, E)) is a linear Cauchy-Riemann type operator of
class C*. Then every weak solution of class L2 to the equation Dn = 0 is of class H{f)il
In particlar, if the bundle E and operator D are smooth, then all weak solutions of class

2
Li. . are smooth.
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PROOF. Locally, a weak solution to Dy = 0 of class L} _ can be represented by a C"-
valued function f € L?*(D) satisfying (¢ + A)f = 0 for some function A : D — Endg(C") of
class C*. In particular A is continuous, so —Af is of class L?, and the equation 0f = —Af
thus implies via Prop. that f is of class Hy._. If A is also of class C, it follows that
—Af is in H}_, and another application of Prop. [BI3] implies f € H2.. Repeat until A
runs out of derivatives. O

At one point in §B.3] we will need a nonlinear analogue of the above result, which applies
to J-holomorphic curves in an almost complex manifold (M, J). This justifies the fact that
we only consider smooth J-holomorphic curves in these notes, even though the nonlinear
Cauchy-Riemann equation would make sense for maps that are only differentiable. The
hypotheses can be weakened in various ways, e.g. by allowing non-smooth almost complex
structures, but we will have no need to consider this. The statement is fundametally local,
thus we are free to assume (M, J) = (C", J).

PROPOSITION B.15. Suppose J is a smooth almost complex structure on C™ with J(0) =
i, and u : D — C" is a continuous function of class WY* that is a weak solution to the
equation Osu + J(u)0u = 0 with u(0) = 0. Then u is smooth.

SKETCH OF THE PROOF. By the Sobolev embedding theorem, it suffices to prove that
u is of class HJ" _ for every k € N. We prove this by induction on k, and observe first that at
each step of the induction, it will be enough to prove that u is of class H* on D, for some
p > 0; indeed, changing coordinates then produces the same result on sufficiently small
neighborhoods of any point in the domain, so that finitely many such small neighborhoods
can be pieced together to show that u is in H* on any compact subset of the interior.
Another useful observation is that for any constants R > 0 and p € (0, 1], u is of class

H* on D, if and only if the rescaled map
u:D—C":z— Ru(pz)
is in H*(D). To make use of this, we rewrite the equation dyu + J(u)du = 0 in the form
ou — Qu)du = 0,
where @ :=i — J e C*(C", Endg(C")). The rescaled map u then satisfies
(B.7) ot — Q)04 = 0
if we define .J, Q : C* — Endg(C") by

J(p) = J(p/R), Q:=i—J.
The advantage of these definitions is that @ can be made arbitrarily C'“-small by choosing
R > 0 large, and since u : D — C” is continuous with «(0) = 0, one can subsequently
choose p > 0 small to make the function ) o u : D — Endg(C") correspondingly small so

that (B.1) becomes a small perturbation of the linear equation 04 = 0. In this context, it
will be useful to note that for any k& € N and p € (1, 00) with kp > 2, there exist constants
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¢ > 0 and 7 > 0 such that every f € Wk?(D) with f(0) = 0 is related to its rescaled cousin
f(z) := Rf(pz) by

(B.8) | flwerm) < cRp™|f lwnnmy-

This can be proved as a corollary of the Sobolev embedding theorem, and it implies that
for each k = 2, ||u]| g+ can also be made arbitrarily small by choosing p > 0 small for any
given R > 0. In the following, we always reserve the right to enlarge R and subsequently
shrink p whenever convenient.

Arguing by induction, the goal is now to show that if & € H*(D) for a given k € N, then
U is also of class H**! on I, for some r < 1, where in the case & = 1 we impose the extra
hypothesis 7 € W1 (D). As in Proposition [B.I3] the argument uses difference quotients,
e.g. if one can prove uniform H*-bounds on the difference quotients D" with respect to
s as h — 0, then the Banach-Alaoglu theorem implies that 0,4 is in H*. The assumption
i € H*(D) already implies a uniform H*~'-bound on D"% as h — 0, where in the case
k = 1, there is an additional L*-bound. Choosing a smooth bump function 5 : D — [0, 1]
with compact support in the interior and S|p, = 1 for some r < 1, it then suffices to find
a uniform bound on |SD"i||gx as h — 0. The usual estimate (B.H) gives

|BDY] e < c|O(BDY)] s
To bound the right hand side, one can apply the operator D" to the equation o = (@o@) oyt
from (B.7), giving

o(Dra) = DM(Q o) d,a + (Q o )0, (D)
and thus

2(BD"i) = BDM(Q o @) o + (Q o 0)é, (3D"4) + (55 (Do mﬁ) D
From this we deduce the estimate

(B.9) 8D < CHQ@)@ (3D"a) HH 4 cHﬁDQ(@ o ) s

Hk-1

te H (a/s . Q(ﬁ)@ﬂ) D?u‘ o
We claim that after suitable adjustments of the rescaling parameters p and R, every term
in (B.9) is bounded uniformly as h — 0.

Indeed, since @ can be assumed arbitrarily C*-small on the image of %, we can also
apply (B.g) if & > 2 to assume that the composition Q) o @ is arbitrarily small in H*, in
which case the continuous product pairing H* x H*~' — H*~! gives a uniform bound on
the third term. This argument does not quite work in the case k = 1, as (B.g)) is then not
valid and there is no continuous product pairing H' x L? — L?, but here one can instead
make @ o @ arbitrarily C°-small and achieve a uniform L?-bound.

For the first term, if £ > 2 then one can similarly use the continuous product pairing
H* x HF=1 — H*! and make |Q o @]z« small via (BR), giving an estimate of the form

Q@ (sDka)| <o le (8Dk)

< ) BDYA v,

s
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with a constant 0 > 0 that can be made arbitrarily small by suitable adjustments of R
and p. One can therefore absorb this term into the left hand side of (B.9). Once again a
special argument is required for the case k = 1, but here one can instead assume @ o is
(O%-small and use the continuous pairing C° x L? — L? to achieve the same result.

The second term in (B.9) requires some version of the chain rule for the difference
quotient operator D". Here one can write

~

Qp+7)

~ 1 ~
Op) + j dOp + ) dr

= Qp) +dQp)p' + ( f 1 |40 + 70') — dQ(w)| df) p

= Q) + | QM) + Rip.) | v

for a smooth remainder function R : C" x C" — Homg (C", Endg (C™)) satisfying l/%(, 0) =
0, and use this to derive a formula of the form

(B.10) DHQo@) = |dQoi + Ro (a,nD!%) | DI,

valid for all h # 0 sufficiently close to 0. For k > 2, one can use (B.8) to assume the
terms 4 and hD"% satisfy an arbitrarily small H*-bound independent of h, and then use

the smoothness of @ and R and the fact that },%(, 0) = 0 to assume that the bracketed
term in the above expression is arbitrarily H*-small for all h near 0. Since H* is a Banach
algebra, this gives rise to an estimate of the form

D! (Qeit)| < ol8Dk
H

where the constant § > 0 can be assumed arbitrarily small after adjusting R and p.
Since ||0;t] gr—1 < |[Ul|ge can also be assumed small by (B.8) and the product pairing
H* x Hk1 — H*=1 is continuous, it follows that the second term in (BX9) can also be
absorbed into the left hand side. In the case k = 1, we can instead use the uniform L*-
bound on d,u to put a bound on |6t~ while making p as small as is needed, and then
use the uniform L2bound on D" to derive from (BI0) a uniform L:-bound on D"(Q o),
which now direcly implies a uniform bound on the second term in (B.9). O

EXERCISE B.16. Show that for any ¢ € C°(D) and f € C°(D) such that f[p o} is of
class C! with bounded derivative, the usual formula for integration by parts

\f@ﬁ¢=—ff“@¢
D D
is valid, and deduce that f belongs to W1*(DD).

B.1.3. Local existence of holomorphic sections. The main engine behind the
similarity principle is the following local existence result for solutions to linear Cauchy-
Riemann type equations.
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THEOREM B.17. Assume 2 < p < o0 and A € LP(D, Endg(C™)). Then for sufficiently
small p > 0, the problem

ou+ Au =0
u(0) = ug
admits a weak solution u e C°(D,) n HY(D,) for every uy € C™.

Notice that by elliptic regularity (Prop.[B.13]), the local solutions u : D, — C" provided
by this theorem may be much nicer than just continuous functions with weak derivatives
in L?, e.g. they will be smooth if A is smooth. One easy consequence is the follow-
ing fundamental result in complex geometry, which gives an equivalence between smooth
complex-linear Cauchy-Riemann type operators and holomorphic vector bundle structures.

COROLLARY B.18. Suppose E is a complex vector bundle over a Riemann surface 3,
and D : T(E) — I'(Home (T, E)) is a smooth complea-linear Cauchy-Riemann type oper-
ator. Then E admits a unique mazximal atlas of smooth local complex trivializations whose
transition maps are holomorphic, such that a section n € T'(E|y) defined on some open
domain U < ¥ is holomorphic with respect to these trivializations if and only if Dn = 0.

PROOF. For any point p € X, Theorem [B.17 and Proposition together provide
a collection of smooth sections 7y, ...,n, defined on a neighborhood of p that all satisfy
Dn; = 0 and are pointwise complex-linearly independent at p (and therefore also in a
neighborhood of p). We define the desired atlas of local trivializations by viewing collections
of this sort as local frames. The Leibniz rule for complex-linear Cauchy-Riemann type
operators (cf. Remark [B.2)) then implies that transition maps are holomorphic. O]

The local existence theorem admits a fairly straightforward proof using the p > 2 case
of Prop. B.I0l The idea is to multiply A by the characteristic function x, of D, for p > 0,
producing a family of bounded linear operators

D, =0+ x,A: W' (D) — LP(D),

which converge in the norm topology to ¢ : WH(D) — LP(D) as p — 0. It follows that
the operators
L, : W'?(D) — LP(D) x C" : u — (D,u, u(0))

also converge as p — 0 to Lo(u) = (u,u(0)); note here that WP(D) — C" : u — u(0)
is a well-defined and continuous linear map due to the Sobolev embedding theorem. Since
0 : WP(D) — LP(D) has a bounded right inverse and holomorphic functions on D can
take arbitrary values at a point, the operator Ly also has a bounded right inverse, and so
therefore does L, for p > 0 sufficiently small, as the existence of bounded right inverses is an
open condition. The right inverse of L, can then be used to produce functions u € W#(D)
that have prescribed values at 0 and satisfy (0 + XpA)u = 0, so in particular they satisfy
(0+ A)u = 0 on D,. These functions are also continuous since, by the Sobolev embedding
theorem, W1?(DD) embeds continuously into C°(D) for p > 2.

The argument just sketched would not work for p = 2 because H'(D) = W?(D) does
not embed into C°(ID). Since we did not prove the p > 2 case of Proposition [B10, we will
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have to do something slightly more roundabout in order to produce a self-contained proof
of local existence. It is based on the following lemma, which was suggested by Jean-Claude
Sikorav.

LEMMA B.19. Under the same assumptions as in Theorem [B.17, suppose 0 < r < 1
and fo : D, — C" is a holomorphic function. Then for any § > 0, there exists p € (0,7]
and a continuous function f : 1D, — C" such that |f| < andu:= fo+ f:D, > C"is a
weak solution to the equation (0 + A)u = 0.

Proor. We will look for a continuous weak solution « : D — C™ to the equation
(0+ A,)u =0,

for some small number p > 0, where A, := x,A and x, : D — [0, 1] denotes the function
that equals 1 on D, and 0 everywhere else. We claim that each of the operators 0+ A,
is a bounded linear operator H'(D) — L?(D), and that these operators converge in the
operator norm to ¢ as p — 0. Recall that H'(D) is a “Sobolev borderline case,” so it
admits continuous inclusions H!(D) < L?(D) for every finite ¢ > 1 (see [AF03]). Thus if
we pick ¢ > 1 according to the condition 1/q + 2/p = 1, then Holder’s inequality and the
continuous inclusion H' < L?** imply that for any u € H'(D),

Apulls < | IAPIE < APy, NP,y < VAT el
P

< | AL, 1ullz o)

for some constant ¢ > 0. This proves the claim, since |A|rsp,) — 0 as p — 0.
Since 0 : H'(D) — L*(D) has a bounded right inverse T' : L*(D) — H'(DD), it follows
that ¢ + A, also has a bounded right inverse
T,: L*(D) - H'(D)

for all p > 0 sufficiently small. It should now at least seem plausible that any solution
foe H'(D) to dfy = 0 admits an H'-close perturbation fo+ f satisfying (0+A,)(fo+f) = 0:
indeed, the latter is equivalent to the equation

0+ A)f =—A,f,
which can be solved by
J= _Tp(ApfO)'

This function clearly is H'-small whenever p is correspondingly small since T), : L* — H*
is continuous and LP(D) embeds continuously into L?(D), hence

(B.11) 1 Apfol 2y < c|Apfollr@y < cllAl eyl follco =0 as p—0.

We claim in fact that the operator T, can be chosen to make f continuous and C%-small
when p is correspondingly small. By (B.I1)), this will be immediate if we can show that
T, restricts to a continuous linear map LP(D) — C%(D) for p > 2, a fact which we already
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know is true of 7': L?*(D) — H'(D) by Proposition [B.I2l Thus to prove the claim, let us
write down a more explicit definition of 7},. Notice that
(0+A)T =1+ A,T

is a bounded linear operator on L? and is close to the identity in the operator norm since
T:L? — H'is continuous and A, : H' — L? is small. But for slightly different reasons,
this operator is also close to the identity in the space of bounded linear operators on LP:
indeed, 4, : C° — LP is also continuous and small since

1A u] Loy < [Apl eyl ullcoy = [Alle,) [ ulcom),

so this statement follows from the continuity of 7': LP(D) — C%(D). Thus for any p > 0
sufficiently small, 14 A,T defines isomorphisms on both L?(D) and LP(D), so that defining

T,=T(1+AT)™"
gives a right inverse of 5’+AP that is continuous both from L? to H! and from L? to C°. [

PRrROOF OF THEOREM [B.17l Using Lemma [B.19] we can construct the columns of a
continuous matrix-valued function ® : D, — Endg(C") for p > 0 small such that & weakly
satisfies (0 + A)® = 0 and is arbitrarily C%-close to the constant (and thus holomorphic)

function ®4(z) := 1. We can therefore assume ® takes values in GL(2n,R). Continuous
solutions u : D, — C" to (0 + A)u = 0 with prescribed values u(0) = ug can then be
constructed by multiplying ® by suitable constant vectors in C™. 0]

B.1.4. The similarity principle. We can now prove the main result of the present
section.

THEOREM B.20. Assume E is a complex vector bundle of class C* over a Riemann
surface 32, D is a linear Cauchy-Riemann type operator on E of class LP for some p € (2, 0]
in the sense of Remark[B.G, andn: Y — E is a continuous section that is a weak solution
to the equation Dn = 0 with n(zy) = 0 for some point zg € . Then there exists a
continuous local complex trivialization of E near zy that identifies n with a holomorphic
function. Moreover, if D is smooth and complex linear, then the local trivialization near
2o can be arranged to be smooth.

PROOF. The issue is purely local, so assume A € LP(D, Endg(C")) with p > 2 and
u: D — C" is a continuous weak solution to

(0+ Au=0

with u(0) = 0. We start by replacing ¢ + A by another Cauchy-Riemann type operator
that is complex linear but has the same regularity. Indeed, choose a measurable function
C : D — End¢(C") such that |C(z)| < |A(2)| and C(2)u(z) = A(2)u(z) for all z € D. Then
C is also of class LP(D) and u also satisfies ou + Cu = 0.

Now construct a local frame as in the proof of Corollary [B.I§ that is, let & : D, —
End¢(C™) be a complex matrix-valued function whose columns are local weak solutions
to (0 + C)n = 0 as provided by Theorem B.I7 with ®(0) = 1. Since C € LP(D) with
p>2, ®isin C°(D,) n H(D,), and it also satisfies (0 + C)® = 0. After shrinking p > 0
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if necessary, continuity then implies that we are free to assume ®(z) is invertible for all
zeD,, and we can therefore define a continuous function f : D, — C" by

f(z) = [@(2)] " u(2).
To conclude, we need to show that f is a weak solution to df = 0, in which case Propo-
sition implies that f is also smooth, and therefore holomorphic. If ®, v and f were
all smooth, then 0f = 0 would follow from the fact that 0 + C is complex linear and
annihilates both ® and u, as the Leibniz rule (cf. Remark [B.2)) then implies

0=+ Clu=(0+C)(f) =[(0+C)®] f+D(Of) = D(Of).

An additional argument is required in order to justify this conclusion without knowing
whether ® and u are smooth. What we do know is that w is continuous and ¢ is in
both C° and H'; since A € LP(D) = L?(D), we also have —Au € L?(ID), so that Prop.
implies that u is also in H'(D,). To make use of this, we can consider the following normed
linear space:

X = H'(D,) nC*(D,),  |nlx := Inlmw,) + Inlcow,).

It is a straightforward exercise to prove that X has the following properties:

e X is complete, i.e. it is a Banach space.

e C?([D,) n X is dense in X. (Indeed, one can check that the standard mollification
procedure for functions in H'(D,) as in [Eva98| §5.3] works simultaneously for
(D).

e X is a Banach algebra, i.e. there exists a continuous product pairing X x X —
X :(g,h) — gh for complex-valued functions, and there is similarly a continuous
product pairing X x L*(D,) — L*(D,). (The main tool in both cases is the
inequality |ghlz2 < |g|lco|h|z2 for g€ C° and h e L?.)

o If d € X is a function D — End¢(C") with image in GL(n, C), then the function
d~1(z) := [®(2)]"! also belongs to X and depends continuously on ® € X in
the topology of X. (Recall that GL(n,C) — GL(n,C) : B — B~! is a smooth
function.)

Notice that for any g € X, we have dg € L*(D,) since g € H'(D,), and similarly, Cg €
L*(D,) since C' € LP = L? and g is continuous. In fact, @ + C defines a continuous linear
operator
(0+C): X - L*(D,).

The previous remarks now imply after taking p > 0 sufficiently small that ®~! and u both
belong to X, so by the Banach algebra property, so does f = ®'u. Now use the density of
smooth functions to find sequences of smooth functions f,, ®, converging in X to f and &
respectively, so that (using the Banach algebra property again) u, := @, f, also converges
in X to u. The Leibniz rule now gives

@+ C)u, = [(2+C)D,] £, + D,(f.),

in which the left hand side and the first term on the right hand side both converge in L?
as v — o to zero, while the last term converges in L? to ®(Jf), proving df = 0.
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Finally, consider the special case in which A is smooth and complex linear. Under this
assumption, Corollary implies that D defines a holomorphic structure on E in which
7 is a holomorphic section. Alternatively, one could instead apply the argument above
after setting C' := A in the initial step, so that the function ® : D, — End¢(C") satistying
(0 + C)® is then smooth by elliptic regularity (Corollary [B.14)). O

COROLLARY B.21. Under the assumptions of Theorem [B.20, suppose 1 is not identi-
cally zero near zy, and choose local holomorphic coordinates and a local complex trivializa-
tion near zy to identify n with a function D — C" such that zo = 0 € D. Then n satisfies
the formula

n(z) = 2C + |2|*R(z)
for some ke N, C e C"\{0} and a function R(z) € C" such that lim, o R(z) = 0.

PROOF. In the chosen coordinates and trivialization, the similarity principle provides
a continuous transition map ® : D, — GL(n,C) for p > 0 small and a holomorphic
function f : D, — C" such that n = ®f and f(0) = 0. Since 7 is not identically zero
on this neighborhood, we have f(z) = z¥g(2) for some k € N and a holomorphic function
g:D, — C" with g(0) # 0. Then

u(z) = 2" ®(0)g(0) + 2 [®(2)g(2) — ©(0)g(0)],

in which ®(0)g(0) # 0 and the term in brackets is a continuous function that vanishes at

z=0. |

REMARK B.22. If n in the corollary above is smooth, then the result is equivalent to
the statement that the Taylor series of n about zy is nontrivial and its lowest-order term is
holomorphic (i.e. a polynomial in z with no dependence on z). However, the result remains
valid even if £/, D and n are not assumed smooth, e.g. in the proof of the representation
formula in the next section, we will need to consider examples where 7 is only known to

be of class C1.

B.2. The representation formula

If u(z) = v(¢) is an isolated intersection of two J-holomorphic curves in an almost
complex 4-manifold and at least one of the curves is immersed at the intersection point, then
there is a relatively easy argument via the similarity principle (cf. [M[S12] Exercise 2.6.1])
to prove that this intersection must count positively. The same holds without assuming
that either curve is immersed, but the proof requires more work. One approach, due to
McDuff [McD94], shows that a J-holomorphic curve with critical points always admits
a global perturbation to an immersed .J'-holomorphic curve for some perturbed almost
complex structure J’, thus the general case can be reduced to the immersed case. This is
an elegant argument, but it gives little insight as to what is really happening near critical
points of holomorphic curves, so we will instead discuss a purely local approach, using a
variation on a result of Micallef and White [MW95]. The following statement is weaker
than the actual Micallef-White theorem but suffices for our purposes, and is easier to prove.
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THEOREM B.23. Suppose (M, J) is a smooth almost complex manifold of dimension
2n, and u : (3,7) — (M, J) is a J-holomorphic curve that is not constant in some neigh-
borhood of the point zy € 3. Then there exists a unique integer k € N and 1-dimensional
complex subspace L < T,.,)M such that one can find a C*-smooth coordinate chart on a
neighborhood of u(z) € M and a C*-smooth coordinate chart on a neighborhood of zy € 33,
identifying these points with the origin in C" and C respectively and identifying L with
C x {0} € C™, so that u in these coordinates near zy takes the form

u(z) = (2", 1(2)) e C x C"*

for some C'-smooth function u(z) € C*1 defined near z = 0 and satisfying u(z) =
O(|z|[**1). Moreover, the Ct-smooth chart near zy may be assumed C* at all points other
than zy, and uw either vanishes identically or satisfies the formula

i(z) = 2" Cy + 2]y (2)

for some constants C,, € C*"1\{0}, ¢, € N, and a function r,(z) € C" ' with r,(z) — 0 as
z — 0. We will say in this situation that u has tangent space L with critical order
k—1 at z.

Further, if v = (¥',5") — (M, J) is another nonconstant J-holomorphic curve with
an intersection u(zg) = v((y) at some point (o € X' where u and v have the same tangent
spaces and critical orders, then the coordinates above can be chosen together with C'-smooth
coordinates near (y € X' having the same properties, in particular such that v satisfies a
representation formula

v(z) = (2%,9(z)),
with either v =0 or
0(z) = 200, + |2/, (2)

for some C, € C*"\{0}, ¢, € N and function r,(z) with r,(z) — 0 as z — 0.
Finally, any two curves written in this way are related to each other as follows: either
v, or

(B.12) 0(z) —u(z) = O+ |z|k”,'r"(z),

for some constants C' € C"~1\{0}, ¢’ € N and a function v'(z) € C"' with r'(z) — 0 as
z— 0.

EXERCISE B.24. Prove Theorem [B.23 for the case (M, J) = (C", ).

u

EXERCISE B.25. Use Theorem [B.23 to show that for any J-holomorphic curve u :
(2,7) — (M, J) with a point 2y € ¥ where du(zp) = 0 but u is not constant near zp, all
other points in some neighborhood of z; are immersed points, and moreover, the natural
map

z +— im du(z)

from the immersed points in ¥ to the bundle of complex 1-dimensional subspaces in
(T'M, J) extends continuously to 2.
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The much deeper theorem of Micallef and White [MW95] applies to a more general
class of maps than just J-holomorphic curves, and it also provides coordinates in which u(z)
and v(z) become polynomials, thus the remainder formulas stated in Theorem [B.23 become
obvious. The Micallef-White theorem is discussed in more detail in [MS12| Appendix E]
(written with Laurent Lazzarini) and [Sik97]. Our weaker version is based on ideas due
to Hofer, and is essentially a “non-asymptotic version” of Siefring’s relative asymptotic
analysis [Sie05] described in Lecture

The remainder of §B.2 will be concerned with the proof of Theorem [B.23

B.2.1. The generalized tangent-normal decomposition. The first step is to prove
a refined version of the corollary that was observed in Exercise [B.25l

PROPOSITION B.26. Ifu: (X,75) — (M, J) is a smooth connected J-holomorphic curve
that is not constant, then the critical points of u are isolated, and there exists a unique
smooth rank 1 complex subbundle

T, cu*TM
such that (T,), = imdu(z) for all immersed points z € ¥ of u. Moreover, du defines a
smooth section of the complex line bundle Home(T'X, T,) whose zeroes coincide with the
critical points of z, and these zeroes all have positive order.

We shall refer to the subbundle T,, < «*T'M in Proposition [B.20 as the generalized
tangent bundle of the curve u : (X,j) — (M, J), and define the critical order of each
critical point of u to be the order of the corresponding zero of du € I'(Hom¢(T%,T,)).
A choice of smooth complex subbundle N, < u*T'M that is complementary to T, will
then be referred to as the generalized normal bundle of u, characterized by the smooth
complex-linear splitting

uw'TM =T,®N,.
The bundle N, is non-unique but is clearly unique up to isomorphism, so we shall typically
ignore this detail in our discussion—if you prefer, you are free to eliminate the ambiguity
by assuming always that NN, is the orthogonal complement of T}, with respect to some fixed
choice of J-invariant Riemannian metric.

Proposition is an easy consequence of the correspondence given by Corollary [B.18]
between complex-linear Cauchy-Riemann operators and holomorphic bundle structures. It
depends on the following trick borrowed from [IS99]. Consider the linearized Cauchy-
Riemann operator

D, : D(w*TM) — T'(Home (TS, w*TM)),
which can be defined via the property that if {u, : ¥ — M},e(—cc) is any smooth 1-
parameter family of maps satisfying uy = u and dyus|,_, = 1 € I'(w*T'M), then for any
connection V on M and any z € X and X € T %,
(Dun)(X) = Vo [(@ru)(X)] | .
where 0; denotes the nonlinear Cauchy-Riemann operator

O;f :=df + Jodf ojeI'(Home(TX, f*TM)).
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Choosing the connection V to be symmetric, one can derive a more direct formula for D,
in the form

D,n=Vn+Ju)oVnoj+ (V,J)oTuo j,
which shows that D, is indeed a smooth linear Cauchy-Riemann type operator. In general
D, is real but not complex linear, because the connection V need not be complex and
V yd — JV,J need not vanish. On the other hand, it is easy to check that the complex-
linear part of D,,

DS : T(u*TM) — I'(Home (TS, u*TM))
1
n= 5 (Dun— JD.(Jn)).

also satisfies the required Leibniz rule and is thus a smooth complex-linear Cauchy-Riemann
type operator. By Corollary [B.I8 D¢ therefore determines a holomorphic vector bundle
structure on u*T'M.

LEMMA B.27. The complex-linear bundle map du : T — uw*T'M is holomorphic with
respect to the canonical holomorphic structure of T and the holomorphic structure on
u*TM determined by DE.

PROOF. The canonical holomorphic structure of 7% is determined by a complex-linear
Cauchy-Riemann type operator Dy, : ['(TS) — T'(Ende (7)) which is the linearization at
Id : (%, ) — (%, ) of the nonlinear operator d;p := dp + jodypo j e I'(Home (TS, o*TY))
for maps ¢ : ¥ — X. It follows that a smooth vector field X € I'(T'X) is holomorphic near
some point z € ¥ if and only if it can be written as

X = 0,00|

o=0

for a smooth family of maps {¢, : ¥ — 3},e(—,) Which satisfy ¢y = Id and OsPolo=0 = X
and are holomorphic near z. In this case, the maps

Uy = UO Py : 20— M

also satisfy d;u, = 0 in a neighborhood of z, and the section 7 := Jyty|s—o € T'(w*TM) is
related to the vector field X by n = du(X). This implies that D,n also vanishes near z.
Since 7.X is also a holomorphic vector field near z, the same argument implies that the
section du(jX) = Jn e I'(u*T' M) satisfies D,,(Jn) = 0 near z. Both of these facts together
prove that DS = 0 vanishes near 2. In summary, we've shown that du maps any locally
defined holomorphic vector field to a locally defined section of w*T'M that is holomorphic
with respect to DY, and this is equivalent to du : TS — u*T'M being a holomorphic bundle
map. O]

PROOF OF PROPOSITION [B.26]l Since u is not constant and ¥ is connected, the holo-
morphicity of du € T'(Home (7%, u*T'M)) implies that zeroes of du and therefore also
critical points of u are isolated. The definition of T,, < u*T M at immersed points of u is
obvious, thus we only need to check that a smooth extension of this subbundle over the
zero-set of du exists. Given a critical point zy € 3, choose a holomorphic local coordinate
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for ¥ and a holomorphic trivialization of Hom¢ (7%, u*T M) near 2y, so that du is expressed
in this neighborhood as a C"-valued holomorphic function of the form

(2 — 20)"F(2)

for some k£ € N and a C"-valued holomorphic function F' with F(z5) # 0. We can then
define T, at each point z near zy to be the complex line in T),.)M corresponding to the
complex span of F'(z) in the trivialization. This definition matches the previous definition
at the immersed points z # 2y and thus makes T,, € v*T'M into a smooth line bundle on a
neighborhood of 2y, with the integer k& > 0 as the order of the zero of du € T'(Hom¢ (T3, T5,))
at zg. O

B.2.2. A lemma on normal push-offs. The message of the following result is that
whenever u : (3,7) — (M,J) and v : (¥',5') — (M, J) are two J-holomorphic curves
related to each other by
for some diffeomorphism ¢ : ¥’ — ¥ and section 7 of ¢*N,, the section 7 is subject to the
similarity principle. For technical reasons, we will need to allow ¢ and 7 in the statement
to have only finitely-many derivatives, which forces non-smooth bundles with non-smooth
Cauchy-Riemann type operators into the picture.

For convenience, we shall denote elements of the bundle N,, — ¥ as pairs (z, w) where
z € ¥ and w belongs to the fiber (N,,), over z. The zero-section thus consists of all pairs
of the form (z,0), and there are canonical isomorphisms

(B.13) Te0)Nu = T.E® (Nu)-

due to the natural identification of ¥ with the zero-section and of vertical tangent spaces
with fibers of N,. Given a map ¢ : ¥’ — X, a section n of the induced bundle ¢*N, — ¥
can now be written in the form n(z) = (¢(2), f(2)) € N, with f(z) € (Ny)y(z) for z € X'

PROPOSITION B.28. Suppose u : (,j) — (M, J) and v : (¥',7") — (M, J) are smooth
J-holomorphic curves, ¢ : ¥/ — ¥ is a diffeomorphism of class C* for some k € N U {00},
N, € u*TM is the generalized normal bundle of u in the sense of §B2.1, O < N, is an
open neighborhood of the zero-section, and

vV:0-M
1s a smooth map that satisfies
U(z,0) =u(z) and d¥(z,00X =X forall ze X and X € (N,).,

where the second condition makes sense due to the canonical splitting (B13) and the inclu-
sion (Ny): © Ty M. If n: X — ¢*N, is a section of class C* of the bundle ¢*N, — ¥
with image in *O such that

v(2) =V (p(2),n(z)) forall ze,

then n satisfies Dn = 0 for some real-linear Cauchy-Riemann type operator D of class

C*=1 on the bundle (p*N,,J) — (X', j').
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PRrOOF. Choose connections on the bundles TM and N,. The induced bundle ¢*N,
is of class C*, and the connection on N, induces a connection on ¢*N, of class C*~1
(cf. Remark [B.5]), whose covariant derivative operator we will denote by V. For (z,w) € O,
let

P(z,w) : Tu(z)M - T\I/(z,w)M
denote the isomorphism defined via parallel transport along the path [0,1] - M : 7 —
U(z, 7w). The connection on N, also determines natural isomorphisms

(B.14) Tew)Nu = ToX @ (Ny)

for each (z,w) € N,, where the two factors correspond to the horizontal and vertical
subspaces respectively. We can then associate to each (z,w) € O the linear map

F(z,w) = P, 0d¥(z,w) € Homg (T.2 ® (N,)., Tuz) M),
which depends smoothly on (z,w) € O and satisfies
F(z,0) = du(z) @ 1.

If we fix z € ¥, then F(z,-) is a smooth map from O, := O n (N,). to a fixed vector space
of linear maps, and thus satisfies
1

F(z,w) = F(z,0) + L %F(z, Tw)dr = F(z,0) + Uol doF (2, T0) dT) w

= (du(2) ®1) + F(z, w)w,
where the integral at the end of the first line is used to define a smooth family of linear
maps
F(z,w) : (N,), — Homg (T.E @ (N,)s, Tuy M)
parametrized by (z,w) € O.
Similarly, we associate to each (z,w) € O another linear map

G(z,w) = P(;}w) o J(U(z,w)) 0 Pis ) € Endr (T M),

which again depends smoothly on (z,w) € O and has image in a fixed vector space if z is

fixed. We then have

1

Gz w) = G(2,0) + f 4 G rw) dr = G(2,0) + ( L ' 4,G (e w) m) w

o dr
— J(u(2)) + G(z,w)w,

where the integral in the first line defines

G(z,w) : (N,). — Endg(T,) M),
another family of linear maps with smooth dependence on the parameter (z,w) € O.
Now suppose v : (3, j') — (M, J) is J-holomorphic and v(z) = U(p(2),n(2)), where
n: Y — p*N, is a C*-smooth section with image in ©*O. Using the splitting (B.14))
determined by the connection on N,, we have for each z € 3,

dv(z) = d¥(p(2),1(2)) o (dp(2), Vn(2)) = Plo@)ne) © Fe(2),n(2)) o (de(2), Vn(2)).
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The parallel transport isomorphisms P,z niz)) @ Tupz)M — TyyM now define a C*k-
smooth real-linear bundle isomorphism (u o ¢)*T'M — v*T'M, and applying its inverse
to the nonlinear Cauchy-Riemann equation dv + J(v) o dv o j/ = 0 gives an equation for
real-linear bundle maps T — *u*T'M,

0= F(p,n) o (de,Vn) + G(e,m) o F(p,n)o(dpoj,Vnoj)
- |(du(e)@ 1) + F(p,mn] o (dp, V)

+ | Iu(e)) + Gl o | (dulp) @ 1) + Flemm|  (dp o ', Vo 1)

= [d(u?w) + J(uoyp)oduow)ojl+[Vn+ J(uop)oVnoj]
+ ﬁ(w,n)n] o (dp, V)

+ _CN?(% n)n] o [d(u op)oj +Vnoj + (ﬁ(% n)n) o (dpoj,Vno j’)]
+ J(uop)o [15(90, 77)?7] o(dpoj',Vnoyj.

Since 1 and ¢ are of class C*, all terms in this expression are at least C*~!-smooth functions
of z, and each term in the last three lines can be understood as a product of C*~'-smooth
sections of various bundles, at least one of which is always of the form B for a C*~!-smooth
linear bundle map B from ¢* N, to some other bundle, e.g. we have B(z) = F(p(z),n(z))
in the first of these three lines and B(z) = G(¢(2),n(2)) in the second. We can therefore

abbreviate the last three lines as An for some C*~'-smooth bundle map A ©*N, —
Homg (T'E, ¢*u*T'M), so that the entire equation becomes

[d(uo @)+ J(uop)oduop)o ]+ [Vn+J(uow)oVnoe ]+ An=0.
Finally, let 7y : w*TM — N, denote the smooth bundle map defined by projecting
w*TM =T, ® N, along T, which induces a C*-smooth bundle map
N @ U T M — p*N,.

In terms of the splitting p*u*T'M = o*T,,®p*N,, the term d(uoy)+ J(uoyp)od(uop)oy’
in the above expression has image in ¢*T,,, while Vn+ J(uop)oVno ' has image in o*N,,.
Applying 7 to the whole equation thus gives rise to

Vn—kJ(u)oVnoj’—kwN/Aln:O.

This is not quite yet a Cauchy—Rlemann type equation; for this we would need the target
of the bundle map myA to be the bundle of complex-antilinear maps Home (TS, ¢* N,,),

whereas 7TNA sends NV, to the larger bundle Homg (7Y, ¢*N, ). We can fix this simply by
taking the complex-antilinear part, i.e. we define

©*N, A Homc((TZ,j’), (p* Ny, J)),

1 . -
Aw = 3 (WNAw + JOﬂ'NAwOj/) )
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Since WNA\?] = —Vn—J(uop)oVnoj and the latter is manifestly complex antilinear, we
have An = myAn, proving that 7 also satisfies the Cauchy-Riemann type equation

Vn+ Juop)oVnoyj + An=0.
O]

B.2.3. Local coordinates. For the rest of this section, we focus explicitly on the
situation described in the statement of Theorem [B.23] Our first objective is to find suitable
coordinate charts near zo € 3 and u(zp) € M so that u near zy becomes a map of the form

D, - C x C": 2z — (2F,7(2))

for some k € N with 4(z) = O(]z[**1). In light of our discussion of the generalized tangent
bundle T, < w*T'M in §B.2.1] it should be clear that the complex subspace L < T,.,)M
mentioned in the theorem will be
L =(T,).-
For the smooth coordinates near u(zy) on M, we impose the following conditions, which
depend on the point u(zy) € M and the subspace (T,),,, but not otherwise on the map
Y5 M:
(1) The point u(zg) € M is identified with 0 € C";
(2) The complex subspace L < T,y M is identified with C x {0} < C";
(3) The map ug(z) := (z,0) € C x C" ! is J-holomorphic on D, for sufficiently small
p > 0, and J along the image of this map is identified with the standard complex
structure ¢ on C".

Note that while the first two conditions are easy to achieve, the third is highly nontrivial. It
is possible due to the standard local existence result for .J-holomorphic curves with a fixed
tangent vector—the latter follows from the implicit function theorem after performing
a local rescaling argument to view 0; as a small perturbation of the surjective linear
operator 0, see e.g. [Wenal, Chapter 2] or [Sik94], Theorem 3.1.1]. After choosing a suitable
J-holomorphic disk I, < M through u(z), one can construct the desired coordinates by
exponentiating in complex normal directions from this disk. With this understood, for the
rest of this section we shall fix a choice of holomorphic coordinates near zg € ¥ and smooth
coordinates near u(zp) € M as described above in order to assume (2,7) = (D,,7) with
29 = 0 € D, for some p > 0, while J is a smooth almost complex structure on C"* = CxC"*
with J(z,0) = i for all z € D,, and w : (D,,7) — (C",J) is a J-holomorphic curve with
u(0) = 0 and generalized tangent space (T,)o = C x {0}.

We next seek a C''-smooth coordinate change near the origin on the domain of u so
that it becomes a map of the form z — (2% O(|z|*)). We start with the observation
that u : (D,,7) — (C",J) itself satisfies the smooth complex-linear case of the similarity
principle: indeed, the nonlinear Cauchy-Riemann equation

Osu(z) + J(u(2)) du(z) =0

can be interpreted as a smooth complex-linear Cauchy-Riemann type equation Du = 0 on
the trivial rank n complex vector bundle over D, with complex structure J(z) := J(u(z)).
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As a consequence, Theorem [B.20)] gives

u(z) = ®(2)f(2)

on D, after possibly shrinking p > 0, where ® : D, — GL(2n, R) is the inverse of a smooth
complex local trivialization and thus satisfies ®(z) oi = J(u(z)) o ®(2), while f: D, — C"
is a holomorphic function with f(0) = 0. Since J(0) = i, we can assume without loss of
generality that ®(0) = 1. The assumption that u is not constant near z; implies in turn
that f is nontrivial and thus satisfies

f(z) = 2*g(2)

for some k € N and a holomorphic function ¢ : D, — C* with g(0) # 0. By Corollary [B.21
and Remark B.22] we can identify k as the degree of the lowest-order nontrivial term
in the Taylor series of u at z = 0; equivalently, k£ — 1 is the vanishing order of du €
I'(Home(7T%,7,)) at z = 0, also known as the critical order of u at this point. The
assumption L = C x {0} now implies that after a complex-linear coordinate change on the
domain, we may assume g(0) = (1,0) € C x C"~'. Thus f(2) = (2*g1(2), 25 g2(2)) on D,
for some holomorphic functions g; : D, — C and g5 : D, — C"!, with ¢;(0) = 1. Let us
use the splitting C* = C x C"~! to write ®(z) in block form as

(1 +a(z)  B(2)
(=) = < Wz 1 +5(z))’

where the blocks «(z), 5(2), 7(z) and 6(z) are all regarded as real-linear maps between
complex vector spaces, and all of them vanish at z = 0 since ®(0) = 1. Now u(z) takes
the form (u1(2),us(2)) € C x C", where

ur(2) = 28 g1(2) + a(2)2"g1(2) + B(2)2" ga(2),
ua(2) = 9(2)2"g1(2) + (L +0(2))2" ga(2).

We claim that after shrinking p > 0 further if necessary, there exists a C'-smooth function
¢ : D, — C such that £(0) = 0, d(0) = 1 and [£(2)]* = u1(z). Indeed, the desired function

can be written for z # 0 as

(B.15)

£6) = 24fon(2) + Sa()b0() + BRI gu(2)

where the expression under the root lies in a neighborhood of g;(0) = 1 for z near 0, hence

the root is uniquely defined as a continuous function of z on D, if we set V1:=1. Tt is

clear that £ is also smooth for z # 0, and differentiable at z = 0 with d£(0) = 1. Moreover,

the fact that « and § are smooth functions vanishing at z = 0 implies that both are O(|z|),

so that the first derivative of the expression under the root is bounded on D,\{0}. This is

enough information to prove that d¢ is also continuous at z = 0, so £ is of class C1.
Denote the inverse of the local C''-diffeomorphism z — &(z) by

p:=¢"1:D,—>D,
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where we can again shrink p > 0 if necessary to make sure that ¢ is well defined and has
image contained in the domain of u. The composition uoy is then well defined and satisfies

uo p(z) = (28, a(2)),
where @ := ug 0o : D, — C" ! is a C'-smooth function satisfying the relation a(£(z)) =
us(2).

LEMMA B.29. The function i € CY(D,, C"1) satisfies 0(z) = O(|z[**!) and du(z) =
O([z[").

PROOF. We have uy(z) = O(|z[F1) by (BI3) since y(z) is a smooth function with
v(0) = 0, so in particular the first nontrivial term in the Taylor series of us about z = 0
has degree at least k + 1, implying a similar conclusion for duy and thus dus(z) = O(|z[%).
The conditions ¢(0) = 0 and dp(0) = 1 imply also that ¢(z) = z + o(|z]). Writing
us(2) = |2[F*1B(2) for a bounded function B(z) near z = 0 and o(2) = z + |z| - 7(2) for a
remainder function with lim, o 7(2) = 0, we find
k+1

i(2) = ua(p(2)) = ua(z + |2| - 7(2)) = |2 + |2 - 7(2)| Bz + |2] - 7(2))

k+1

S| S @ B sl = 0

Similarly, du(z) = dus(p(z)) o de(z), where dyp is continuous and therefore bounded near
z = 0, and the same argument as above gives dus(¢(2)) = O(|z|*) since duy(2) = O(]z|F),
so the result for du(z) follows. O

Now if v : (¥',5) — (C", J) is a second J-holomorphic curve with a point (, € ¥’ such
that v((p) = u(z0) = 0, (Ty)¢, = (Tu)z = C x {0} and the critical orders at v((p) and u(zp)
match, then we can repeat the same argument to find a C*-smooth local diffeomorphism
Y from D, to a neighborhood of ¢y in ¥’ sending 0 — ¢y such that

vou(z) = (*,0(2)),
with
veCHD,,C" ") such that 9(z) = O(|z|""") and dd(2) = O(|2|").

The main goal for the rest of this section is to prove that the C''-smooth function

h(z) = (0.h(2) = (0,0(2) = (2)) = wo (2) — o p(2)
is either identically zero or satisfies the formula h(z) = 2°C + o(|z|) for some C' e C™"\{0}
and ¢ > k.

REMARK B.30. It should be emphasized that ¢ and v are in general neither holomor-
phic nor smooth, so uoy and vo) are pseudoholomorphic curves of class C! with respect to
complex structures on D, that are nonstandard, and continuous but not generally smooth,
though since dp(0) = di(0) = 1 and ¢ and ¢ are smooth outside the origin, both complex
structures are standard at the origin and smooth elsewhere. As a special case, however,
we could take v to be

v:(D,,i) = (Cx C" 1 J): 2z (2%,0),
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which is J-holomorphic due to the third condition imposed on our local coordinates in M.
The claim in Theorem [B23] that @ and 9 each satisfy formulas of the form 2°C' + o(|z[)
will thus follow as a special case of the general formula for v — .

B.2.4. Constructing the normal push-off. We now define a neighborhood O < N,
and amap ¥ : O — M = C" as in Proposition [B.28l Our first task is to specify a concrete
complex subbundle N,, € u*T'M complementary to T,. Since (T},)o = Cx {0}, any complex
subbundle that matches {0} x C"~! at 0 will do if we are willing to shrink p > 0, as the
two subbundles will necessarily be transverse on D, for p sufficiently small. Let

€1,...,€n€Cn

denote the standard complex basis of C", and for each w = (o +iys, . .., T, +iy,) € C*L,
define a smooth vector field on C" by

Xu(p) = 2 (zje; +y;J(p)e;) -

Since J(z,0) =i for (z,0) € D, x C"!, at such points we have X,,(z,0) = (0,w) € C" for
all w e C"'. We shall regard N,, — D, in the following as the pullback along u : D, — C"
of the smooth subbundle of TC" spanned by the vector fields X,, for all w € C*~. This
bundle comes equipped with a global trivialization
(B.16) N, =D, x C" ' X,,(u(2)) = (2, w).
For a constant 0 > 0, we define the open set

Os == {(z,w) | lw| <6} =D, x C"*

and smooth map
U:0s = C":(z,w) — u(z) + Xy (u(2)).

In light of the trivialization (B.I6]), we can equivalently regard Ojs as a neighborhood of the

zero-section in N, on which ¥ is defined as in Proposition [B.28 Notice that ¥(¢(z),0) =
uwo(z) = (2%,1(z)). The goal is to apply Proposition [B:28 to the following construction:

LEMMA B.31. Choosing 6 > 0 sufficiently small and then shrinking p > 0 further if
necessary, there exist C'-smooth functions 6 : D, — C and n : D, — C"! such that

6(0) =0, df(0) = 1, n(z) = O(|z|**"), and
voy(z) =V(pob(z),n(z)) forall zeD,.

The proof of this lemma requires some preparation. We will use the notation d; and
dy to denote the differentials of ¥ or X,, with respect to the first variable z € C or second
variable w € C"~! respectively, e.g. writing

dl\Il(z, w) € HOI’HR((C, (Cn), dQ\I’(Z, U}) € HOH’IR<Cn_1, (Cn)

Let us also write

~ ~

U(z,w) = (¥(z,w),¥(z,w)) eCxC"' and X,(p)= ()V(w(p),f(w(p)) eCxC" !,
s0 W(z,w) = u1(2) + Xo(u(2)) and U(z, w) = ug(z) + Xo(u(2)).
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LEMMA B.32. Given a compact region K < C x C"!, there exists a constant C' > 0
such that the following estimates hold for all (z,p) € K and all w e C"1:

A~

PROOF. For each (z,p) € C x C"!, w — X, (z,p) defines a real-linear map X (z, p) :
C"! — C. Since J(z,0) =i for all z, we have X, (z,0) = (0,w), thus X(z,0) = 0, and
the smoothness of X,,(z, p) with respect to z and p then gives rise to an estimate

X (z,p)| < Clp)

from which the first estimate above follows. The second estimate follows in the same
manner since X (z,0) is the identity map 1 : C*~' — C"!, hence |X(z,p) — X(z,0)| <
Clp|. For the third estimate, one observes that w — d; X, (z,p) is also a real-linear map
C"! — Homg(C,C") for every (z,p) and d;X,,(z,0) = 0 since X,,(z,0) is independent
of z, so the same argument applies. O

Due to the coordinate choices made in §B.2.3] we also have u(z) = (u1(2),us(2)) =
(2%,0) + O(|z[F*1), thus |uy(2)] = c|z|F and |uy(2)] < C|z|*** for some constants ¢, C' > 0,
where we are free to assume C' is the same constant as in Lemma [B.32] Tt follows that for
z # 0,

[0z, w)| = |u1(2) + X (u(2))] = Jur(2)] = [Xu(ua(2), u2(2))] = cl2]* = Clua(2)] - w]
> clz|* = O] |w| = |2 (c = C*lw| - |2])
which is positive if |w| < ¢/pC?. This proves:

LEMMA B.33. If § > 0 is sufficiently small, then ¥ preserves the subset {(z,w) €
CxC" 1| 2z=+#0}. O

Now consider the C'-smooth function ¥, = (\fll, 1) : Os — C x C" defined by
Uy (z,w) = U(p(z), w) = u(p(z)) + Xu(u(p(z))
= (& + Kul25,0(2)),8(2) + Ko, 0(2) )

and extend this to a C'-smooth family of maps U, = (\fle,\i’e) : 05 — C x Cv! for
0<e<1by

U (z,w) = (M, \Tll(ez, w))

ck

_ (J RIC Zg ’ U2) Gen) + Rou(ehh, ﬂ(az))) .

We would like to understand what happens to ¥, as ¢ — 0, but from a slightly differ-
ent vantage point, namely after transforming the first complex variable in C x C*! to
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holomorphic cylindrical coordinates. Define the biholomorphic map
iR x SY = C\{0} : (s,t) — &2t
let '
Os = {(s,t,w) e R x ' x C" " | (f(s,t),w) € Os},
and consider the family of C'-smooth maps
U= (UL,0) = (f ' xId) o U0 (f xId) : O5 —> R x S x C"!,
which are given by
U (s, t,w) = oW (26 ) and  Wl(s,t,w) = W (2 HD ).

Since W, (20 1)) = Wy (ee2™+10) 1), the functions W’ : O5 — C"! converge in C'! to
\i’g(s,t, w) := U1(0,w) = w as ¢ — 0. The convergence of \f!; 05 > R x Stas e — 0 will
be deduced from the next lemma. To motivate the hypotheses in this statement, notice
that the required estimates are satisfied automatically by any smooth function g(z,w) that
is of the form az® plus terms that are higher order in z; the formulation below is only
more complicated than this because we need to allow functions that are of class C* and
not smooth.

LEMMA B.34. Fizr e R, p:= €™ > 0 and an open set U = R™, and suppose
g:D,xUU -C

is a function of class C satisfying g(z,w) # 0 for all z # 0, along with estimates of the
form

9(z,w) — azF| < Cz|**, |dag(z,w)| < Oz,
) )
(;—g(z,w) — kaz*1 < Oz, Z—?(z) < Clel*
oz oz

for a constant C' > 0 independent of (z,w) € D, x U, where a € C\{0} and k € N are
constants, and dyg(z,w) : R" — C denotes the differential with respect to the second

variable w € U. Using the biholomorphic map f : R x S* 5 C\{0} : (s,t) > e270+),
define for each e € (0,1] the maps g- : D, xU — C and g. : (—o0,7] x ST xU — R x S' by

w’ and  gl(s,t,w) = f"og.(f(s,1),w).

Then as € — 0, the maps g. are C'-convergent on (—0,r] x ST x U to

g=(z,w) :=

go(s,t,w) := (ks + so, kt + to),

where T (sotito)

=a.
PROOF. By assumption, we can write
9(z,w) = az* + |21 B(z,w), dag(z,w) = |2/ By (2, w),
dg

5, (2) = kaz" + |2[*B. (2, w),
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for bounded functions B, B,,, B. and B;. Then
ge(z,w) = azF + ¢|z|F ' B(ez, w),

and on the punctured domain ]D)p x U for ]D)p := D,\{0}, we therefore have uniform conver-
gence
9e(z,w)
ok

k
=a+5|z|%B(sz,w)—>a as ¢ —0.
z

We claim that this convergence is also in C' on ]D)p x U. Indeed, we have

2, W 1 1 2|*
do <g€< : )) - Ekzkdzg(EZ,w) = @ek“|z|k“Bw(ez,w) = e|z||z—LBw(€Z,w)7

ok
along with
0 [ ge(z,w) 10 k 1 dg k
Ep < o = ;gge(z,w) — —Zkﬂgg(z,w) = 5’“*12’“&(62710) — 7Ek2k+lg(5z,w)
1 k=17, k=1 | _k| ik ko k o k1 k+1
= S [e" Tkaz""" + £¥|2|*B.(e2,w)]| - e, [e"az" + "*1|2|" ' B(ez, w)]
|z|k‘ |z|k+1
=€ l?Bz(sz,w) —k Skt B({;‘Z’w) ,

and

0 (g:(z,w) 10 1 dg Kl K |2|*
( e = < 729:(zw) = Wﬁ(%’w) = Choight 2" Bz(e2,w) = 5?32(54“’)-

0z

All of these converge uniformly to 0 as € — 0.
To relate this to the maps ¢, identify R x ST with C/iZ and write f() = >, so ¢’ is
now determined by g. according to the formula e>79:(%) = g_(z, w) for z = €*™, implying

o2ml9L(Cw)—k¢] _ 9e(2,w)
2k
For £ small enough, the convergence established above implies that the right hand side lies
in a compact neighborhood of a € C\{0} on which the holomorphic logarithm function can
be defined, giving rise to the formula

(¢ w) ~ k¢ = - log (922, w)/*)

The right hand side is C'*-convergent to the constant % log(a) when regarded as a function

of (z,w) € D, x U, and composing it with the transformation (¢, w) — (™, w) in order

to view it as a function of (¢, w) € (—o0,7] x St x U does not change this result, thus we

obtain C'-convergence of g’ to k¢ + % log(a). O
We would now like to feed the function

Uy (z,w) = 2 + X, (%, 0(2))
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into Lemma [B:34l Since (z) = O(|z[F*1), Lemma [B.32 implies
(2 w) = 2| < Cful - (=) < ' - |2/

for some constant €’ > 0 independent of z and w, and another application of Lemma [B.32]
together with the fact that ¥y (z,w) depends linearly on w gives

‘dQ\I’l(z,w)w’) _ ‘)?w,<zk,a(z))) < Cla(2)] - [w'],
hence
‘dg\lll(z,w)) < Cla(z)] < C'|2|F*1,

For the required estimates on derivatives with respect to z, it will suffice to prove that the
function

Eu(2) 1= Xu(2%,0(2))  satisfies  |dé,(2)| < Cz|*
for a constant C' > 0 independent of (z,w) € Os. We have |dii(2)| = O(]z|*) by Lemmal[B.29

and can assume do X, (2%, (2)) is bounded for (z,w) € Oy, so applying the third estimate
in Lemma [B.32] gives

€ (2)| = |di X (2%, 0(2)) 0 (kz"1) + do X, (2", 0(2)) o dii(z)
< Clul - [a(2)] - o] + Ol < '[P + Clz|* = O(Jz").
We can now apply Lemma [B.34] and conclude:
LEMMA B.35. The maps V. : Os —> R x ST x C™L are Cl-convergent as e — 0 to
Ui (s, t,w) = (ks, kt,w).
OJ

A crucial detail in Lemma [B.35 is that the C'-convergence is not just on compact
subsets, but remains uniform (including first derivatives) as s varies on the unbounded
half-interval (—oo,7]. We conclude from this in particular that for all ¢ > 0 sufficiently
small, U’ is a local C'-diffeomorphism whose image contains the set

O} = {(s,t,w) e Os | Jw| < 5/2} .
This is finally enough information to prove the main result of this subsection.

ProoF OF LEMMA B3l Denote v;(2) = (1(2),0(2)) := vo(z), so #(z) = zF. Our
objective is to find a suitable local C''-diffeomorphism 6 : D, — C sending 0 — 0 and a
C*-function n : D, — C"! such that the relation

(B.17) Uy (6(2),1(2)) = vi(2)

holds if the disk D, is taken to be sufficiently small. We will do this by applying the
same rescaling and cylindrical transformations to 6, n and v; that were applied above for
Uy, as the existence of such functions for € > 0 sufficiently small will become obvious in
cylindrical coordinates due to the convergence W. — Wg.
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Concretely, if maps 6 and 1 as in (BI7) were already known, then for ¢ € (0,1], we
could define 6. : D, > C, n.: D, > C" ' and v. : D, - C x C"! by

0.02) = 25 L) e, we) i <5(52),5(52)> — (2%, 5(e2)),

€ ek

which must then satisfy the relation

(B.18) U (0:(2),m(2)) = ve(2).

Transforming one step further, let us again identify R x S* with C/iZ and write f(() = €™,
p = 2nr. If 0 is a local diffeomorphism sending 0 — 0, then we can assume 6.(z) # 0 for all
z # 0 and € > 0 sufficiently small, and can therefore define maps 6. : (—c0, r]x S* — Rx S,
nL:(—oo,r] x St - C* 1 and v/ : (—o0,r] x ST > R x St x C" ! by

0. = flob.of, n.:=mn.o0f, vl = (f ! xId)ow. o f.
This last map is of the form
V() = (k¢ D(ee™)),

thus for ¢ — 0 we have C'-convergence v. — vf, where

vp(¢) := (K¢, 0) = W5 (¢, 0).

The cylindrical coordinate version of (B.Ig)) is now the relation

(B.19) WL(62(C), nl(C)) = vilC),

which is equivalent to (B.IS) for each € > 0.

The discussion of # and n has been purely hypothetical thus far, but we are now in a
position to find actual maps 0. and 7. such that (B.19) is satisfied. Indeed, after shifting the
upper boundary of the half-cylinder (—oo, 7| x St slightly if necessary, the convergence of
local C'-diffeomorphisms ¥/ — W{ together with the convergence v, — v{ implies that for
every € (—o0, ] x S*, there exists a unique continuous family of points (6.(¢),7.(¢)) € O}
for ¢ = 0 sufficiently small such that (B.I9) holds and (6y(¢),n0(¢)) = (¢,0); notice that
the ¢ = 0 case of (B.19) is then the relation v} ({) = ¥{((,0) already established. Since the
WU, are local C'-diffeomorphisms for € > 0 small and v, is of class C!, the maps 0. and 7.
defined in this way are also of class C'* and form a C'-continuous family with respect to the
parameter e, implying in particular that we have C'-convergence 6, — 6y and 7. — 0 as
¢ — 0. To obtain the actual objective, we only need fix € > 0 sufficiently small and observe
that both of the transformations (0,7n) — (0.,7n.) and (0.,7.) — (0.,71.) described above
are reversible, at least if we are willing to restrict the domain of 6 and 7 to a punctured disk
D, whose size is reduced in proportion to the size of €. After this reversal, we have a pair
of C'-smooth maps 0 : ]D)p — C and n: ]D)p — C"! that satisfy (BIT) on the punctured
disk D,,.

We claim that both 6 and 7 can be extended over the puncture to functions of class C*
on D,, with

6(0) =0, dh(0) =1, and n(0) =0, dn(0) =0.



130 B. LOCAL POSITIVITY OF INTERSECTIONS

For 0, we consider the functions g.(z) := eiz) on ]D)p and observe that since 6. converges

in C! on (—oo,7] x S to 0)(¢) = ¢,
4o 0 F(C) = 2100~

is C'-convergent on (—oo, 7] x St to the constant function with value 1. This implies that

g converges uniformly on D, to 1, and writing 0.(z) = 6(ez)/e, we obtain the relation
O(cz) = €29:(2) = ez + ez [g-(2) — 1].

for all z € Dp. If we restrict this relation to points z on the boundary of I, and introduce

a new variable w := ez living in a neighborhood of 0 € D,, we can define a remainder
function "
R(w) = 1 [gwie(2) = 1]

that satisfies lim,, o R(w) = 0 due to the uniform convergence of g., and it turns the above
relation into #(w) = w + |w|R(w). Defining 0(0) := 0 therefore makes 6 continuous and
differentiable at 0, with df(0) = 1.

To prove that df(z) is also continuous at z = 0, we use the uniform convergence of the
first derivatives of g. o f: writing z = f(¢) = €™, this convergence implies

0 0g. 0z 09 0 0g. 0% _0g.
¢ ® 1O =2, ¢ =~ ey, — 0, and 5c%° 10 =52 5t~ gy )

as € — (. From the convergence of 2%9;, we obtain

_0 [(0(2)\ 20 _zdo
a_< . )—;#6(2)—;%(”)*0’

implying lim, .o 2(z) = 0 = 2(0). Similarly, the convergence of z

0ge
0z

2 (P -2 (20 - 50)) - T - E

z z 0z z

implies

%6; (2) = %(z—:z) converges as € — 0

and since 0.(2)/z = g.(z) — 1 uniformly, it follows that
to 1 = 22(0).

Having established that 6 is a C'-smooth function, we now take a closer look at the
relation

(B.20) U, (0,n) = (ek + X, (05, 500), 000 + X, (0%, 00 e)) = (2%,9) = v,

viewed as a function of z € D,. Since §(0) = 0 and df(0) = 1, the argument of Lemma [B:29
implies that both 9(z) and @ o 0(2) are O(|z|**!), so this equation implies

Koo (100120 0(2)) = O(=),
The second estimate in Lemma then gives
Ry (D 206()) — n(2)] < Clao b)) - In(a)] < €'l
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for some constant C" > 0. We conclude that 7 extends to a continuous function on D,
with (0) = 0 and 7(z) = O(]z|*!), and since k + 1 > 2, the latter implies that 7 is also
differentiable at z = 0 with dn(0) = 0.

Finally, differentiating (B.20)) at z # 0 gives

dvi(z) = diV1(0(2),n(z)) o di(2) + doW1(0(2),n(2)) o dn(z).

If £ > 2, then in the limit as z — 0, the first differential of ¥; becomes d;¥;(0,0) =
d(u o ¢)(0) = 0, while the second becomes da¥;(0,0) = (0,1) since ¥;(0,w) = (0,w), and
since dvy (0) also vanishes, this proves lim, g dn(z) = 0. The case k = 1 is slightly different
since dv;(0) and d;¥,(0,0) o df(0) = d;V,(0,0) = d(uo ¢)(0) do not vanish, but instead

they are identical, so we obtain the same conclusion about dn(z). 0

B.2.5. Conclusion of the proof. We cannot apply Proposition [B.2§ directly to the
relation v o ¥ (z) = ¥(p o #(z),n(z)) because v o 1) is not a smooth map. However, we can
write

F:=poboyp™" and F:=noy,
and then apply the proposition to the relation
v(z) = V(&(2),7(z2))-

Since 7] and @ are of class C1, it follows that 7 is a solution to a linear Cauchy-Riemann
type equation of class C°, and the similarity principle (Corollary [B21)) then implies that
7 is either identically zero near z = 0 or satisfies

i(z) = 2" A+ o([[)

for some ¢ € N and A € C*~1\{0}. If 7 vanishes near 0, then so does 1, and we obtain

(4,5(2)) = v o u(z) = W(p o 0(:),0) = (uop)(0(2)) = (10(=)]",00(2)).

Given that 6 is of class C'' with df(0) = 1, this can only hold if € is the identity map near
z =0, implying u = 0.
If on the other hand 7j(2) = 2°A + |2|[*R(z) with A # 0 and lim, o R(z) = 0, then since
¥(0) = 0 and dip(0) = 1, we can write 1(z) = z + |z| - 7(z) with lim, ¢ r(z) = 0 and find
~ ¢
(=) = T(W(2)) = (2 + |2r(2) A+ [z + [2] - ()| R(2 + |2] - 7(2)) = 2 A+ o(|2]).

Since 7(z) = O(|z[¥*1) by Lemma [B.3T], we deduce from this that ¢ > k. It remains to
relate this to the function h(z) = (0,h(z)) := (0,0(z) — u(z)) = vo(z) — uo ¢(z), which
can now be expressed as
(0,h) = W(pob,n) = W(p,0) = (wop) ol —uow+ Xy(uopob)
(B21) = (ekaaoe) - (Zk7a) +Xn(0k,a09)
1

- (ek—z’w)? (9k,aoe),aoe—a+)?n(ek,aoe)).
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Since n(z) = O(|2]*) and 1 0 §(z) = O(|z|**!), Lemma [B.:32 implies an estimate
Koo (1), 6(2)) | < Cl2)] - [ 6(2)] = O(=| ),

so that (B:2I)) then gives [0(2)]*—2F = O(]z|*"**!). Since 0(2)/z can be assumed arbitrarily
close to 1 for |z| small, we then have

0 | ok — 2k Ok — 2F| 1
— 2z = =
ekfl +9k72 + +9 k—2 + k—1 k—1 o\ k—1 0
z 2 z 2] )(;) +...+(;)+1‘
|Z l+k+1 P
< const - |Z|T = O(|Z| + ),

which implies an estimate of the form
(B.22) [@(0(2)) — a(2)] < ClO(2) = 2 = O(|2|"?)
since @ is of class C'. Finally, the second estimate in Lemma [B.32] implies

Ry (121" 006(2) — ()| < Cln2)] - a0 0(2)] = O(J=/ ),
hence
Xy ([0)]" @0 6(2)) = n(2) + O(|2|"1) = 2 A+ o(|2[") + O(|2[ 1) = A+ o(|2]),
and combining this with (B.22]), we can now derive from (B.2]]) the relation

h(z) = O(|2**?) + 2*A + o(|2|") = 2*A + o(|2[").

The proof of Theorem is now complete.

B.3. Counting local intersections and singularities

In this section, we take the local representation formula of Theorem as a black
box and use it deduce the standard results on positivity of intersections.

According to the representation formula, a nonconstant .J-holomorphic curve has a
well-defined tangent space at every point, including critical points, with a nonnegative
critical order k € 7 that is strictly positive if and only if the point is critical. We can now
prove local positivity of intersections (Theorem [2Z3]) by considering separately the cases
where the two curves have matching or non-matching tangent spaces at their intersection.
Note that when dim M = 4, the condition that two (complex-linear!) tangent spaces at an
intersection point do not match means simply that they are transverse, and the intersection
itself is then transverse if and only if neither curve is critical at the intersection point.

EXERCISE B.36. Let m: C"\{0} — CP"! denote the natural projection, and consider
amap u : D — C" of the form u(z) = (2%, |2|F"1f(2)) for some k > N and a bounded
function f : D — C"!. Show that for any neighborhood ¢ of [1:0:...:0] e CP"!, one
can find p > 0 such that the restriction of 7 ou to D,\{0} has image in U.
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PropoSITION B.37. Suppose u : (X,5) — (M,J) and v : (3, j") — (M, J) are two
J-holomorphic curves with an intersection u(zg) = v({y) at which w has critical order
k, —1 = 0, v has critical order k, — 1 = 0, and their tangent spaces (in the sense of
Theorem [B.23) are distinct. Then the intersection is isolated, and if dim M = 4, its local
intersection index 18

L<u7 205 U, CO) = kukva

in particular, it is positive, and equal to 1 if and only if the intersection is transverse.

PROOF. By Theorem [B:23] we can choose C'-smooth coordinates such that without
loss of generality 20 = (o =0eD =X =% M = C", u(z) = (2", |z[**1f(2)) for some
bounded function f : D — C* ! and v : D — C" satisfies v(0) = 0. The condition of
distinct tangent spaces implies via Exercise that if 7 : C"\{0} — CP"~! denotes the
natural projection, we can also assume that the images of the maps

m™o u|]D)\{0}, o U|]D)\{o} :D\{0} — cpr!

lie in arbitrarily small neighborhoods of two distinct points. The same is also true if we
replace u with any of the maps

Uy D — C": 2 (2™ 7|2/ f(2), 7€ [0,1].

The claim that the intersection is isolated follows immediately, and when n = 2, we also
deduce via Exercise[ZTlthat ¢(u,0; v,0) = t(ug,0; v,0). After applying the same homotopy
argument in different coordinates adapted to v and then choosing new coordinates so that
the tangent spaces of u and v match C x {0} and {0} x C respectively, we can reduce the
problem to a computation of ¢(ug,0; vg,0) for

uo(2) = (2*+,0), vo(z) = (0, 2%).

Choose € € C\{0} and perturb these maps to (2 + ¢, 0) and (0, 2% + €) respectively. Both
are now holomorphic for the standard complex structure on C? and they have exactly k,k,
intersections, all transverse. O

When both curves have matching tangent spaces where they intersect, we will need to
use the more precise information provided by Theorem [B.23l Observe that in this case the
intersection can never be transverse.

EXERCISE B.38. Suppose dim M = 4, u,v : (D,
disks and they have an isolated intersection u(()) =
J-holomorphic branched covers u*, v* : (D, i) — (M, J),

v

ut(z) == u(z"), “(2) = v(z).

Show that ¢(u*,0; v% 0) = kl - 1(u,0; v,0).

i) — (M,J) are J-holomorphic
v(0). Given k,¢ € N, define the

PropPOSITION B.39. Suppose u : (X,5) — (M,J) and v : (3',j") — (M, J) are two
J-holomorphic curves with an intersection u(zy) = v({y) at which w has critical order
k, —1 = 0, v has critical order k, — 1 = 0, and their tangent spaces (in the sense of
Theorem [B.23) are identical. Then either the intersection u(zy) = v({y) is isolated, or
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there exist neighborhoods zy € U,, < ¥ and (y € U, < X such that u(Us,) = v(Ue,). In the
former case, if dim M = 4, the local intersection index satisfies

L(ua 205 U, CO) > kukva
wn particular, it is strictly greater than 1.

PROOF. We can choose holomorphic coordinates near zy € ¥ and (4 € ¥’ so that,
without loss of generality, (X,j) = (¥',5) = (D, ) with 2y = {, = 0. Since k, and k, may
be different, we first replace v and v with suitable branched covers so that their critical
orders become the same: let

m = k,k, € N,

and define v/, v" : (D,i) — (M, J) by
u'(2) = u(2), V' (2) 1= v(2F),

so that in particular v’ and v" both have critical order m—1 at the intersection u'(0) = v'(0),
as well as matching tangent spaces. Now by Theorem [B.23] we find new choices of C'-
smooth local coordinates in D near 0 and smooth coordinates in M near u(0) = v(0) such
that

u'(z) = (27, 0(2)),  0'(2) = (27, 0(2))
for some functions @,0 : D — C"! of class C' that are both O(|z|™!). For each j =
0,...,m — 1, we can also compose v’ with the smooth coordinate change z — €2™/™2 to
produce a new parametrization v; : D — C" of the form

vi(2) = V' (e2IMy) = (2™ 5;(2)),  where  0;(2) = 0(e*9/™mz),

for which the statement of Theorem [B.23lis equally valid. If & — v; is identically zero for
some j =0,...,m — 1, then we have

u'(z) = v'(e¥™/™mz)  for all z e D,

implying that v’ and v" have identical images on some neighborhood of the intersection, in
which case so do u and v. If not, then Theorem [B.23] gives for each j = 0,...,m — 1 the
formula

(B.23) u(z) —0(2) = Zm+éj0j + |z|m”f"r’j(2),

where C; € C""1\{0}, ¢; € N and r;(z) € C*! is a function with r;(z) — 0 as z — 0. This
expression has an isolated zero at z = 0, thus the intersection of v" and v" (and hence of u
and v) is isolated.
If n = 2, we can now compute ¢(u’,0; v’,0) by choosing ¢ € C\{0} small and defining
the perturbation
ul(z) == (2™, u(z) +e).

This curve does not intersect v" at z = 0 since € # 0. If u’(z) = v/((), then 2™ = (™, hence
¢ = e¥/mz for some j = 0,...,m — 1, and equality in the second factor then implies

(B.24) 5i(2) —a(2) = e
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By ([B.23), the zero of v;(z) —u(z) at z = 0 has order m+{; > m, thus if € € C is sufficiently
small and chosen generically so that it is a regular value of 0; — 4, we conclude that (B.24)
has exactly m + ¢; solutions near z = 0, all of them simple positive zeroes of v; —u — € and
thus corresponding to transverse positive intersections of w. with v’. Adding these up for
all choices of j =0,...,m — 1, we conclude

v(u,0;0,0) > m? = k2k?

uv?

so by Exercise [B.38] ¢(u,0; v,0) > k,k,. O

EXERCISE B.40. Find examples to show that in the situation of Proposition [B.39]
t(u, 295 v,(p) cannot in general be bounded from above.

Combining Propositions [B.37 and completes the proof of Theorem

We now turn to the proof of Lemma from Lecture 2] which asserts that any critical
point on a simple J-holomorphic curve gives rise to a strictly positive count of double
points after an immersed perturbation. In the background of this statement is the fact
that all simple holomorphic curves are locally injective, which we can now prove using the
representation formula of Theorem [B.23]

PROPOSITION B.41. Suppose u : (X,j) — (M, J) is a J-holomorphic curve that is
nonconstant near a point zop € X with du(zg) = 0. Then there exists a neighborhood
20 € U, = X such that there is a biholomorphic identification

1 (D7) — (Usy, J)
with ¢(0) = zg, a number k € N, and an injective J-holomorphic map
v:(D,i) - (M,J)
with
dv(z) # 0 for z € D\{0} and uo ¢(z) = v(2*) for z e D.
Ifu: (X,5) = (M, J) is a simple curve, then k = 1.
ProoOF. Theorem provides C''-smooth local coordinates near zy € ¥ and smooth
coordinates near u(zp) € M in which u takes the form
u(z) = (<8, a(z)) e C"

for a C'-smooth map @ : D — C"! with @(z) = O(|z|*), where k — 1 > 0 is the critical
order of u at zp, and all the maps in this picture are of class C* away from zp € X or 0 € D

respectively. For each j = 1,...,k — 1, we can compose this representation of u with the
smooth reparametrization 1;(2) := €2™/kz and thus use Theorem [B.23] to compare u with
u;j(z) = u(e%ij/kz) = (Zk,'aj(z))a where  u,(2) := ﬂ(eQ’”j/kz).

The theorem implies that each u — u; is either identically zero or has an isolated zero
at z = 0. Self-intersections u(z) = u(¢) with z # ¢ can now be identified with pairs
je{l,...,k—1} and z € D for which %(z) = u;(2). Let m € {1,..., k} denote the smallest
number for which @ = 1,,, hence u(z) = u(e*™/*2) for all z. Then we also have @ = 1,
for all j € Z, so m must divide k, and setting ¢ := k/m, we see that u : D — C" is invariant
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with respect to the Z, action on D generated by the rotation v := 1,,. It therefore factors
as
u(z) = v(2")

for a continuous map v : D — C” that is smooth on D\{0}, and v is injective near 0 since
we always have u(z) # U;(z) near z =0 for j =1,...,m — 1.

It remains to show that v : D — C" can be reparametrized near 0 € D to become
a smooth J-holomorphic curve. We shall deduce this from elliptic regularity, but first,
we need to switch back to smooth holomorphic coordinates on the domain. Since the
parametrization u(z) = (z*,7(z)) was obtained via a Cl-smooth coordinate chart on the
smooth Riemann surface (X, j), this parametrization is a pseudoholomorphic map (D, j') —
(M, J) for a continuous complex structure ;' that is smooth on I := D\{0} and uniquely
determined there by j' = u*J. It follows that the Zs,-action on I leaving u invariant acts
holomorphically on (D, j'), and it can therefore be defined as a group of biholomorphic
(and therefore smooth) transformations on the simply connected neighborhood U < ¥ of
2o that is identified with I via our C*-coordinates. Using the Riemann mapping theorem,
we can now choose a holomorphic coordinate chart identifying (U, j) with (ID,4) and 2
with 0 € D, so that in the new coordinates, v generates a Zs-action by biholomorphic
transformations on (D, 7) that fix 0. All such transformations are rotations, thus v is given
by the same formula as before in the new coordinates, and we can define a continuous map
v: D — C" as before via the relation u(z) = v(2*), observing that v is manifestly smooth
and holomorphic on the standard punctured disk (ID, ). Since du(z) = O(|z[F~1), we then
deduce from u(z) = v(2*) and du(z) = dv(z*) o (£2*~1) an estimate of the form

|du(z)]
|2]-1

near z = 0. This expression is bounded since ¢ < k, implying via Exercise [B.16 that the
map v : D — C" is of class WH®. It is therefore smooth by Proposition [B15 O

dv(z")] < C < C'|z|f*

The remainder of Lemma can be restated as follows.

PROPOSITION B.42. Suppose dim M = 4 and u : (D,i) — (M, J) is an injective J-
holomorphic map with critical order k —1 =1 at z = 0 and no critical points on D\{0}.

Then there exists an integer
k(k—1
6(u,0) = %
depending only on the germ of u near 0, such that for any given neighborhood U < D
of 0 and symplectic form wqy defined near u(0) taming J, one can find a C*-smooth map
e : D — M satisfying the following conditions:

(1) u. is C'-close to u and matches u outside U and at 0;

(2) ue is an immersion with u*wy > 0;

(3) ue has finitely many self-intersections and satisfies

1
(B25> 5 (Zg;) L<u€7 z ; U‘67 C) = 5(“‘7 O)’
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where the sum ranges over all pairs (z,() € D x D such that z # ¢ and u.(z) =

ue(C)-

Our proof will show in fact that the tangent spaces spanned by the perturbation u. can
be arranged to be uniformly close to i-complex subspaces (or equivalently J-complex sub-
spaces, since J and ¢ may also be assumed uniformly close in a small enough neighborhood
of u(0)). This implies that it is a symplectic immersion without loss of generality for any
given wy taming J, as the condition of being a symplectic subspace is open. In practice,
the crucial point in applications is that the complex structure on the bundle (v T'M, J)
admits a homotopy supported near 0 to a new complex structure for which im du, becomes
a complex subbundle—in this way we can keep control over the ¢; term in the adjunction
formula. The subtlety in the proof is that the change in tangent subspaces when perturbing
from u to u. cannot be understood as a C%-small perturbation if du(0) = 0. Our strategy
will be to show that the tangent spaces spanned by du, are in fact C-close to the tangent
spaces spanned by another map which is a holomorphic immersion. In order to make this
notion precise, we need a practical way of measuring the “distance” between two subspaces
of a vector space, in particular for the case when both subspaces arise as images of injective
linear maps.

DEerFINITION B.43. Fix the standard Euclidean norm on R”. Given two subspaces
V,W < R" of the same positive dimension, define

dist(V, W) := max dist(v,W):= max min|v — w|.
veV,|v|=1 VeV, |v|=1 weW

DEFINITION B.44. The injectivity modulus of a linear map A : R¥ — R" is

A
Inj(A) = min [Aq] >
veRF\ {0} |v|
Clearly Inj(A) > 0 if and only if A is injective.

LEMMA B.45. For any pair of injective linear maps A, B : R¥ — R",
|A— B|
Inj(A) -
PROOF. Pick any nonzero vector v € R™. Then Av # 0 since A is injective, and we
have

dist (im A,im B) <

Av v v v
dist Bl =mmn|/A— — B A— — B——
" <|A i ) wekr | JAo] LS| A T T A
w| _|A—B|
<|A—B .
<A=BILr < @

O

LEMMA B.46. Given a symplectic form wy on C? taming i, there exists € > 0 such
that if V. C? is a complex 1-dimensional subspace, then all real 2-dimensional subspaces
W < C? satisfying dist(V, W) < € are wo-symplectic.
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EXERCISE B.47. Prove the lemma. Hint: CP! is compact.

PROOF OF PROPOSITION [B.42. By Theorem [B.23] we can assume after choosing suit-
able C''-smooth coordinates near 0 € D and smooth coordinates near u(0) € M that

u(z) = (2F,7(2)) e C?

for some integer k > 2, where the almost complex structure J matches i at 0 € C?, and @
is a map D, — C of class C'' on a disk of some radius p > 0, such that the other branches

Uj(Z) = u(e27rij/k ) (zk a](z)) T/L\j(Z) _ u<€27r2]/k: )7
for j=1,...,k —1 are related by
(B.26) Q;(2) — A(z2) = 22450, + |2+ (2)

for some ¢; € N, C; € C\{0} and r; : D, — C with r;(2) — 0 as z — 0. Here we've
used the assumption that u is injective in order to conclude that u; — @ is not identically
zero. By shrinking p > 0 if necessary, we can also assume u is embedded on D,\{0},
and that the symplectic form wy, which tames J by assumption, also tames i on some
neighborhood of u(DD,). Fix a smooth cutoff function 3 : D, — [0, 1] that equals 1 on D,
and has compact support in the interior. Then for € € C sufficiently close to 0, consider
the C'-close perturbation

ue(z) == (2, (2) + €8(2)2),
which satisfies u.(0) = 0 and is immersed if € # 0. Since v is embedded on D,\D, /2, we may
assume for |e| sufficiently small that u,. has no self-intersections outside of the region where
B = 1. Then a self-intersection u.(z) = u.(¢) with z # ¢ occurs wherever ¢ = e?™/kz % (
for some j = 1,...,k — 1 and @(2) + ez = ;(z) + ee*™/kz, which by (B.26) means

zkHJ'C'j + |z|k+éjrj(z) +¢€ (e%ij/k — 1) z=0.

Assume € € C\{0} is chosen generically so that the zeroes of this function are all simple (see
Exercise [B.49 below). Then each zero other than the “trivial” solution at z = 0 represents
a transverse (positive or negative) self-intersection of w,., and the algebraic count of these
(discounting the trivial solution) for |e| sufficiently small is k + ¢; — 1 > k. Adding these
up for all j =1,...,k — 1, we obtain

k(k —1).

l\DI»—t
l\3|>—‘

. _
(B.27) d(u,0) := ) (Z;)L(ue,z; Ue, ¢ Z (k+¢;—1)

It remains to show that wu. satisfies u*wy > 0, which is equivalent to showing that
im du(z) = C? is an wy-symplectic subspace for all 2. By Theorem [B:23] there exist
constants £ € N and C' e C\{0} such that

(B.28) a(z) = 2"C + of|2FT,
and we claim that the formula

(B.29) di(z) = (k + 0)2"71C + o(|z[F )
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also holds. If @ were smooth, this would follow immediately from (B.28]) via Taylor’s
theorem, but we have to work a little bit harder since 4 is only of class C'. Recall that
@ is a composition of the form @ = uy o , where we can take ¢ : D, — D to be a C'-
smooth local diffeomorphism with ¢(0) = 0 and dg(0) = 1, and uy : D, — C is a map
of class C'”, i.e. the second coordinate of the original J-holomorphic curve before it was
non-smoothly reparametrized. Since p(z) = z+o0(|z|) and ¢7'(2) = z+0(|z|), we can write
0 1(2) = 2 + 2| - r(2) with lim, o 7(2) = 0 and write (B2]) as 1(z) = 2FC + |2|FTR(2)
with lim, g R(2) = 0, implying

up(z) = (2 + |2 - 1(2)) = (2 + 2] -7 ()" C + |z + 2] -7 (2) " R(z + |2] - 7(2))

_ Z]H_KC-}— 0(|Z|k+€).
Now since uy is smooth, this expression can be interpreted as saying that z¢T¢C' is the
lowest-order nontrivial term in its Taylor series, and we can then draw a similar conclusion
for dus: namely for ¢’ := (k + ¢)C and a function R'(z) € C with lim, o R'(z) = 0, we
have
dug(z) = 2FLC" 4 o(|2[FTY) = IO 4 |2FY R (2).

Finally, reverse the process: writing ¢(z) = z+ |z|-7/(z) with lim,_¢7'(z) = 0, the relation
(B.29) follows from

du(z) = dus(z + |2 - 7'(2)) o de(2)

=[G )T e ] )T R(2)] o del2)

|+ 12 P e ] ()T R ()]

|G )N 4 T R() | 0 (d(z) - dpl0))
_ szerlC/ + O(|Z|k+€fl)7

where the existence of a suitable remainder function depends on the fact that dp(z)—dp(0)
is a continuous function of z that vanishes at z = 0.
We would now like to compare u, with the holomorphic polynomial

P.:D, - C?: 2z (2", 2FC + e2),
which, due to (B.29), satisfies
duc(z) — dP.(z) = |2|""'R(z)

for a remainder term R(z) € C? that satisfies lim, .o R(2) = 0 and does not depend on e.
Abbreviating A.(z) := dP.(z) and B.(z) := du.(z), this gives an estimate of the form

|A€(Z) - BE(Z)| < Cl|z|k+371

for some constant ¢; > 0 independent of . Computing dP.(0), we find similarly a constant
co > 0 independent of € such that

|Ac(2)v| = co]2/F7 v for all v e C,
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thus Inj(Ac(2)) = co|2/F71, and

[Ac(2) — Be(2)]

Inj(Ac(z))

for some constant c¢3 > 0 independent of e. Now since P, is holomorphic (for the standard
complex structure) for all €, im A.(z) < C? is always complex linear, so the above estimates
imply together with Lemmas [B.45] and [B.46] that for a sufficiently small radius pg > 0, the
images of du.(z) for all z € D, \{0} and € € D,, are wy-symplectic. This is also true for
z =0 if € # 0, since then du.(0) = dP.(0) is complex linear.

To conclude, fix py > 0 as above and choose € € C\{0} sufficiently close to 0 so that
outside of D, u, is C'-close enough to u for its tangent spaces to be wg-symplectic (recall
that J is also wp-tame). The previous paragraph then implies that the tangent spaces of
ue are wo-symplectic everywhere. O

EXERCISE B.48. Verify that the formula obtained in (B.27) for 6(u,0) does not depend
on any choices.

< 03|Z|£

EXERCISE B.49. Assume f : U4 — C is a C'-smooth map on a domain &/ = C con-
taining 0, with f(0) = 0 and df(0) = 0. Show that for almost every € € C, the map
fe:U — C: z— f(z) + ez has 0 as a regular value. Hint: Use the implicit function
theorem to show that the set

X = {(6,2) e Cx (U\{0}) | fe(z) = 0}
is a smooth submanifold of C?, and a point (e, z) € X is regular for the projection 7w : X —
C: (¢, 2) = € if and only if z is a regular point of f.. Then apply Sard’s theorem to 7.!

EXERCISE B.50. Find examples to show that the bound §(u,0) > @ in Proposi-

tion [B.42 is sharp, and that there is no similar upper bound for 6(u,0) in terms of k.
(Compare Exercise [B.40.)

INote that while Sard’s theorem is often stated only for C*-smooth maps, it is valid more generally
for continuously differentiable maps f : M — N of class C"™~"*! for m := dim M and n := dim N; see

[Sard2).
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This appendix is meant in part as a survey and also as a quick reference guide for
the intersection theory of punctured holomorphic curves. Except where otherwise noted,
the proofs of everything stated below are due to Siefring [Siell], and the details (modulo
proofs of the relative asymptotic formulas) can be found in Lectures 3 and 4 of these notes.
Since intersection theory has also played a large role in the development of Hutchings’s
embedded contact homology (ECH), we will simultaneously take the opportunity to clarify
some of the connections between Siefring’s theory and equivalent notions that often appear
(sometimes with very different notation) in the ECH literature. For an important word of
caution about notational differences between these notes and [Siell], see Remark 7]

C.1. Preliminaries

Assume M is a closed oriented 3-manifold with a stable Hamiltonian structure (w, A),
i.e. a 2-form w and 1-form A that satisfy dw = 0, A A w > 0 and kerw < kerdA. (The
reader unfamiliar with or uninterested in stable Hamiltonian structures is free to assume
(w,\) = (da, &) where « is a contact form.) This data determines an oriented 2-plane field

E=ker\cTM
and a Reeb vector field R such that
w(R,)=0 and MR)=1.

We assume throughout the following that all closed orbits of R are nondegenerate. As
mentioned in the footnote to Theorem Il the major results continue to hold without

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic
Curves and Intersection Theory by Chris Wendl. This pre-publication version is free to view and download
for personal use only. Not for re-distribution, re-sale or use in derivative works. (©Chris Wendl, 2019.
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serious changes if orbits are Morse-Bott, as long as homotopies of asymptotically cylindrical
maps are required to fix the asymptotic orbits in place. There also exists a generalization
of the theory that lifts the latter condition (see [Wen10al §4.1] and [SW]).

Suppose 7 is a closed orbit of R and 7 is a choice of trivialization of ¢ along . The
Conley-Zehnder index of 7 relative to this trivialization will be denoted by

pez(y) € Z.

If v has period T' > 0, then any choice of w-compatible complex structure J on ¢ and
parametrization 7 : S1 := R/Z — M satisfying A\(¥) = T gives rise to an L*-symmetric

A, =-J(V;=TVR) :T(v*¢§) - I'(v*¢),

where V is any symmetric connection on M and A, does not depend on this choice. As
proved in [HWZ95], the nontrivial eigenfunctions of A, have winding numbers (rela-
tive to 7) that depend only on their eigenvalues, defining a nondecreasing map from the
spectrum o(A.,) < R to Z that takes every value exactly twice (counting multiplicity of
eigenvalues). One can therefore define the integers

o’ (y) = max {wind"(e) | A e = Xe with A < 0},
o’ (y) = min {wind"(e) | Aye = Ae with A > 0},
p(7) = al(y) —al(v).

Since « is nondegenerate, 0 is not an eigenvalue of A, hence the parity p(7) is either 0
or 1, and [HWZ95| proves the relation

1oz () = 27 (y) + p(vy) = 225 (v) — p(7).

For this reason, the number a7 () sometimes appears in the literature as |ugy(7v)/2].
Given a closed Reeb orbit v, we denote its k-fold cover for k € N by ~*.

REMARK C.1. The parity of Reeb orbits is closely related to the dichotomy between
elliptic and hyperbolic orbits. Recall that since the linearized Reeb flow restricts to an
w-symplectic map on the transverse planes ¢ along a periodic orbit v, the product of the
eigenvalues of this map is always 1. We call v elliptic if the eigenvalues are a conjugate
pair of non-real numbers on the unit circle, and hyperbolic if they are both real but
distinct from +1. (We exclude eigenvalues +1 from this dichotomy; in this case either ~
or 72 is degenerate.) If ~y is an orbit whose covers are all nondegenerate, then one sees by
taking powers of the eigenvalues that - is elliptic if and only if all of its covers are elliptic.
One can show moreover that v has even parity if and only if both of the eigenvalues are
positive, thus even orbits are always hyperbolic, and the same applies to all of their covers
(see Exercise B.I]]). It follows that elliptic orbits always have odd parity. Hyperbolic orbits
with odd parity are sometimes also called negative hyperbolic orbits; their even covers
have even parity and are referred to in the literature on symplectic field theory as bad orbits,
for reasons having to do with orientations of moduli spaces (see e.g. [Wenbl, Chapter 11]).

We say that an almost complex structure J on R x M is compatible with the stable
Hamiltonian structure (w, \) if
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e J(0,) = R for the coordinate vector field ¢, in the R-direction;
o J(§) = ¢ and J|¢ is compatible with wle;
e J is invariant under the translation action (r,p) — (r + ¢, p) for all c € R.

More generally, we consider almost complex 4-manifolds (I//I\/, J) with eylindrical ends as
n [BEHT03]. Concretely, this means W decomposes into the union of a compact subset
with a positive end [0,00) x M, and a negative end (—o0,0] x M_, where M, are closed
3-manifolds equipped with stable Hamiltonian structures (w4, A+) and the restriction of
J to each cylindrical end is compatible with these structures. This will be our standing
assumption about (W, J) in the following. For a punctured Riemann surface (3, j), we

consider proper maps u : > — W that are asymptotically cylindrical in the sense that
they approximate trivial cylinders over closed Reeb orbits near each of their (positive or
negative) non-removable punctures; see §2.4 for a more precise definition of this term in
the contact case.

C.2. The intersection pairing

Given the almost complex 4-manifold (ﬁ\/, J) with cylindrical ends as described above,
let 7 denote a choice of trivialization for the complex line bundles £ = ker A\, along each
simply covered closed Reeb orbit in M;. This induces a trivialization of &4 along every
closed Reeb orbit by pulling back along multiple covers. The choice is arbitrary, but it
is necessary in order to write down most formulas in the intersection theory, even though
none of the important quantities depend on it. We assume wu : Y = S\, — W is a smooth
asymptotically cylindrical map with positive and/or negative punctures I', = I'f UT',, < X,
and for each puncture z € 'y, let e denote corresponding asymptotic Reeb orbit. We also
fix a second such map v : N W, denote its punctures by I', = I'Y U T, < ¥/ and use
the same notation {7.}.cr, for its asymptotic orbits.!

Given any quantity ¢+(v) which depends on both a Reeb orbit v and a choice of sign
+ or —, we will use the shorthand notation

D ax(r) = DL () + ) 4 (1),
zely zely zely

A similar convention applies to summations over pairs of punctures in I', xI',, with matching
signs, and this will occur several times in the following.

The intersection product of two asymptotically cylindrical maps u and v is a symmetric
pairing defined by

(C.1) UV i=Ue UV — Z V% (=) € Z,

(2,0)els xI'F

where the individual terms are defined as follows.

INote that each of the orbits 7. may be multiply covered, and the covering multiplicity is regarded as
part of the data that defines ~..
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The relative intersection number
ue . veEL

is the algebraic count of intersections between u and a generic perturbation of v that
shifts it by an arbitrarily small positive distance in directions dictated by the chosen
trivializations 7 near infinity, hence the count is finite and depends only on the relative
homology classes represnted by v and v and the homotopy class of the trivializations 7.
The relative intersection number also appears in the ECH literature and is denoted there
by Q,(u,v), cf. [Hut02|[Hut14]. Note that u e, u is also well defined, and is sometimes
denoted by Q,(u) in ECH.

The integers €2} (v,7') are defined for every pair of Reeb orbits v,+" and also depend
on the trivializations 7. They satisfy Q7 (y,7') = 0 whenever v and 7" are not covers of
the same orbit, while for any simply covered orbit v with integers k, m € N,

(C.2) Q7 (v",74™) := min {Fkal(y™), TLma;(fyk)} :
The dependence on 7 in the 2% terms cancels out the dependence in u e, v, so that u v is
independent of 7; it is determined solely by the relative homology classes of u and v and
their sets of asymptotic orbits. In particular, it is invariant under homotopies of u and v
through families of smooth asymptotically cylindrical maps with fixed asymptotic orbits.

If w and v are also J-holomorphic and are not covers of the same simple curve, then we
can also write

UV =1U-V+ Ly (u,v),

where both terms are nonnegative: the first denotes the actual algebraic count of inter-
sections between u and v (of which the asymptotic results in [Sie08] imply there are only
finitely many), and the second is an asymptotic contribution counting the number of “hid-
den” intersections that may emerge from infinity under a generic perturbation. A corollary
is that if v« v = 0, then v and v are disjoint unless they cover the same simple curve.
The converse of this is false in general, but one can use Fredholm theory with exponential
weights to show that for generic J, to(u,v) = 0 for all simple curves v and v belonging to
some open and dense subsets of their respective moduli spaces.

To write down the asymptotic contribution ¢y (u, v) explicitly, one must first define its
relative analogue ¢7 (u,v), which depends only on the germ of « and v near infinity and on
the trivializations 7. We have

BACRD D YA (T Ne)
(z,0)els xT5
where for each pair of punctures z € I'; and ¢ € I’} with the same sign,
Lo (u, 23 0,() € Z

is the algebraic count of intersections between uly, and a generic perturbation of vy,
with U, and U, chosen to be suitably small neighborhoods of the respective punctures
such that uly, and vl are disjoint, and the perturbation of v|y, chosen to push it a small
positive distance in directions dictated by the trivialization 7 near infinity. The fact that
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this number is well defined depends on the existence of neighborhoods on which u and
v are disjoint, hence it requires them to be geometrically distinct curves, and of course
tl (u,z; v,{) = 0 whenever the asymptotic orbits 7, and 7, are disjoint. If on the other
hand 7, = v* and v, = ™ for some simply covered orbit v and integers k,m € N, then
17 (u, z; v,¢) can be computed in terms of the relative winding of v about u near infinity;
a precise formula is derived in the discussion surrounding Equation (£3]). Combining
this formula with the relative asymptotic analysis from [Sie08] then yields the bound
o (u, 25 v,¢) = QL (72,7¢), giving rise to the local asymptotic contribution

b (U, 25 0, C) = 10 (u, 25 v, ) = QL (72, %),

which is independent of 7 and is nonnegative, with equality if and only if all theoretical
bounds on the winding of asymptotic eigenfunctions controlling the approach of v to u at
infinity are achieved. The geometric interpretation is that o (u, z; v, () is the algebraic
count of intersections between u and v that will appear in neighborhoods of these two
punctures if u and v are perturbed to J'-holomorphic curves for some generic perturbation
J" of J. The total number of hidden intersections is then

Lo (U, v) = Z Lo (U, 25 0, Q).

(2,0)els xTi

C.3. The adjunction formula

The adjunction formula for a closed simple J-holomorphic curve u : ¥ — W can be
written as

[u] - [u] = 26(u) + en(u),
where [u] - [u] € Z denotes the homological self-intersection number of [u] € Hy(W),
en(u) := c1([u]) — x(2) is the so-called normal Chern number, and §(u) is the algebraic
count of double points and crltlcal points, cf. (Z3]). For a simple asymptotically cylindrical
J-holomorphic curve w : > — W with punctures [',, the formula generalizes to

(C.3) wxu=2[0(u) + 0p(u)] + en(u) + [o(u) — #T,],

where u = u is the intersection product defined in (CI) with v = v, and the terms on
the right hand side will be explained in a moment. The most important thing to know
about (C3) is that the terms u=u, c¢y(u) and 7(u) are all homotopy invariant by definition,
implying that d(u)+d.(u) is also homotopy invariant, while o (u) —#1I,, 0(u) and dq (u) are
always nonnegative. Moreover, as in the closed case, §(u) = 0 if and only if u is embedded.
It follows that §(u) 4+ 0o (u) = 0 gives a homotopy-invariant condition guaranteeing that u
is embedded. The converse is false, as v can be embedded and have d4(u) > 0, but one
can again use Fredholm theory with exponential weights to show that generically the latter
cannot happen for curves in some open and dense subset of the moduli space.
The normal Chern number is defined in the punctured case by

(C4) en(u) = cf(u *TW 2 +al(v.),

zEF+
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and it depends on the relative homology class of u and the topology of the domain 3, but
not on the trivializations 7. Here c{(u*TW) denotes the relative first Chern number
of the complex vector bundle wTW — ¥ with respect to the natural trivializations at
infinity induced by 7. Recall that if £ — Y is a complex line bundle equipped with a
preferred trivialization 75 near infinity, one can define ¢{”(F) € Z as the algebraic count
of zeroes of any generic section of E that is constant and nonzero with respect to 7p near
infinity. The relative first Chern number of higher rank bundles is then defined via the
direct sum property ¢[F¥F(E@ F) = ¢[?(E) + ¢]* (F). Since w*TW has a natural spliting
over the positive/negative cylindrical ends into the direct sum of a trivial complex line
bundle with 4 = ker Ay, 7 naturally induces a trivialization of u*T' W over the ends and
we define ¢f (u*T 17[\/) accordingly. (The same quantity is often denoted by ¢, (u) in the ECH
literature, cf. [Hut02,[Hut14].) The normal Chern number is often most convenient to
calculate via the formula

(C.5) 2cn(u) = ind(u) — 2 4+ 29 + #leven,

where ind(u) denotes the virtual dimension of the moduli space containing u (see ([A.H])),
g is the genus of its domain, and ', < I', is the set of punctures z € I', that satisfy
p(7.) = 0, i.e. the Conley-Zehnder index of the corresponding Reeb orbit is even. This
relation is an easy consequence of the Fredholm index formula and the usual relations
between Conley-Zehnder indices and the winding numbers o (), cf. ([B.I8). The proper
interpretation of cy(u) is as a homotopy-invariant algebraic count of zeroes of the normal
bundle of an immersed perturbation of u, including zeroes that are “hidden at infinity”
but may emerge under small perturbations of u as a holomorphic curve.
The term & (u) is called the spectral covering number and is a sum of terms

o(u) = ), 7+(%),
ZEF%
each of which is a positive integer that depends only on the orbit v, and can be greater
than 1 only if 7, is multiply covered. Specifically, for any simply covered orbit v and k € N,
7+ (v*) is the covering multiplicity of any of the nontrivial asymptotic eigenfunctions e of
A . that satisfy wind™(e) = a%(7¥). It turns out that the dependence of 74 (7*) on the
orbit ~ is fairly mild, as one can show that

(C.6) 5+ (7") = ged(k, ok (+")),
cf. Remark Thus &(u) — #I" vanishes, for instance, whenever all the asymptotic orbits
of u are simply covered.

The singularity index d(u) is defined just as in the closed case, as a signed count
of double points of u plus positive contributions for each critical point, interpreted as the
count of double points that appear near each critical point after an immersed perturbation
(cf. Lemma 2.6]). The only difference from the closed case is that since ¥ is noncompact,
it is less obvious that d(u) is well defined, but the relative asymptotic results of [SieQ8]
imply that double points and critical points of a simple curve cannot occur near infinity,
hence §(u) is finite.
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The term d4(u) is an algebraic count of “hidden” double points, i.e. it is the number
of extra contributions to d(u) that will emerge from infinity if w is perturbed to a J'-
holomorphic curve for a generic perturbation J’ of J. There are two possible sources of
such hidden double points: first, any pair of distinct punctures z, ¢ € 't with the same sign
such that the corresponding asymptotic orbits 7, and 7, are identical up to multiplicity
contributes 1 (u, 2 ; u, () as in the definition of u+v. Note that 1o (u, 2z ; u, () is well defined
as long as u is simple and z # (, since the two punctures then have neighborhoods U, and
U such that u(U,) N u(l) = &. Additional hidden intersections can emerge from any
single puncture z such that . is multiply covered, since u in the neighborhood of such a
puncture has multiple branches that become arbitrarily close to each other near infinity.
Denoting the contribution from such punctures by d4(u, z), we have

O (u) = = Z oo (U, 25 u, Q) + 2 doo (1, 2).

z,CeTE, 2#C zel'E

In particular, d,,(u) = 0 whenever all asymptotic orbits of u are distinct and simply covered,
though it can also be zero without this condition. As with iy (u, z; v, (), writing down a
precise formula for 0, (u, z) requires first defining a relative version that depends on the
trivialization 7: we define

to(u,z) € Z

as the algebraic count of intersections between u|y,. and a generic small perturbation of
itself, where U, is a neighborhood of z on which u is embedded, and the perturbation is
chosen to shift u a small positive distance in directions dictated by 7. As with 7 (u, z ; v, (),
one can compute ¢ (u, z) in terms of the winding numbers of asymptotic eigenfunctions
that control the relative approach of different branches of uly, to each other near infinity,
cf. @4). One derives from this the theoretical bound ¢/, (u,2) = Q7 (v.), where for any
simply covered orbit v and k € N,

() OL(0F) 1= F(k = 1z (s) + [7:(0") — 1]
The precise definition of 0o, (u, 2) is then

Sl ) 1= 5 [ (0,2) = 0 ()]

which is a nonnegative integer and is independent of 7.

As mentioned in Remark [@.T14] the computation of ¢ (u, z) in terms of winding numbers
also leads to an alternative interpretation of it as the writhe of a braid, which we will
say more about in §C.601 Up to issues of bookkeeping, (C3)) is also equivalent to the
so-called relative adjunction formula first written down by Hutchings, see in particular
[Hut02, Remark 3.2]. The innovation of [Siell] was to transform this into a relation
between homotopy-invariant quantities that have geometric meanings independent of any
choice of trivializations.
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C.4. Covering relations

We now state a few useful results about multiply covered holomorphic curves that are
not mentioned elsewhere in these notes, but are easy to prove based on the definitions
given above. The results of the present section are due to the author, and complete proofs
may be found in [Wenl10al §4.2].

If v and v are two closed J-holomorphic curves in a closed almost complex 4-manifold
and  is a d-fold multiple cover of u, then the relation

[@] - [v] = d[u] - [v]
is obvious since [t] = d[u] € Ho(W). Things are less straightforward in the punctured
case because u * v depends on more than just homology, and e.g. Exercise .19 exhibits a
specific scenario in which the =-product fails to satisfy the obvious analogue of the above
relation. One can still however prove the following:

ProprosITION C.2. Suppose u, U and v are asymptotically cylindrical J-holomorphic
curves in W such that u is a d-fold cover of u for d € N. Then

uxv=d(u=v).

The proof of this inequality is based on the formula (C.I), in which the relative inter-
section numbers are easily seen to satisfy the straightforward relation @ e, v = d(u e, v),
thus the tricky part is to understand what happens to the terms 7 (7., v.) when each of
the orbits 7, is replaced by a collection of covers of 7, whose multiplicities add up to d. The
answer is a bit intricate if one aims to write it down precisely, because the winding num-
bers o () do not in general behave linearly with respect to iteration of the orbit, but for
the purposes of the inequality in Proposition [C.2] the information in the following lemma
suffices. This lemma is closely related to Exercise B8 and it can be derived from the
properties of asymptotic eigenfunctions and their winding numbers proved in [HWZ95]
(in particular Theorem B.15)).

LEmMmA C.3. For every closed Reeb orbit v and every k € N, there exist integers
q+(v; k) €{0,...,k — 1} such that
ax (V%) = kax(v) F gz (v; k).

It is also sometimes useful to have a similar covering relation for the normal Chern
number, since the latter appears in the adjunction formula. Recall that if ¢ : (X', 7) —
(3, 7) is a d-fold holomorphic branched cover, then the Riemann-Hurwitz formula gives

(C.8) —X(E) + dx (%) = Z(de),
where Z(dy) denotes the algebraic count of branch points of ¢,
Z(dp) = Z ord(dy; z) = 0.
zedp—1(0)

One easy proof of this formula views dy as a section of the line bundle Hom¢ (7%, o*T),
whose first Chern number is the left hand side of (CS). If u : (X, j) — (W, J) is a closed



C.5. THE INTERSECTION PRODUCT OF BUILDINGS 149

J-holomorphic curve and @ = u o ¢, this leads to the relation

CN( ) d- CN( )+Z(d(p)

In the punctured case, one can easily show that (C.8)) continues to hold for a branched
cover of punctured surfaces, but additional terms appear in the normal Chern number due
to the fact that o (v%) # dao () in general. As in Proposition [C.2] the result is then most
easily stated as an inequality.

PROPOSITION C4. Suppose u and = uop are asymptotically cylindrical J-holomorphic
curves in W where @ : Y > Yisad -fold holomorphic branched cover of punctured Rie-
mann surfaces whose algebraic count of branch points is Z(dyp) = 0. Then

CN( ) d- CN( )+Z(d(p)

REMARK C.5. One can extract from the proofs in [Wenl0al §4.2] various conditions to
characterize when the inequalities in Propositions and are strict or not. The easiest
comes from the observation that the integers ¢+ (v;k) in Lemma vanish whenever ~
has even parity. It follows for instance that Proposition becomes an equality whenever
every simple Reeb orbit that has a cover appearing among the asymptotic orbits of v and v
(with the same sign!) is even. Similarly, Proposition [C.4]is an equality if all the asymptotic
orbits of u are even.

C.5. The intersection product of buildings

Another topic not mentioned elsewhere in these notes is the extension of the #-pairing to
the compactified moduli space MQ(W, J) of holomorphic buildings defined in [BEH*03].
Following [Siell], one can define this in fairly general terms as follows.

If ue MQ(W, J) and v € Mg/(ﬁ\/, J) are two nodal J-holomorphic curves in W,
i.e. holomorphic buildings with no upper or lower levels, then the definition of u v requires
no change from before. Recall that the domain of a punctured nodal curve u is a possibly
disconnected punctured Riemann surface S endowed with a finite set of points A < S, the
nodal points, which are grouped into pairs on which u has matching values (see §A.T]).
A nodal curve then belongs to ﬂg(W, J) if the surface obtained by performing connected
sums on S at each of the nodal pairs is connected with genus ¢ and every component of
S\A on which wu is constant has negative Euler characteristic. For the present discussion,
there is no need to impose either of these conditions, thus we are free to consider nodal
curves that are non-stable and/or disconnected (even after gluing together their nodes). If
u: S — W is a nodal curve and Sy < S is a connected d component of its domain (ignoring
nodes), then let us call the restriction ug : Sy — W a connected component of u.
Now it is easy to check that if v and v are nodal curves whose connected components are
Uy, ..., Uy, and vy, ..., v, respectively, the =pairing is additive in the obvious way, namely

m n
U*UZZEUZ'*’U]‘.

i=1j=1
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Things become more interesting if we consider buildings with multiple levels. Sup-
pose (17[\/0, Jo) and (Wl, Jp) are two almost complex 4-manifolds with cylindrical ends such
that the positive end of (WO, Jo) matches the negative end of (I//I\/l, J1), meaning that the
underlying 3-manifolds and stable Hamiltonian structures are the same, and so are the
restrictions of Jy and J; to translation-invariant almost complex structures on the relevant
ends. We will then refer to the symbol WO ® I//I\/l as the concatenation of WO with Wl,
and say that uy ® u; is a holomorphic building in I//I\/O ©) I//I\/l if ug and uy are (possibly
disconnected and/or nodal) asymptotically cylindrical holomorphic curves in (17[\/0, Jo) and
(Wl, Jp) respectively, equipped with the extra structure of a bijection between the positive
punctures of ug and the negative punctures of u; that sends each puncture to one that has
the same asymptotic orbit. We shall refer to uy and u; as the (lower and upper) levels of
up ®u; and call the Reeb orbits along which they connect to each other breaking orbits.
These definitions extend in an obvious way to allow concatenations with more than two
inputs, making ® an associative operation. In this language, Mg(ﬁ\/, J) consists of all
holomorphic buildings in

RxM)O..0 RxMIOWORx M,)O...0 (R x M,)

that are connected with arithmetic genus g and satisfy the usual stability condition, where
R x M is an abbreviation for the symplectization of M, with thg\same R-invariant almost
complex structure that appears at the corresponding end of W, and any nonnegative
numbers of such symplectization levels are allowed to appear in the concatenation.

Recall that the stability condition on elements of Mg(w, J) precludes (among other
things) the existence of any level that lives in an R-invariant symplectization and consists
of nothing more than a disjoint union of orbit cylinders with no nodes. It is necessary
to exglude buildings that don’t satisfy this condition in order for the natural topology on
MQ(W, J) to be Hausdorff, but for our present purposes, it will be useful to avoid imposing
any such requirement on buildings in concatenations. AWe are t/h\en free to define the
following operation: given a building u = u1®...Quy in W1©...OWy and k € {0,..., N},
we construct the building

=110 QuQUQU O...0uy i1 WiO...0WOVEOW O...0Wh,

Whgr\e V is the symplectization corresponding to the positive end of Wk and negative end
of Wy,1, and v is a disjoint union of orbit cylinders in YA/, one for each of the breaking
orbits that connect uy to ug1. Here the cases k = 0 and k = N are also allowed in order
to accommodate adding a trivial level at the very bottom or top of the building, and one
should also keep in mind that v could be an empty curve—this is the case if u; has no
positive ends and u,q, has no negative ends. Any building obtained from u by a finite
sequence of such operations will be called an extension of u.

. Given two buildings v = u1 ® ... Quy and v = v; © ... ® vy in a concatenation
Wi ®...0Wy, we make an arbitrary choice of trivializations 7 along all closed Reeb orbits
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at the ends of each of Wl,. .. ,WN and define

N
(CO)  wxvi=Yuwevi— > =) ), (%)
i=1

(2,0)el \y XI5y (2,0)€ly, xT'y,

Here the dependence on 7 at the positive ends of the top level and negative ends of the
bottom level is cancelled by the Q7 terms for the same reasons as in (C.IJ), while changing 7
at any of the breaking orbits between levels k—1 and k alters u;_je,vr_1 and u,e, v; in ways
that cancel out, thus the total expression is independent of choices. This deﬁnit\ion does
not yet allow us to define u * v for an arbitrary pair of stable buildings u € M (W, .J) and

v E Mgr(l//l\/, J), because these may in general have differing numbers of levels. However,
one can always add extra trivial symplectization levels to one or both of them to produce
a pair of non-stable buildings that live in the same concatenation of cobordisms. With this
understood, we define

(C.10) uxv:i=u=v' eZ for uemg(W,J)andvemg/(ﬁ\/,J),

where v/ and v’ are any choices of extensions of u and v that make u' = v" well defined in

the sense of (C.9)).

PROPOSITION C.6. The pairing u+v defined in (CIQ) for stable holomorphic buildings
i W has the following properties:

(1) It is independent of the choices of extensions u' and v'.

(2) It is continuous with respect to the natural topologies on Mg(W, J) and Mg,(W, J),
e.q. if uy € Mg(ﬁ\/, J) is a sequence converging to a building u € MQ(W, J) in the
sense of [BEHT 03], then uy +v = u v for large k.

(3) It is superadditive with respect to concatenation, i.e. for any (not necessarily stable)
buildings u_,v_ and uy,v, such that the concatenations u_Ouy and v_Ov, and
the intersection numbers us = vy in the sense of (CA) are well defined, one has

(u— Quy) * (V- Quy) = u_ *v_ 4+ uy * vy,

with equality whenever all the simple orbits with covers appearing as breaking orbits
in both u_Quy and v_ Ov, are even, and strict inequality if any of these simple
orbits is elliptic.

REMARK C.7. We have stated the above result with reference to one of the three
compactified moduli spaces of holomorphic buildings defined in [BEH*03], i.e. for the
degeneration of curves in a completed nontrivial symplectic cobordism. The result can be
adapted in obvious ways for the other two scenarios, namely for degenerations of curves
in a symplectization (so that each level is defined only up to R-translation and there is
no distinguished “main level”), and degenerations with respect to neck-stretching. In the
symplectization case, the freedom to choose different extensions of v and v is more useful
than one might at first imagine.
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For example, in Lemma [5.15] we considered two curves up and v in a symplectization
R x M, where up was a page of a holomorphic open book (which has only positive punc-
tures), and v was any other curve whose positive ends are all asymptotic to simple orbits
in the binding of the open book. Having shown in the previous lemma that up * u, = 0 for
all of the trivial cylinders u, over asymptotic orbits v of up, we then used a homotopy of
asymptotically cylindrical maps (Figure[5.4lin Lecture[) to prove that u=v is a sum of such
terms, and therefore vanishes. An alternative argument for the second step is illustrated
in Figure [C.T} define extensions u/» of up and v’ of v as buildings in (R x M) ® (R x M),
where v := @ © up has a trivial level added below the original curve (the trivial level is
the empty curve since up has no negative ends), and v' := v ©® v, with v, as the disjoint
union of trivial cylinders over the positive asymptotic orbits of v. Instead of exploiting
homotopy invariance as we did in Lemma [B.15] one could now apply Proposition and
write

up*v =up 0 = (J=v)+ (up*vy) =up vy,

where the last equality follows since the empty curve has zero intersection number with
everything else. The inequality is in this case an equality because every simple orbit that
has a cover appearing as a breaking orbit of both v}, and v’ is even—this is a statement
about the empty set, and is therefore true. This proves up * v = up * v,, and the latter
again vanishes due to Lemma 5.4l Morally, one can think of the replacement of v with
vy as an “unbounded homotopy,” i.e. it shifts v by R-translation infinitely far downward
so that v now occupies a lower level. In this sense, the independence of u = v with respect
to choices of extensions is just another manifestation of homotopy invariance.

The possibility of strict inequality in the third item of Proposition reveals an-
other interesting “hidden intersection” phenomenon: intersections between buildings can
be hidden in the breaking orbits between levels. Conc/rgtely, suppose uy and vy are two
sequences of smooth curves in the completed coborglism W that converge to two-level build-
ings u = u_ Quy and v = v_ Qv respectively in W © (R x M, ), such that uy and vy are
disjoint and satisfy uy * v = 0. Then the curves in each individual level do not have any
Ei\dden intersections, meaning one could make arbitrary small perturbations of the data on
W or R x M, and rely on u4 remaining disjoint from v4. But it is nonetheless possible
that u; and v, intersect each other fo/r\ all k£ large, in which case these intersections must
escape from every compact subset of W as k — o0, so as not to survive as intersections of
u_ with v_. At the same time, the intersections of u; with vy cannot congregate as k — oo
in any compact subset of R x M, after shifting the positive cylindrical end to focus on
the convergence of the upper level, as otherwise they would survive as intersections of u
with v, . Instead, intersections congregate in the increasingly wide area “between levels”
as k — o0, so that they do not appear at all in the limit. Despite this, they are accounted
for by u = v, which must in this case be strictly larger than u_ = v_ + u, = v, = 0. This
phenomenon has sometimes been exploited in applications, e.g. to define a version of con-
tact homology on the complement of a set of fixed Reeb orbits (see [HMS15]). Relatedly,
one can use a “local” version of the adjunction formula to show that the breaking orbits
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extension

—_—

Ficure C.1. An alternative to the homotopy argument depicted in Fig-
ure 5.4 of Lecture [, using the intersection number between buildings to
prove Lemma [B.T15

of a single building with embedded levels can also hide double points of simple curves that
degenerate to them; see [CW].
Looking at the definition (C.9]), one sees that in the context of Proposition [C.6]

(u_Quy)* (V- QUy) —u_ *v_ —uy *vy = Z Br(v:,7¢), where
(C.11) ()

Br(v,v') == QL(v,7) + Q- (7.7,

and the sum is over all pairs of breaking punctures, i.e. all (z,¢) with z e I'f =T and
¢ely =T, . The so-called breaking contribution Br(7.,7) € Z is independent of
the choice of trivialization 7 and vanishes if 7, and v, are disjoint, whereas if 7, = v and
ve = ™ for some k,m € N and a simple orbit 7, one extracts from (C.2) the formula

Br(7*,4™) = min {kafr (v™), ma’, (’yk)} — max {ko[ (™), ma’ (fyk)} )

Using the relation p(v) = a7 (v) — o’ (7), it is now a straightforward exercise to prove the
inequality

(C.12) min {kp(y"), mp(v")} < Br(v*,9™) < max {kp(v"™), mp(v*)} .

The breaking contributions are thus manifestly nonnegative; moreover, they vanish when-
ever 7 is even and are strictly positive if v is elliptic and all its covers are nondegenerate,
since the latter guarantees that the covers are also odd (see Remark [C.I]). This is the
reason for the inequality stated in Proposition
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REMARK C.8. If u, and w, denote the trivial cylinders over two Reeb orbits v and
~', then taking the same set of trivializations at positive end negative ends always gives
U, @ uy = 0 since u, admits a global perturbation that is compatible with 7 near infinity
and everywhere disjoint from .. Plugging in the definition of the *-pairing, one obtains
from this a geometric interpretation of the breaking contribution Br(v, '), namely

(C.13) Br(v,7') = —uy * uy,
along with the useful corollary that w., * ./ is never positive (cf. Exercise L19).

An analogue of Proposition [C.6] for the normal Chern number is sometimes needed for
applications of the adjunction formula. For a nodal curve u . § — W with nodal points
Ac S, (C.4) is not quite the right definition because X(S ) does not generally match the
Euler characteristic of the surface obtained from S by performing connected sums at all
nodal pairs. To achieve this and thus ensure that cy is continuous under degenerations
from smooth curves to nodal curves, one defines

(C.14) en(u) = (W TW) = x(S\A) + Y a” () = Y, a7 (7).
zel'f zel'y
If u has connected components uq, ..., u,,, we then have the relation
(C.15) en(u) = Y en(u) + 2 (#4).
i=1

For a building u;®...Quy in WIQ. ) .@WN, the above definition now generalizes naturally
as

(C.16) en(u O...Ouy) [01 ufTWy) — (Sk\Ak)] D, al(r) = ) ah(r),

zeF{'[N

||M2

zeF;l

where for each £k = 1,..., N, Zk denotes the (possibly disconnected) domain of the level

ug, and Ay < 3 is the set of nodal points in that domain. This leads to:

ProrosiTioN C.9. The normal Chern number is continuous with respect to the nat-

ural topology of Mg(ﬁ\/, J). Moreover, it is superadditive with respect to concatenation:
in particular, for any pair of (not necessarily stable) buildings u_ and u, for which the
concatenation u_ O u, is well defined, one has

en(u- Ouy) = en(us) + en(ug) + Y p(v:) = en(us) + en(ug),
where the sum is over all breaking punctures that connect u_ to uy, i.e. ze I't = L.

C.6. Comparison with the ECH literature

Intersection theory plays a major role in Hutchings’s theory of embedded contact homol-
ogy (ECH), and in fact early developments in ECH (notably the paper [Hut02]) provided
some of the inspiration behind Siefring’s intersection theory of punctured holomorphic
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curves. Though the =-pairing and Siefring’s adjunction formula do not usually appear in
papers on ECH, the relative intersection numbers and relative adjunction formula appear
quite prominently, with differing notational conventions, and many of the same winding
bounds that underlie Siefring’s theory also play crucial roles in ECH. The aim of this
section is to provide a glossary for translating between these two contexts.

Aside from notation, the major difference between the ECH literature and our treat-
ment in these notes is that ECH expresses all relative asymptotic quantities such as (7, (u, v)
and ¢ (u) in terms of topological invariants of certain braids. Concretely, for two asymp-
totically cylindrical curves u and v that do not have identical images, we have written the
count of intersections near infinity that appear under small perturbations moving v in the
direction of asymptotic trivializations 7 as

Qo) = > (w2 0,Q),

(2,0)elE xIF

where (7 (u, z ; v, () € Z denotes the contribution coming from the specific punctures z € I't
and ¢ € I'7. The latter can only be nonzero if v, and v, are covers of the same underlying
simple orbit ~, thus let us assume this henceforth. We wrote down Siefring’s formula for
7, (u, z; v,¢) in terms of relative winding numbers in (43]). Hutchings expresses the same
formula as follows. Writing v and v in holomorphic cylindrical coordinates (s, t) € Z+ near
the punctures z and ( respectively,? we can fix some s, » 0 and consider the restrictions of
and v to {£so} xS* = Z,; this defines a disjoint pair of (possibly multiply covered) oriented
loops in the positive or negative cylindrical end of w. Projecting them to the 3-manifold
M, then gives disjoint oriented loops 3., B : S* — M, that live in an arbitrarily small
tubular neighborhood of . If we now use the trivialization 7 to identify the neighorhood
of v with S* x D, then 8, and ; become a pair of disjoint braids—strictly speaking,
they are in general “multiply covered braids,” but one can perturb to make each of them
embedded and thus view them as honest braids without changing any essential features of
this discussion. The linking number between these two braids,

ET(BZ’ BC) € Z,

is defined as one half the signed number of crossings of strands of 3, with strands of f,
where the sign convention is that counterclockwise twists count positively. (As mentioned
in [Hut02 §3.1], this convention differs from much of the knot theory literature, but
it is used consistently in papers on ECH and we shall stick with it here as well.) The
precise relation between this linking number and Siefring’s relative asymptotic intersection
numbers is then given by

(C.17) 1o (u, 25 0,C) = FL(B2, Be),

where the sign F is opposite the signs + of the two punctures.

2Recall that we denote Z, := [0,00) x S* and Z_ := (—m0,0] x S, where the convention is to use the
former near positive punctures and the latter near negative punctures.
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The relative adjunction formula in (A7) also includes the term

1 (u) = Z vo(uy 25 u, Q) + Z o (u, 2),
z,CeTE, z#¢ zel't
which is defined only when u is a simple curve; the contribution (7, (u, z) € Z for each
puncture z can only be nonzero when the orbit ~, is multiply covered, as it is the count
of intersections in a neighborhood of z between u and a small perturbation of itself that is
pushed in the direction of the trivialization 7 near infinity. Siefring’s formula for (7, (u, 2)
in terms of winding numbers appears in ([£6), and its topological interpretation is (up to
a sign) as the writhe of the braid 3, described in the previous paragraph,

w,(0,) € Z.

Here the fact that w is simple guarantees that it is embedded in a neighborhood of the
puncture z, thus the braid 3, is automatically embedded, and its writhe is defined as the
signed number of crossings of strands, using the same sign convention mentioned above.
This is then related to (7 (u, z) by

(C.18) Loo(u, 2) = Fw(B.).
What Hutchings in [Hut02,[Hut14] calls the “total” writhe w,(u) € Z of a simple holo-
morphic curve u is defined by adding up the writhes at all positive punctures, plus linking
numbers for pairs of distinct punctures that have coinciding asymptotic orbits (up to mul-
tiplicity), and then subtracting all of the corresponding terms for the negative punctures.
This produces

wr(u) = =i (u),
thus the relative adjunction formula for a simple curve u : ¥ — W in ECH language takes
the form

(1) = x(u) + Q, (u) + w,(u) — 25(u),

where:
e c.(u):= c{(u*Tﬁ\/) is the relative first Chern number;
e x(u) := x(2) is the Euler characteristic of the domain;
e Q- (u) := u e, u is the relative self-intersection number;
e w. (u) is the total writhe as explained above;

e 0(u) is the usual algebraic count of double points and critical points.
The reader can now check that this formula is equivalent to (7).
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