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Motivation: Transversality Problems

Enumerative invariants in an ideal world:

M = manifold, X = auxiliary data on M,

= equation (PDE): |Fx(u) =0

Define “invariant” I(M,X) = #F);l(O),
for generic X, then prove. ..

“Theorem”: I(M,X) doesn't depend on X.

“Proof” : For generic homotopies {Xt}te[o,l]'

Mo 1y = {(t,u) | t € [0,1], Fx,(u) =0}

IS a compact smooth manifold with boundary.
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For example: J—holomorphic curves

(W,w) = symplectic manifold
J = compatible almost complex structure
(X, 7) = Riemann surface

M ={u:X —>W | Tuoj=JoTu}/reparam.

Analysis: | M = 5}1(0)/symmetries , Where §;
is a smooth Fredholm section of a Banach
space bundle.

u = the linearization of 9; at wu.

We say v : (XZ,5) — (W,J) in M is regular if
D, is surjective.

= near u, 5}1(0) is a smooth manifold of
dimension = Fredholm index of Dy,.

ind(u) := “dim M near u"




An almost wonderful fact:

Theorem: For generic J, every simple curve
u € M is regular.

“Simple” = “not multiply covered’ :

U F= v o,

where ¢ : (XZ,5) — (X', 3') is a branched cover
with deg(y) > 2.

M is not generally smooth:
regularity fails at multiple covers.

How bad is this?

E.g. sometimes “dim oM > dim M :




Possible transversality solutions:

1. Abstract perturbations: 9;(u) = «.

This is the only way to do things in full
generality, but it has some disadvantages:

e Analysis requires new methods,
e.g. polyfold theory

e Destroys nice geometric properties, such
as positivity of intersections

2. Hope for a miracle!
For curves that are “nice” geometrically,
exploit these properties to show:

“Nice curves live in nice moduli spaces.”



Recall: the compactification of M

M := {nodal J—holomorphic buildings}

Goal:

Show that if u € M is “nice”, so is its
connected component M, C M




Foliations and Miracles of Analysis
I. Symplectizations

(M, ) = contact 3—manifold
Xy = Reeb vector field on M

On W : =R x M, choose an R—invariant
almost complex structure J

Consider punctured J—holomorphic curves
t=(a,u): > —-RxM

asymptotic to closed Reeb orbits.

We say 4 = (a,u) is nicely embedded if u :
> — M is an embedding into the 3—manifold.
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Nicely embedded =

e If ind(z) = 2, nearby curves foliate a
neighborhood of w(X) C M.

o Ifind() = 1, u(>X) C M appears isolated.

These can form ‘finite enerqgy foliations”:




Theorem (arXivimath/0703509)

If w is nicely embedded, then all buildings in
ﬂﬁ consist of nicely embedded curves and
trivial cylinders over orbits.

Corollary: for generic J, all curves appearing

in Mgy are regular

= My is a compact manifold with boundary.
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Application:
homotopies of finite energy foliations
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II. The closed case

(W, J) = closed almost complex 4—manifold,
(X, j) = closed Riemann surface

u:(X,7) — (W,J) nicely embedded «—
embedded, ind(u) =2 and ueu =0

(Can also generalize for immersed curves with
fixed double points.)

Theorem (< adjunction formula):

u nicely embedded and J generic =
non-embedded curves in M, are nodal, with
two embedded, transverse index O pieces.

Corollary: regularity for generic J

= (by gluing) M, is a closed manifold.
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III. The general (cobordism) case

(W, J) = 4—manifold with cylindrical ends
(3, j) = punctured Riemann surface

[O, OO) X M_|_

o= o——

(—oc0,0] x M_

Conjecture: u nicely embedded =
M, is a smooth object (in some sense)

Partial result (arXiv:0802.3842):
u nicely embedded and J generic =
M, is a smooth orbifold, with isolated singu-
larities that consist of unbranched multiple
covers over embedded index O curves.
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Why orbifolds?
A lower-dimensional example:

M = smooth l1—parameter family of
(unparametrized) closed orbits

Regularity =
{parametrized orbits} = smooth surface
(Mobius strip)

= M = surface/S?.

Middle orbit has stabilizer Z, under Sl—action,
= M = open subset of R/Z>.

symmetry < orbifold singularities
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For holomorphic curves:
M 2 §71(0) /symmetries

u regular = 5}1(0) is a manifold near u.

Stabilizer of u is

Aut(u) :={p: (X,5)=(,5) | u=uop}.

This can be nontrivial if w is multiply covered.

.. Regularity =

nbhd(u) C M

Y

open subset C Ri”d(“)/ Aut(u).

Task: prove regularity for all curves in My,
including the multiple covers.
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Idea of Proof

Define the normal Chern number:
cy(u) == c1 (' TW) — x(X)
Then the adjunction formula is

ueu=26(u) + cy(u),
= nicely embedded curves have cy(u) = 0.

The following automatic transversality result
for closed curves holds in dimension four for
all (not just generic) J:

Theorem (Hofer-Lizan-Sikorav):
If u:X — W% is immersed and satisfies

ind(u) > cn(u)
then wu is regular.

o When u; — u = v oy, regularity follows if
u Is immersed. Indeed, one can show:

(1) v is embedded,

(2) ¢ is unbranched.

.. Multiple covers can appear, but
only the harmiless type!
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Generalizing Hofer-Lizan-Sikorav:

Remark 1: One can define ¢y (u) for punc-
tured curves so that it suitably generalizes
“cq1 of the normal bundle™.

Remark 2: There exists a ‘“tangent-normal”
splitting

wWTW =T, & Ny
even if v has critical points. Here
c1(Ny) = eny(u) — # Crit(u).

One can then prove:
Theorem ( ‘generalized automatic Mm"):
If w ;> — W*% satisfies

ind(u) > cy(u) + # Crit(u),

then u is regular.

Remark 3: That's nice, but we won’'t use it.
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Remark 4: Let DY := the normal part of
D,. Then it turns out,

dim ker Dy, = dim ker DY 4 2 [# Crit(u)]

Now if u; are nicely embedded, u; — u = voy,
v IS embedded and ¢ is branched, this implies
dim ker D, = 2 [# Crit(p)].

This gives a contradiction, because all v/ near
u are then of the form

/ /
U = VoY

/

for ' near o.
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