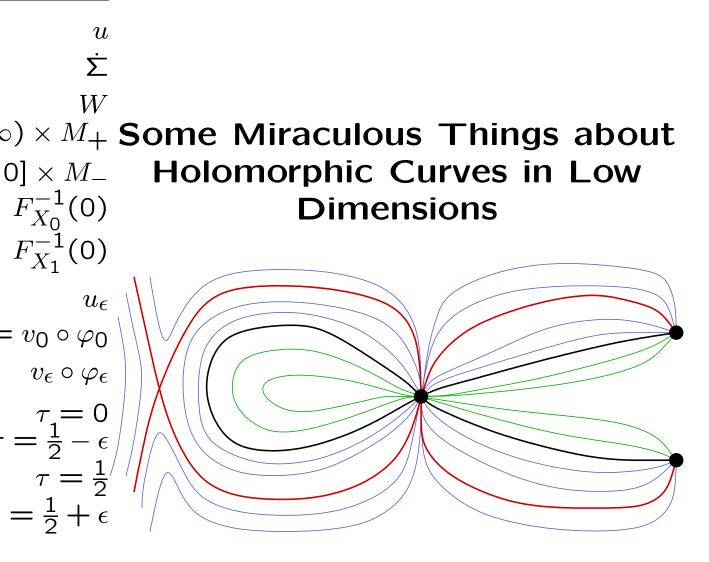
cements



Chris Wendl

ETH Zürich

Motivation: Transversality Problems

Enumerative invariants in an ideal world:

M = manifold, X = auxiliary data on M,

$$\Rightarrow$$
 equation (PDE): $F_X(u) = 0$

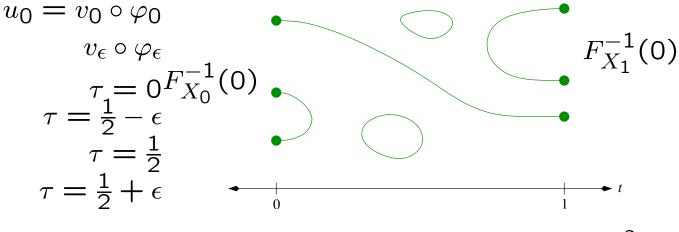
eplacements for generic X, then prove... $\dot{\Sigma}$

"Theorem": I(M, X) doesn't depend on X. $[0, \infty) \times M_+$

 $-\infty, 0]$ ***Proof"**: For generic homotopies $\{X_t\}_{t \in [0,1]}$,

 $\mathcal{M}_{[0,1]} := \{(t,u) \mid t \in [0,1], F_{X_t}(u) = 0\}$

is a compact smooth manifold with boundary. u_ϵ



For example: *J*-holomorphic curves

 $(W, \omega) =$ symplectic manifold J = compatible almost complex structure $(\Sigma, j) =$ Riemann surface

 $\mathcal{M} := \{ u : \Sigma \to W \mid Tu \circ j = J \circ Tu \} / \text{reparam}.$

Analysis: $\mathcal{M} \cong \bar{\partial}_J^{-1}(0)$ /symmetries, where $\bar{\partial}_J$ is a smooth Fredholm section of a Banach space bundle.

 $D_u :=$ the linearization of $\bar{\partial}_J$ at u.

We say $u : (\Sigma, j) \to (W, J)$ in \mathcal{M} is regular if D_u is surjective.

 \Rightarrow near u, $\bar{\partial}_J^{-1}(0)$ is a smooth manifold of dimension = Fredholm index of D_u .

 $ind(u) := "dim \mathcal{M} near u"$

An almost wonderful fact:

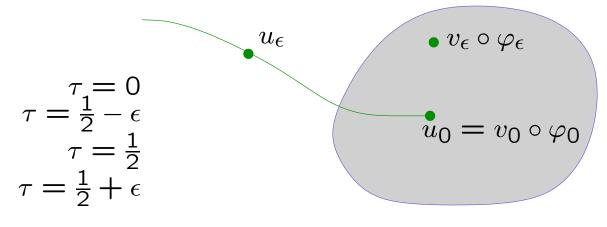
Theorem: For generic J, every simple curve $u \in \mathcal{M}$ is regular.

"Simple" = "not multiply covered":

 $u \neq v \circ \varphi,$

 $\mathcal{M} \notin not \text{ generally smooth:}$ $[0,\infty) \times \mathcal{A}_{\mathcal{U}} \text{ arity fails at multiple covers.}$ $-\infty,0] \times M_{-}$ $F_{X_{0}} \text{ bad is this?}$ $F_{X_{0}}^{-1}(0)$ E.g. sometimes "dim $\partial \mathcal{M} > \dim \mathcal{M}$ ":

<u>۲</u>



Possible transversality solutions:

1. Abstract perturbations: $\bar{\partial}_J(u) = \varepsilon$.

This is the only way to do things in full generality, but it has some disadvantages:

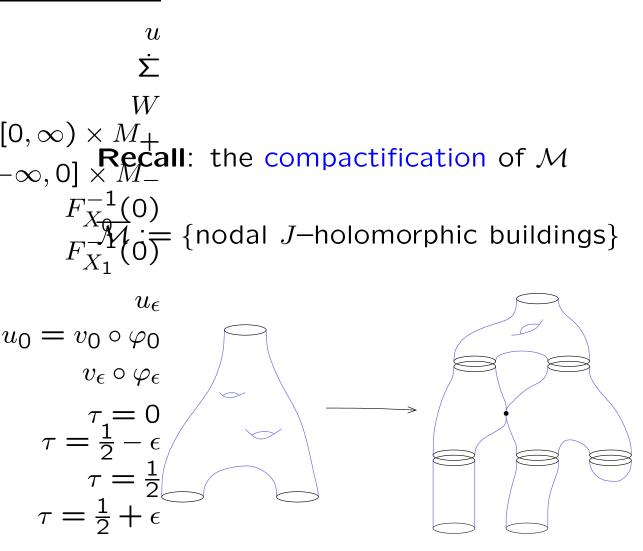
- Analysis requires new methods, e.g. *polyfold theory*
- Destroys nice geometric properties, such as *positivity of intersections*

2. Hope for a **miracle**!

For curves that are "nice" geometrically, exploit these properties to show:

"Nice curves live in nice moduli spaces."

eplacements



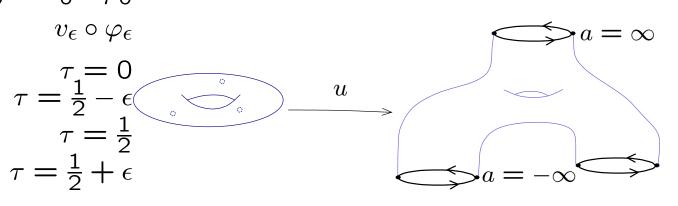
Goal:

Show that if $u \in \mathcal{M}$ is "nice", so is its connected component $\overline{\mathcal{M}}_u \subset \overline{\mathcal{M}}$

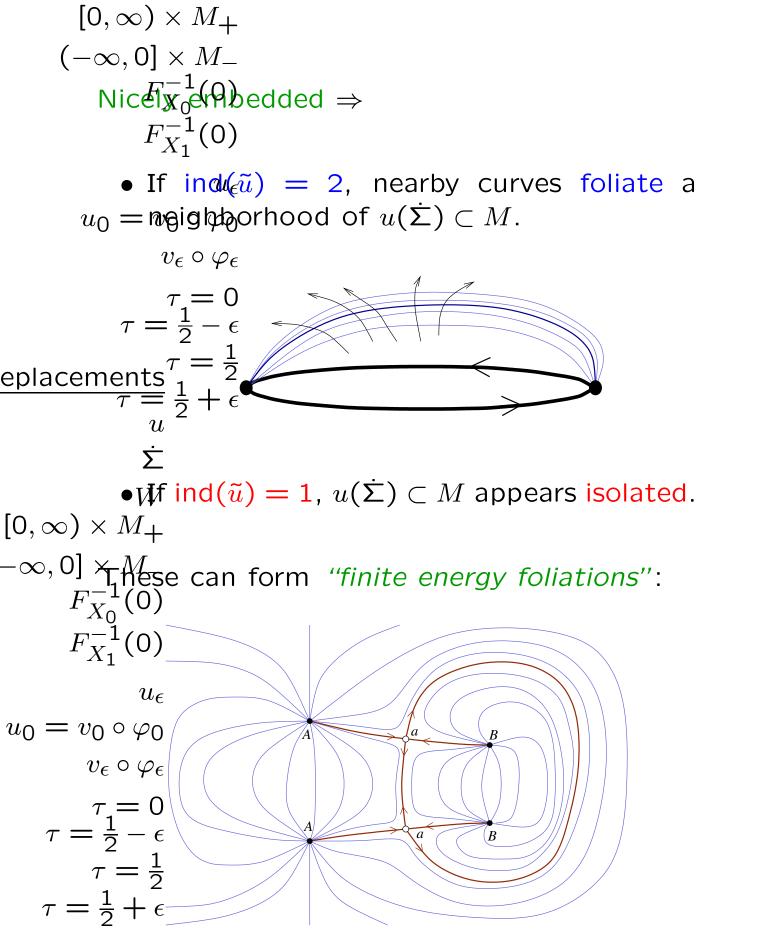
Foliations and Miracles of Analysis

I. Symplectizations

 $\begin{array}{ll} \underline{\text{lacements}},\lambda) = \text{contact } 3-\text{manifold} \\ \hline X_{\hat{u}} = \text{Reeb vector field on } M \\ \widehat{\nabla}_{\hat{u}}^{\hat{\Sigma}} & W := \mathbb{R} \times M, \text{ choose an } \mathbb{R}-\text{invariant} \\ \widehat{\nabla}_{\hat{u}}^{\hat{\Sigma}} & W := \mathbb{R} \times M, \text{ choose an } \mathbb{R}-\text{invariant} \\ \infty) \times M \\ \underline{M} & \text{most complex structure } \tilde{J} \\ \infty, 0] \times M_{-} \\ F_{X_{0}}^{-1}(\widehat{O}) & \text{nsider punctured } \tilde{J}-\text{holomorphic curves} \\ F_{X_{1}}^{-1}(0) & \tilde{u} = (a, u) : \dot{\Sigma} \to \mathbb{R} \times M \\ a \\ \underline{M} & \text{symptotic to closed Reeb orbits.} \\ 0 = v_{0} \circ \varphi_{0} \end{array}$



We say $\tilde{u} = (a, u)$ is **nicely embedded** if u: $\dot{\Sigma} \rightarrow M$ is an embedding *into the* 3-*manifold*.



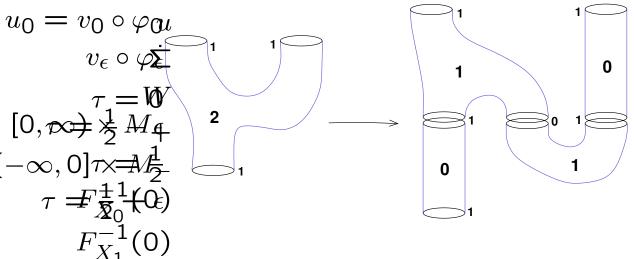
eplacements

Theorem (arXiv:math/0703509)

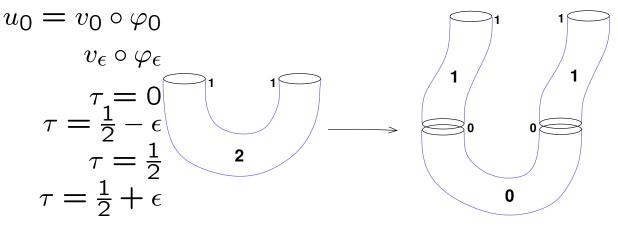
If $\tilde{u}_{\underline{i}}^{u}$ is nicely embedded, then all buildings in $\overline{\mathcal{M}}_{\widetilde{u}}^{\Sigma}$ consist of nicely embedded curves and trivial cylinders over orbits. $[0,\infty) \times M_+$

$-\infty, 0$] **Corollary**: for generic \tilde{J} , all curves appearing $F_{\chi} \vec{h} (\overline{M}_{\tilde{u}})$ are regular

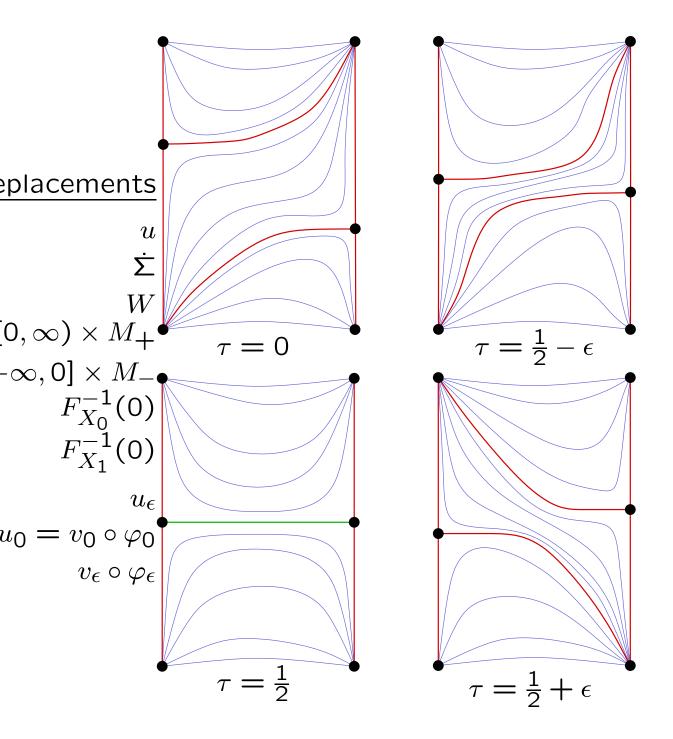
is a compact manifold with boundary. replacemen;



An example with non-generic J:



Application: homotopies of finite energy foliations



replacements closed case

$$(W, J_{\Sigma}) = \text{closed almost complex 4-manifold,}$$

$$(\Sigma, j_{W}) = \text{closed Riemann surface}$$

$$[0, \infty) \times M_{+}$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(-\infty, 0]^{u} \colon (\Sigma, j) \to (W, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \iff$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \implies$$

$$(0)^{u} \colon (\Sigma, j) \to (U, J) \text{ nicely embedded} \implies$$

$$(0)$$

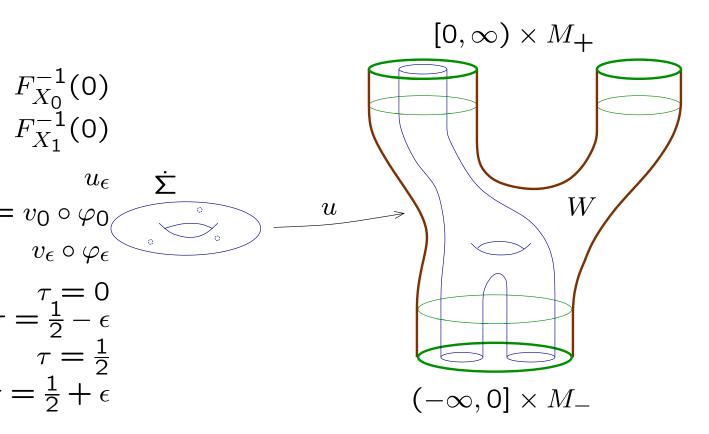
Theorem (\Leftarrow adjunction formula): u nicely embedded and J generic \Rightarrow non-embedded curves in $\overline{\mathcal{M}}_u$ are nodal, with two embedded, transverse index 0 pieces.

Corollary: regularity for generic J

 \Rightarrow (by gluing) $\overline{\mathcal{M}}_u$ is a closed manifold.

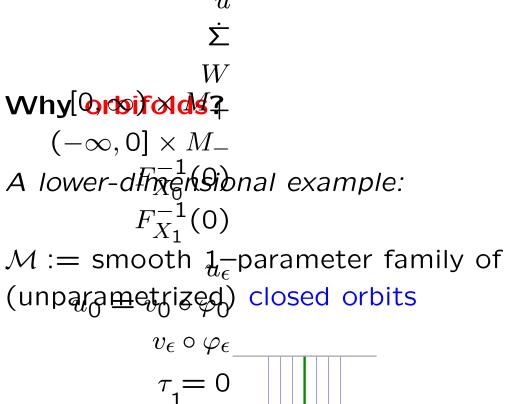
cements III. The general (cobordism) case

(W, J) = 4-manifold with cylindrical ends $(\dot{\Sigma}, j) =$ punctured Riemann surface



Conjecture: *u* nicely embedded \Rightarrow $\overline{\mathcal{M}}_u$ is a smooth object (in some sense)

Partial result (arXiv:0802.3842): u nicely embedded and J generic \Rightarrow \mathcal{M}_u is a smooth **orbifold**, with isolated singularities that consist of **unbranched** multiple covers over embedded index 0 curves.



 $\tau = 0$ $\tau = \frac{1}{2} - \epsilon$ $\tau = \frac{1}{2}$ $\tau = \frac{1}{2} + \epsilon$

Regularity \Rightarrow

{parametrized orbits} \cong smooth surface (*Möbius strip*)

 $\Rightarrow \mathcal{M} \cong \operatorname{surface}/S^1.$

Middle orbit has stabilizer \mathbb{Z}_2 under S^1 -action, $\Rightarrow \mathcal{M} \cong$ open subset of \mathbb{R}/\mathbb{Z}_2 .

symmetry \Leftrightarrow *orbifold singularities*

For holomorphic curves:

 $\mathcal{M} \cong \bar{\partial}_J^{-1}(0) / \text{symmetries}$ $u \text{ regular} \Rightarrow \bar{\partial}_J^{-1}(0) \text{ is a manifold near } u.$

Stabilizer of u is

$$\operatorname{Aut}(u) := \{ \varphi : (\Sigma, j) \xrightarrow{\sim} (\Sigma, j) \mid u = u \circ \varphi \}.$$

This can be nontrivial if u is multiply covered.

 \therefore Regularity \Rightarrow

$$\mathsf{nbhd}(u) \subset \mathcal{M}$$
 \cong open subset $\subset \mathbb{R}^{\mathsf{ind}(u)} / \mathsf{Aut}(u).$

Task: prove regularity for all curves in \mathcal{M}_u , *including the multiple covers*.

Idea of Proof

Define the *normal Chern number*:

$$c_N(u) := c_1(u^*TW) - \chi(\Sigma)$$

Then the adjunction formula is

$$u \bullet u = 2\delta(u) + c_N(u),$$

 \Rightarrow nicely embedded curves have $c_N(u) = 0$.

The following *automatic transversality* result for closed curves holds in dimension four for *all* (not just generic) J:

Theorem (Hofer-Lizan-Sikorav): If $u : \Sigma \to W^4$ is immersed and satisfies

$$\operatorname{ind}(u) > c_N(u)$$

then u is regular.

: When $u_j \rightarrow u = v \circ \varphi$, regularity follows if *u* is immersed. Indeed, one can show: (1) *v* is embedded, (2) φ is unbranched.

.: Multiple covers can appear, but only the harmless type!

Generalizing Hofer-Lizan-Sikorav:

Remark 1: One can define $c_N(u)$ for punctured curves so that it suitably generalizes " c_1 of the normal bundle".

Remark 2: There exists a "tangent-normal" splitting

$$u^*TW = T_u \oplus N_u$$

even if u has critical points. Here

$$c_1(N_u) = c_N(u) - \#\operatorname{Crit}(u).$$

One can then prove:

Theorem ("generalized automatic \pitchfork "): If $u : \dot{\Sigma} \to W^4$ satisfies

$$ind(u) > c_N(u) + \# Crit(u),$$

then u is regular.

Remark 3: That's nice, but we won't use it.

Remark 4: Let $D_u^N :=$ the *normal part* of D_u . Then it turns out,

dim ker D_u = dim ker D_u^N + 2 [# Crit(u)]

Now if u_j are nicely embedded, $u_j \rightarrow u = v \circ \varphi$, v is embedded and φ is branched, this implies

dim ker
$$D_u = 2 \left[\# \operatorname{Crit}(\varphi) \right]$$
.

This gives a contradiction, because all u' near u are then of the form

$$u' = v \circ \varphi'$$

for φ' near φ .