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Preface

This book is an expanded version of a set of lecture notes for a minicourse I gave at
IRMA Strasbourg in October 2012 as part of the Master Classes on Holomorphic Curves
and Applications to Enumerative Geometry, Symplectic and Contact Topology. The focus
of the minicourse was on certain specifically low-dimensional aspects of the theory of pseu-
doholomorphic curves, which lend a distinctive flavor to the study of symplectic and contact
manifolds in dimensions four and three respectively. While most of these topics are covered
to some extent elsewhere in the literature (notably in [MS12], the standard reference in the
field), they usually do not take center stage, and I have sometimes encountered experts in
symplectic topology who seem only vaguely aware of why holomorphic curve methods are so
much more powerful in dimension four than in higher dimensions.

As a convincing demonstration of this power, I chose to explain the main results of
McDuff’s classic paper [McD90] characterizing rational and ruled symplectic 4-manifolds.
First proved around the end of the 1980’s, these results are now considered fundamental in
the study of symplectic 4-manifolds, and their proofs are quite beautiful and natural and,
from a modern perspective, not conceptually difficult. A beginner however might find them
unfairly intimidating if attempting to read the original papers on the subject, which were
written before many of what we would now call the “standard” techniques had been fully
developed. My goal therefore was to present these proofs in the most elegant way that I
could, using modern techniques that I regard as essential for researchers in the field to learn.
Since I had limited time and did not want to get bogged down with analysis, most of the
necessary analytical background on holomorphic curves was stated without proofs, though
I have endeavored in this book at least to give precise statements of all required results
and brief informal explanations of why they are true, with references to other sources where
the details may be found. In contrast to other available treatments of this subject (e.g. in
[MS12/[LM964a]), I have placed considerable emphasis on the natural role played by Lefschetz
pencils and fibrations, a distinctly topological (rather than analytical) topic which has exerted
a similarly large influence on symplectic topology since the 1990’s.

A second objective of the original minicourse and of this book is addressed in the last
two chapters, which discuss contact topology. My own motivation to understand McDuff’s
rational/ruled paper came largely from this direction, as it had become clear through the
work of Hofer-Wysocki-Zehnder and others that the Gromov-McDuff technique of foliating
symplectic 4-manifolds by holomorphic curves also had many deep implications for contact
3-manifolds. In my own research, these implications have been most apparent through the
relationship between holomorphic curves and Lefschetz fibrations on symplectic fillings, which
connects naturally with the study of open book decompositions on contact manifolds. The
so-called planar contact manifolds—those which are supported by planar open books—have
turned out to play an analogous role in the three-dimensional contact world to the one played
by rational and ruled surfaces in dimension four. The last chapter is an attempt to illustrate
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this analogy, focusing in particular on two problems of fundamental importance in the field:
the existence of closed Reeb orbits (i.e. the Weinstein conjecture), and the classification of
symplectic fillings. I have included also in Chapter [8 some general discussion of the context
for these problems and the historical development of the techniques used to study them,
reaching from Conley and Zehnder’s 1982 solution of the Arnol’d conjecture on the torus to
the introduction in 2000 and (as of this writing not yet complete) subsequent development of
symplectic field theory. These last two chapters are meant as a survey, so they allow themselves
the luxury of not presenting complete proofs, but cover correspondingly more ground.

Chapter [1 is a later addition that was not part of the original minicourse, but fits in
thematically with the material of the first six chapters. The subject here is the relationship
between McDuff’s characterization of rational/ruled symplectic 4-manifolds and the Gromov-
Witten invariants, in particular the beautiful theorem that a symplectic 4-manifold is sym-
plectically uniruled if and only if it is a blowup of a rational or ruled surface. Several results
of fundamental importance can be understood as consequences of this theorem, e.g. that
the class of (blowups of) symplectic rational or ruled surfaces is invariant under birational
equivalence, and that the minimal blowdown of a symplectic 4-manifold is unique unless it is
rational or ruled. One good reason to write this chapter was that while the theorem “uniruled
= rational /ruled” has evidently been known to experts for at least 20 years, I am not aware
of any previous source in the literature that both contains the statement and explains why it
is true. More seriously, McDuff’s paper [McD92] on immersed spheres, which carries out the
hard part of the proof, seems not to have penetrated the public consciousness nearly as much
as its predecessor [McD90]. One reason for this is surely that the main proof in [McD92]
is significantly more intricate than anything in [McD90], and another is that the result was
superseded a short time later by developments from Seiberg-Witten theory. Since I had never
planned to discuss Seiberg-Witten theory in my minicourse, it therefore seemed natural after
writing the notes that I should try to supplement them with a readable account of the con-
tents of [McD92], and while I cannot say with any certainty whether I have succeeded, the
outcome of that effort is Chapter [7 of this book. Since it was relevant, I took the opportunity
to add a gentle introduction to Gromov-Witten theory, and the restriction to dimension four
allowed me to do this in a way that some readers may find less intimidating than the standard
presentation in [MS12]. It should be added that my explanation of [McD92] would have
been completely impossible without some extremely valuable input from McDuff herself, who
became enthusiastic about this effort before I had quite understood what I was getting myself
into. The proof I've written up in §7.3] is essentially one that she explained to me after she
sat down to reconsider the original argument of [McD92].

There are several topics that might have seemed natural to include but have been glaringly
omitted: foremost among these is the substantial contribution made by Seiberg-Witten theory
to the classification of symplectic structures on rational and ruled surfaces, including work of
Taubes [Tau95/Tau00], Lalonde-McDuff [LM96b], Tian-Jun Li and Ai-Ko Liu [LL95/[Li99),
Liu96]. I will mention a few such results in §I.2] and §7.3.1] mainly for the sake of cultural
knowledge, but without any serious attempt to explain why they are true. It would have been
even more unrealistic to attempt a nontrivial discussion of Seiberg-Witten theory in contact
geometry, thus my exposition says almost nothing about Taubes’s solution to the Weinstein
conjecture in dimension three [Tau07], nor its connections to the SFT-like invariant known
as Embedded Contact Homology (see [Hut10]) and its many impressive applications. The
interesting topic of finite energy foliations (see e.g. [HWZ03'WenO08|F'S|) will be alluded
to briefly but then forgotten, and my discussion of Lefschetz fibrations on symplectic fillings
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will necessarily omit many additional applications for which they can profitably be used,
e.g. in the study of Stein manifolds [(")SO4aJ and Lagrangian intersection theory [Sei08b]. 1
have tried at least to supply suitable references wherever possible, so the reader should never
assume that what I have to say on any given topic is all that can be said.

The target reader for this book is assumed to have at least a solid background in basic
differential geometry and algebraic topology (including homological intersection numbers and
the first Chern class), as well as some basic literacy concerning symplectic manifolds (Dar-
boux’s theorem, Moser’s stability theorem, the Lagrangian neighborhood theorem etc.) as
found e.g. in the early chapters of [MS17]. I have tried to avoid explicitly requiring prior
knowledge of holomorphic curves—hence the technical overview in Chapter 2l—but readers
who already have such knowledge will probably find it helpful (and some of those will be
content to skip most of Chapter ).

Acknowledgments. I would like thank Emmanuel Opshtein, IRMA Strasbourg and the
CNRS for bringing about the workshop that gave rise to the lecture notes on which this book
is based. Many thanks also to Patrick Massot for his careful reading and helpful comments
on a preliminary version, Janko Latschev for providing the proof of Proposition BI0] and
most especially to Dusa McDuff for her invaluable explanations of the paper [McD92|] and
for many constructive comments on the first draft of Chapter [1

Much of the writing of this book was carried out at University College London, where 1
was supported in part by a Royal Society University Research Fellowship.
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CHAPTER 1

Introduction

The main subject of this book is a set of theorems that were among the earliest major
applications of pseudoholomorphic curves in symplectic topology, and which illustrate the
power of holomorphic curves to turn seemingly local information into global results. The
term “local information” here can mean various things: in the results of Gromov and McDuff
that will be our main topic, it refers to the existence of a symplectic submanifold with cer-
tain properties. In Chapter [@, we will also sketch some more recent results of this nature in
contact topology, for instance classifying the symplectic fillings of a given contact manifold.
The “local” information in this case is the boundary of a symplectic manifold, which some-
times completely determines the interior. Such phenomenona are consequences of the rigid
analytical properties of pseudoholomorphic curves in symplectic settings.

1.1. Some examples of symplectic 4-manifolds and submanifolds

If (M, w) is a symplectic manifold, we say that a submanifold S < M is symplectically
embedded (and we thus call it a symplectic submanifold) if w|rg defines a symplectic
form on S, i.e. the restriction of w to S is nondegenerate. Our focus will be on situations
where dim M = 4 and dim .S = 2, in which case we can take advantage of the homological
intersection product

H2(M) X HQ(M) — 7
(A,B) — A- B,

defined by counting (with signs) the intersections of any two transversely intersecting im-
mersed submanifolds that represent A and B (see for example [Bre93]). The work of Gro-
mov [Gro85] and McDuff [McD90] revealed that in the world of symplectic 4-manifolds, a
special role is played by those which happen to contain a symplectically embedded 2-sphere
S < (M,w) with
[S]-[S] = 0.

We shall state some of the important results about these in §I.2] below, but first, let us take
a brief look at some specific examples. The upshot of the results we will discuss is that these
are in fact the only examples of closed symplectic 4-manifolds containing such an object.

ExAMPLE 1.1. Let o1 and o9 denote two area forms on S2. Then
(52 X 52,0'1 &) 0'2)

is a symplectic manifold, carrying what we call a split symplectic structure. For any z € S2,
the submanifolds S; := S? x {z} and Sy := {z} x S? are each symplectically embedded
and have self-intersection number 0. Examples with positive self-intersection may be found
as follows: if we identify S? with the extended complex plane C U {00}, then any complex
submanifold of $? x S? is also a symplectic submanifold of (S? x S2, 01 ® 03). Now choose
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2 1. INTRODUCTION

a holomorphic map f : S? — S? of degree d > 0 (i.e. a rational function), and consider the
graph

Sri=A{(z,f(2)) | z€ 5%} = §* x S%
This is a symplectic submanifold, and since [E¢] = [S1]+d[S2] € H2(S5? x 5?) and [S1]-[S2] =
1, we have

[S/] - [24] = [S1] - [S1] + 2d[S1] - [S2] + d*[S2] - [S2] = 2d > 0.

EXERCISE 1.2. For each d > 0, find explicit examples of holomorphic functions f, g : $? —
S? of degree d such that the homologous symplectic submanifolds ¥ fr2g C 52 x S? defined
as in Example [[LT] have exactly 2d intersections with each other, all transverse and positive.

ExaMPLE 1.3. Suppose 7 : M — ¥ is a smooth fiber bundle whose base and fibers are
each closed, connected and oriented surfaces. We say that a symplectic structure w on M is
compatible with this fibration if it is nondegenerate on all the fibers; this makes (M,w) into
the total space of a symplectic fibration (see [MS17, Chapter 6]), and each fiber is then
a symplectic submanifold with self-intersection number 0. If the fiber has genus 0, we call
(M,w) a symplectic ruled surface. Observe that Example [[LT] above is the simplest special
case of this. By a well-known theorem of Thurston [Thu76], every smooth oriented S?-bundle
over a closed oriented surface admits a unique deformation class of symplectic structures for
which it becomes a symplectic ruled surface. We will prove a generalization of this theorem
in Chapter [B} see Theorem 3.33]

ExaMPLE 1.4. The complex projective space CP" is a complex n-dimensional manifold
that also has a natural symplectic structure. It is defined as the space of all complex lines in
C"™*!, which we can express in two equivalent ways as follows:

CP" = (Cn+1\{0})/(c* _ S2n+1/‘91.

In the first case, we divide out the natural free action (by scalar multiplication) of the multi-
plicative group C* := C\{0} on C""!\{0}, and the second case is the same thing but restricting
to the unit sphere S?"*! — C"*! = R?"*+2 and unit circle S' ¢ C = R2. One denotes the
equivalence class in CP" represented by a point (z, ..., z,) € C*™1\{0} by

[20 :...: 2,] € CP™.
To see the complex manifold structure of CP", notice that for each k = 0,...,n, there is an
embedding
(1.1) 1 C" > CP": (21,...,2n) — |21t o yzlm1 s Loz oot 20,
whose image is the complement of the subset
CP ! ~ {[21 St zp—1:0 2K 2] €CP ‘ (215, 2n) EC”\{O}}.

It is not hard to show that if the maps ngl are thought of as complex coordinate charts
on open subsets of CP", then the transition maps ijl o t; are all holomorphic. It follows
that CP"™ naturally carries the structure of a complex manifold such that the embeddings
tp + C" — CP" are holomorphic. Each of these embeddings also defines a decomposition
of CP" into C" U CP"!, where CP"~! is a complex submanifold of (complex) codimension
one. For the case n = 1, this decomposition becomes CP' = C U {point} = S?, so this is
simply the Riemann sphere with its natural complex structure, where the “point at infinity”
is CPY. In the case n = 2, we have CP? >~ C2 U CP!, and one sometimes refers to the complex
submanifold CP! c CP? as the “sphere at infinity”.
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The standard symplectic form on CP" is defined in terms of the standard symplectic form
on C"*1. The latter takes the form

n+1
wse = Y. dp; A dgj,
j=1
where we write the natural coordinates (21, ..., 2p+1) € C"* as z; = pj+ig; forj =1,...,n+

1. If {, ) denotes the standard Hermitian inner product on C"*!, the above can be rewritten
as
wet(X,Y) = Im(X, V).

We claim that the restriction of wg to the unit sphere S2"*! < C"*! descends to a well-
defined 2-form on the quotient S?"*1/S! = CP". Indeed, the expression above is clearly
invariant under the S'-action on S?"*! and the kernel of wg|pg2nt1 spans the fibers of the
orbits of this S'-action (i.e. the fibers of the Hopf fibration), hence for any p € S?"*! with
vectors X, X', Y € T,5*"! such that X and X’ project to the same vector in T'(CP"), we
have wgt(X,Y) = wst(X',Y). The resulting 2-form on CP" will be denoted by wgg, and it is
characterized by the condition

(1.2) pr¥ wrs = Wst|pgen+,

where pr denotes the quotient projection S?"*+! — §27+1/gl — CP". This expression shows
that wpg is closed. The nondegeneracy of wgg follows from the observation that for the natural
complex structure i : TCP"* — TCP",

(1.3) wrs(X,1X) > 0 for every nontrivial X € T(CP"),

implying not only that wrg is symplectic, but also that every complex submanifold of CP"
is a symplectic submanifold. In fact, wpg is also compatible with the complex structure
of CP" in the sense that the pairing grs(X,Y) := wps(X,7Y") defines a Riemannian metric,
making wrg a Kahler form. The metric grg is the one induced from the round metric of
S§2ntl = €™+ on the quotient CP" = §?7*1/S1. it is known as the Fubini-Study metric.
Restricting to n = 2, the sphere at infinity CP' < CP? is a complex and therefore also
symplectic submanifold, and we claim that its homology class in Ho(CP?) satisfies

(1.4) [CP'] - [CP'] = 1.

This is a well known fact about the homology of CPP?, and can also be viewed as an example
of the basic principle of projective geometry that “any two lines intersect in one point”. One
can see it explicitly from the following decomposition, which will be relevant to the main
results below. Observe that for any ¢ € C, the holomorphic embedding

uc:C—C?: 2z (2,0)

extends naturally to a holomorphic embedding of CP! in CP2. Indeed, using ts to include C2
in CP?, u¢(z) becomes the point [z : ¢ : 1] = [1: (/2 : 1/z], and as z — o0, this converges to
the point
xg:=[1:0:0]

in the sphere at infinity. One can check using alternate charts that this extension is indeed
a holomorphic map. Together with the sphere at infinity, the collection of embeddings u :
CP! — CP? for all ¢ € C thus gives a smooth family of complex submanifolds that foliate
the region CP?\{z}, but all intersect each other transversely at z( (see Figure [LT)). Since
they are all homologous to CP! — CP? and transverse intersections of complex submanifolds
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CP*

CP?

FIGURE 1.1. CP?\{zo} is foliated by holomorphic spheres that all intersect at .

always count positively, (4] follows. From a different perspective, the spheres parametrized
by u¢ are precisely the fibers of the map

(1.5) T (C]P’Q\{[l :0: O]} — (C]P’l . [2’1 L Z9 2’3] —> [22 : 23],

thus slightly generalizing the notion of a symplectic fibration discussed in Example [[L3l This
is our first example of a Lefschetz pencil, a notion that will be examined in detail in Chapter 3l

EXERCISE 1.5. Generalizing the sphere at infinity, CP" contains holomorphically embed-
ded copies of CP* for each k < n, defined as the set of all points [20 ¢ ... 2] with n — k
chosen coordinates set to zero.

(a) Show that for every submanifold of this form, the inclusion ¢ : CP¥ < CP" satisfies
t*wps = wrg, S0 in particular these submanifolds are all symplectic.

(b) Show that §-p1 wps = 7. Hint: find an embedding ¢ : C — S3 such that for the
projection pr : §3 — CP* = $3/S', proy is a diffeomorphism of C to the complement
of a point in CP*. Then use ([L.2)) to integrate (prop)*wrs over C.

ExaMPLE 1.6. The symplectic blowup operation provides an easy way of locally modifying
any symplectic manifold to a new one with slightly more complicated topology. We will review
the details of this construction in Chapter Bl but topologically, one can picture the blowup
of a smooth oriented 4-manifold M as a 4-manifold obtained by picking a point p € M and
an integrable complex structure near p, and replacing p with the space of complex lines in
T,M, i.e. with a copy of CP! =~ S2. The resulting oriented manifold M turns out to be
diffeomorphic (see Exercise B.3) to M #@2, where the bar over CP? indicates a reversal of
its usual orientation. In the symplectic category (see §3.2]), blowing up can more accurately
be understood as replacing a closed Darboux ball E}; c (M,w) of some radius R > 0 with a
symplectically embedded sphere E (]\7 ,@), which has symplectic area mR? and satisfies

[E]-[E] = —1.
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Symplectically embedded spheres with self-intersection —1 are referred to as exceptional
spheres. One says more generally that (]\7 ,w) is a blowup of (M,w) if it can be obtained
from (M,w) by a finite sequence of symplectic blowup operations. The inverse operation,
called the symplectic blowdown, can be defined by removing neighborhoods of exceptional
spheres and replacing them with Darboux balls of appropriate size.

Observe now that if we take any of our previous examples where (M,w) contains a sym-
plectic sphere S with [S] - [S] = 0 and blow them up along a Darboux ball disjoint from S,
the resulting blowup still contains S and its self-intersection number is unchanged.

DEFINITION 1.7. We will refer to a symplectic 4-manifold as a blown-up symplectic
ruled surface if it is either a symplectic ruled surface or is obtained from one by a sequence
of symplectic blowup operations.

DEFINITION 1.8. A symplectic rational surface is a symplectic 4-manifold that is
obtained from (CP?, wrs) by a finite sequence of symplectic blowup and blowdown operations
and symplectic deformations.

DEFINITION 1.9. A symplectic 4-manifold (M,w) is called minimal if it cannot be ob-
tained from any other symplectic 4-manifold by blowing up, or equivalently, if it contains no
exceptional spheres.

EXERCISE 1.10. Suppose (M,w) is a closed symplectic 4-manifold and Ei,...,E;
(M,w) is a collection of exceptional spheres that are all pairwise disjoint. Prove k <

dim Ho(M; Q).
ExAMPLE 1.11. The following construction combines all three of the examples discussed

above. Let CP2#@2 denote the complex blowup of CP? at the point zo = [1:0: 0], i.e. at
the singular point of the “fibration” (LH). As we will review in §3.I], the complex blowup

operation makes CIPQ#@2 naturally a complex manifold such that the resulting exceptional
sphere E (CIP’2#@2 is a complex submanifold, and there is a natural identification

B : (CP*#TP\E > CP?\{zo)

which extends to a holomorphic map S : (CIP’2#@2 — CP? collapsing E to the point z.

Taking 7 to be the map in (IH), one then finds that % := 7o 8 : (CP*#CP )\E — CP!
extends over E to define a smooth and holomorphic fiber bundle
% : CP24CP° — CP',

Put another way, we have replaced the point zg € CP?, where all the fibers of 7 intersect, with
a sphere F that intersects all the fibers of 7 at separate points, so that 7 is an honest S?-bundle
which has E as a section. We will see in Chapter [ that the symplectic version of this blowup
operation can be arranged to produce a symplectic structure on CP? #@2 for which the fibers
of T are symplectic submanifolds (see Theorem BI3]). This shows that the symplectic blowup
of (CP?,wrg) is a symplectic ruled surface, and it follows that everything one can construct
from (CP?,wrg) by a finite sequence of blowups is a blown-up ruled surface. As explained in
Remark [[T3 below, there are exactly two oriented S2-bundles over S? up to diffeomorphism,
thus every one is either the trivial bundle $? x S$? — 82 or 7 : (CIP’z#@2 — CPL.

REMARK 1.12. The example above illustrates that a symplectic 4-manifold can be both
a rational surface and a (blown-up) ruled surface. We will see in Theorem that the
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symplectic rational surfaces are precisely those symplectic 4-manifolds that admit genus zero
symplectic Lefschetz pencils, where the use of the word “pencil” implies a fibration (with
isolated singularities) over the base CP' =~ S2. The classification scheme described below
thus implies that up to symplectic deformation equivalence, there are exactly two symplectic
ruled surfaces that are also rational, namely the trivial and unique nontrivial S2-bundles
over S?, which are topologically S? x S? and CPQ#@Q respectively. The rest of the ruled
surfaces are sometimes called irrational ruled surfaces.

REMARK 1.13. It is not hard to denumerate the topological types of all smooth oriented
S2-bundles 7 : M — ¥ over closed oriented surfaces ¥.. The structure group of such a bundle
is Diff | (S?), the group of orientation-preserving diffeomorphisms of S2, so the main thing
one needs to understand is the homotopy type of Diff, (S?), which was computed in 1959
by Smale [Sma59]. Viewing SO(3) as the group of orientation-preserving isometries of the
round sphere S? c R? with respect to the Euclidean metric, Smale proved that the inclusion

SO(3) — Diff | (5?)

is a homotopy equivalence. Most importantly for our purposes, this inclusion induces iso-
morphisms 74(SO(3)) — w1 (Diff 1 (S?)) for k = 0,1; see Remark below for a sketch
of the proof. Given this, the connectedness of SO(3) implies that every oriented S2-bundle
m: M — ¥ can be trivialized over the 1-skeleton of ¥, and thus everywhere outside the inte-
rior of some disk D? c X. The ability to extend the trivialization from dD? over the rest of D?
then depends on the homotopy class of a transition map dD? — Diff, (S?), i.e. an element of
71 (Diff { (S?)) = 11 (SO(3)) = Zy. This means that aside from the trivial bundle ¥ x S? — ¥,
there is exactly one nontrivial oriented smooth S?-bundle over ¥, corresponding to the unique
nontrivial element in 71 (Diff , (S?)) = 71(SO(3)). We shall denote this nontrivial bundle by

YxS? -y,
so for example, Example [[L.TT] shows
$2% 52 ~ CP2#CP".

Note that two oriented S?-bundles over bases of different genus can never be homeomorphic, as
the homotopy exact sequence of S < M — ¥ implies (M) = 71(X) (cf. Proposition [T.62]).

EXERCISE 1.14. Fix a closed oriented surface ¥ and oriented 2-sphere bundle 7 : M — .

(a) Show that m : M — ¥ admits a section. Hint: construct it inductively over the
skeleta of ¥, using the fact that fibers are simply connected.

(b) Show that for any section S < M of 7 : M — X, the self-intersection number
[S] - [S] is even if the bundle is trivial and odd if it is nontrivial. Hint: over the
1-skeleton of 3, it is easy to construct both a section S and a small perturbation S’
that does not intersect S, thus the interesting part happens when you try to extend
both of these sections from 0D? over a disk D?. If the bundle is nontrivial, then the
relationship between S and S’ over dD? can be described in terms of a loop in SO(3)
that generates 71 (SO(3)) = 1 (Diff  (5?2)).

EXERCISE 1.15. In contrast to Exercise [[14} find an example of an oriented T?-bundle
over a closed oriented surface that does not admit a section. Hint: see Example[3.33
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REMARK 1.16. If you enjoy Serre fibrations and homotopy exact sequences (see [Hat02],
§4.2], then you might like the following proof that the inclusion SO(3) < Diff, (S?) induces
isomorphisms 7 (SO(3)) — 74 (Diff; (S?)) for every k. We use the group

G := Conf (5?%) c Diff ; (S?)

of orientation-preserving conformal transformations as an intermediary—here “conformal” is
defined with respect to the Euclidean metric on the round sphere S?  R3, thus G contains
SO(3), and the goal is to prove that both of the inclusions G < Diff ; (5?) and SO(3) — G in-
duce isomorphisms on homotopy groups. For the first inclusion, identify S? with the extended
complex plane C u {0} so that the conformal structure of the round sphere corresponds to
the standard complex structure i, and let J(S?) denote the space of all smooth complex
structures on S that are compatible with its orientation. The uniformization theorem then
implies that the map
Diff 4 (8%) — J(S%) : ¢ = ¢*i

is surjective, and in fact, this map is a Serre fibration—this fact is somewhat nontrivial, but
we will outline a proof using holomorphic curve methods in Chapter 2 see Remark 2.48. The
fiber of this fibration over i € J(S?) is G, so we obtain a long exact sequence

= 1 (T (S?)) = 7(G) — m(Diff 4 (5%)) = (T (5%) — ...

But J(S?) can also be viewed as the space of almost complex structures on S? compatible
with a fixed symplectic form, and is thus contractible (cf. Proposition 2.1]), so this exact
sequence implies that the maps 74 (G) — 7 (Diff | (S?)) are isomorphisms for every k.

For the inclusion SO(3) < G, we can fix a base point pg € S? and use the action of SO(3)
or GG on the base point to define a pair of Serre fibrations,

SO(2) —— SO(3) —— §?

o s

Go - G , S2

where Gy G denotes the group of conformal transformations that fix the base point, SO(2) is
identified with the analogous subgroup of SO(3), the maps ® and ¥ are the natural inclusions,
and the diagram commutes. Identifying S? with C U {00} and choosing oo as the base point,
Gy becomes the group of affine transformations z — az+b on C with a # 0, and the subgroup
SO(2) c Gy then consists of the transformations of the form z — 2. It follows that SO(2)
is a deformation retract of Gy, so ® is a homotopy equivalence. Forming the homotopy exact
sequence of both fibrations along with the induced maps from one to the other now produces
the commutative diagram

et 1(S?) —— m(SO(2)) —— m(SO(3)) —— m(S?) —— m_1(SO(2))
| Jo. Jo. | Jo.
T41(8%) —— m(Go) ——— m(G) ——— m(5?) —— m,-1(Go),
and since both instances of ®, are isomorphisms, the five-lemma implies that ¥, is as well.

REMARK 1.17. The terms “ruled surface” and “rational surface” both originate in alge-
braic geometry. The former traditionally describes a surface that is fibered by lines, i.e. in
the setting of complex projective varieties, this means a complex surface fibered by complex
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submanifolds biholomorphic to CP!. Similarly, a surface is called rational if it is birationally
equivalent to the projective plane: again in the complex context, this means a complex surface
that can be related to CP? by a finite sequence of complex blowup and blowdown operations.

1.2. Results about symplectically embedded spheres

In §I.0] we saw two fundamental examples of closed symplectic 4-manifolds (M, w) con-

taining symplectically embedded spheres S < (M,w) with [S] - [S] = 0:

(1) Symplectic ruled surfaces, whose fibers S have [S] - [S] =0,

(2) (CP?,wrs), which contains the sphere at infinity CP' < CP?, with [CP!]-[CP!] = 1.
The following theorem says that except for trivial modifications such as rescaling and blowing
up, these examples are the only ones. The result was first hinted at in Gromov’s seminal paper
[Gro85|, §2.4.B,-2.4.B}], and was then proved in full by McDuff [McD90,McD92]| (see also
[LM96a] and [MS12] §9.4]).

THEOREM A. Suppose (M,w) is a closed and connected symplectic 4-manifold containing
a symplectically embedded 2-sphere S < M with

[S]-[S] = 0.

Then (M,w) is either (CP?, cwrg) for some constant ¢ > 0 or it is a blown-up symplectic ruled
surface (see Definition [1.7).

This result is often summarized by saying that every symplectic 4-manifold containing a
nonnegative symplectic sphere is “rational or ruled”. Observe that in all of the examples we
discussed in 1.1 the sphere in question actually satisfies

thus a consequence of Theorem [A] is the fact that if we are given a symplectic sphere with
[S]-[S] = 0, we can always find another one for which (@) is satisfied. This corollary
actually will be proved separately, as a step in the proof of Theorem [Al

REMARK 1.18. All of the symplectic manifolds occurring in Theorem [Al have fundamental
groups isomorphic to that of a closed oriented surface (cf. Proposition [[.62]). By contrast,
Gompf [Gom95] has shown that every finitely-presented group can be the fundamental group
of a closed symplectic 4-manifold, so the manifolds that appear in Theorem [A] form a rather
restrictive class.

The next two theorems regarding the symplectic blowup are actually preliminary results
in the background of Theorem [Al and were also first proved in [McD90]. The first has the
consequence that minimality is invariant under symplectic deformation equivalence. Recall
that two symplectic manifolds (M, wg) and (M7, w; ) are called symplectically deformation
equivalent if there exists a diffeomorphism ¢ : My — M; such that wy and p*w; are
homotopic via a smooth 1-parameter family of symplectic forms.

THEOREM B. Suppose M is a closed connected 4-manifold with a smooth 1-parameter
family of symplectic structures {ws}se[m], and B, ..., Er < M is a collection of pairwise dis-
joint exceptional spheres in (M,wqg). Then there are smooth 1-parameter families of embedded
spheres E3,...,Ef < M for s € [0,1] such that

e E)=FE; fori=1,...,k;
o For every s € [0,1], Ef n ES = fori# j;
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o For every se [0,1] and i =1,....k, E? is symplectically embedded in (M, ws).
In particular, (M,wq) is minimal if and only if (M,w1) is minimal.

Observe that by Exercise [L10] any maximal collection of pairwise disjoint exceptional
spheres in a closed symplectic 4-manifold is finite. The next result will turn out to be an easy
consequence of this fact in combination with Theorem [Bl

THEOREM C. Suppose (M,w) is a closed symplectic 4-manifold and Ey,...,Ex < M is
a mazximal collection of pairwise disjoint exceptional spheres. Then the manifold (My,wq)
obtained by blowing down (M,w) at all of these spheres is minimal.

For this reason, many questions about symplectic 4-manifolds in general can be reduced
to questions about the minimal case, including Theorem [Al In fact, for the minimal case one
also has the following somewhat stronger formulation:

THEOREM D. Suppose (M,w) is a closed, connected and minimal symplectic 4-manifold
that contains a symplectically embedded 2-sphere S < (M,w) with [S]-[S] = 0. One then has
the following possibilities:

(1) If[S]-[S] = 0, then (M,w) admits a symplectomorphism to a symplectic ruled surface
such that S is identified with a fiber.

(2) If [S] - [S] = 1, then (M,w) admits a symplectomorphism to (CP?, cwps) for some
constant ¢ > 0, such that S is identified with the sphere at infinity CP* < CP2.

(3) If [S] - [S] > 1, then (M,w) is symplectomorphic to one of the following:
(a) (CP?% cwrs) for some constant ¢ > 0,
(b) (8% x S% 01 ® a2) for some pair of area forms o1,09 on S2.

The appearance of the specific rational ruled surface (5% x 52, 51 @03) in this result comes
about due to the following stronger result of Gromov [Gro85| and McDuff [McD90]:

THEOREM E. Suppose (M,w) is a closed, connected and minimal symplectic 4-manifold
containing a pair of symplectically embedded spheres S1, Sy < (M,w) that satisfy [S1]-[S1] =
[S2] - [S2] = 0 and have exactly one intersection with each other, which is transverse and
positive. Then (M,w) admits a symplectomorphism to (S? x S% 01 ® 02) identifying Si with
{S%} x {0} and Sy with {0} x S?%, where 01,09 are any two area forms on S* such that

f O'Z'ZJ‘ w fori=1,2.
S2 Si

Finally, here is a closely related result that was not stated explicitly in the work of Gromov
or McDuff but follows by similar arguments and implies Theorems [Al and [D] above. We will
discuss in Chapter [B] the notions of Lefschetz pencils and Lefschetz fibrations, which are
something like symplectic fibrations but with isolated singular points. These singular points
come in two types: (1) Lefschetz critical points, at which two smooth pieces of a single fiber
(called a singular fiber) have a positive transverse intersection, and (2) pencil singularities,
also known as base points, at which all fibers come together and intersect each other positively
and transversely. A fibration that includes singularities of the second type is called a Lefschetz
pencil, and the basd] of such a fibration is necessarily CP!. The term Lefschetz fibration is
reserved for the case where pencil singularities do not appear (but Lefschetz critical points

1Be aware that the standard terminology for Lefschetz pencils employs the word “base” with two distinct
meanings that may occasionally appear in the same sentence: the notion of “base points” is completely
unrelated to the “base of the fibration”.
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are allowed), in which case the base can be any oriented surface. Our proof of Theorems [A]
and [D] will also yield a proof of the following generalization of Theorem [Al

THEOREM F. Suppose (M,w) is a closed and connected symplectic 4-manifold that con-
tains a symplectically embedded 2-sphere S < (M,w) with

m = [S]-[S] = 0.

Then for any choice of pairwise distinct points p1,...,pm € S, (M,w) admits a symplectic
Lefschetz pencil with base points p1,...,pm (or a symplectic Lefschetz fibration if m = 0),
in which S is a smooth fiber and no singular fiber contains more than one critical point.
Moreover, the set of singular fibers of this pencil (or fibration) is empty if and only if m € {0, 1}
and (M\S,w) is minimal.

For the sake of completeness, let us now state a few related results that come from Seiberg-
Witten theory. While their proofs are beyond the scope of this book, it is important to be
aware of them since they frequently appear in applications as sufficient conditions to establish
the hypotheses of the theorems above. (For more detailed accounts of Taubes-Seiberg-Witten
theory and its applications to symplectic 4-manifolds, see [MS17) §13.3] or the earlier survey
papers [LM96a,MS96, HT99].)

As preparation, recall that every symplectic manifold (M,w) has a well-defined first
Chern class c; (M,w) € H?(M), defined as the first Chern class of the complex vector bundle
(TM,J) for any choice of almost complex structure J compatible with w (see e.g. [MS17,
§2.7]). For any A € Hy(M), we shall abbreviate the evaluation of ¢;(M,w) on A by

c1(4) :={c1(M,w), A).

If S is a closed oriented surface and £ — S is a complex vector bundle, we also often use the
abbreviated notation
a(F):={a(E),[S])eZ

for the first Chern number of E. Now if S is a closed symplectically embedded surface
in (M,w), Proposition below constructs a compatible almost complex structure J such
that J(T'S) = T'S, in which case T'S is a complex subbundle of (T'M|g, J) and has a complex
normal bundle Ng < (T'M|g,J) satisfying TS @ Ng = TM|g. The first Chern number of
TS is just the Euler characteristic x(5), while ¢;1(Ng) can be expressed as a signed count of
zeroes of a generic section of Ng used to push S to a small perturbation of itself and count
intersections, giving the relation ¢;(Ng) = [S] - [S]. This proves

a([S1) = x(5) + [5] - [5];

so in particular every exceptional sphere E ¢ (M,w) satisfies ¢1([E]) = 1. Note that the
fact that E is symplectically embedded fixes an orientation of F, and the definition of the
homology class [E] € Ha(M) depends on this orientation—if E were only a smooth (but not
symplectic) submanifold, we would have to make an additional choice of an orientation for F
before defining the class [E].

THEOREM 1.19 (Taubes [Tau95|] and T.-J. Li and A.-K. Liu [LL99]). In a closed symplec-
tic 4-manifold (M,w), any smoothly embedded oriented 2-sphere E M satisfying [E]-[E] =
—1 and c¢1([E]) = 1 is homologous to a symplectic exceptional sphere. Moreover, if M is
connected with b (M) = 2, then the condition c1([F]) = 1 is always satisfied after possibly
reversing the orientation of E. O
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Here, the topological invariant by (M) is defined as the maximal dimension of a subspace
of H?(M;R) on which the cup product pairing is positive-definite (see §7.3.6]); note that
the existence of a symplectic form implies by (M) > 1 since {[w] U [w],[M]) > 0. In the
case by (M) > 2, the theorem implies that symplectic minimality in dimension four is not
actually a symplectic condition at all, but depends only on the smooth topology of M. When
by (M) = 1, we have the additional condition involving the first Chern class of w, but this is a
relatively weak symplectic invariant. In the language of Gromov’s h-principle (see [EMO02]),
¢1(M,w) depends only on the formal homotopy class of w, meaning its homotopy class as
a nondegenerate (but not necessarily closed) 2-form, or equivalently, the homotopy class of
almost complex structures compatible with w. Gromov famously proved that symplectic forms
on open manifolds are determined up to symplectic deformation by their formal homotopy
classes, but this is known to be false in the closed case [Rua94,IP99].

COROLLARY 1.20. A closed symplectic 4-manifold (M,w) with by (M) = 2 is minimal if
and only there is no closed oriented smooth 4-manifold M’ for which M is diffeomorphic to
M’#@Z. For by (M) =1, (M,w) is minimal if and only if every symplectic form formally
homotopic to w is minimal. ]

The next result is often used for establishing the hypothesis of Theorem [Al

THEOREM 1.21 (A.-K. Liu [Liu96]). A closed and connected symplectic 4-manifold (M,w)
admits a symplectically embedded 2-sphere of nonnegative self-intersection number whenever
either of the following conditions holds:

(1) {er(M,w) v [w], [M]) > 0;
(2) (M,w) is minimal and {c;(M,w) U c1(M,w),[M]) < 0.
d

We will prove in §7.3.0] that both statements have relatively easy converses in light of
Theorem [Al see Proposition [7.67] and Exercises [7.69 and [Z.70l These imply:

COROLLARY 1.22. A closed connected symplectic 4-manifold (M,w) is symplectically de-
formation equivalent to one satisfying {c1(M,w)ulw], [M]) > 0 if and only if it is a symplectic
rational surface or blown-up ruled surface.

COROLLARY 1.23 (“Gompf’s conjecture”). A closed, connected, minimal symplectic 4-
manifold (M,w) satisfies {c1(M,w) v ci(M,w),[M]) < 0 if and only if it is a symplectic ruled
surface with base of genus at least 2.

REMARK 1.24. It is common in the literature to express the conditions in Theorem [[.21]
in terms of the canonical class K := —c;(M,w) € H?>(M) of a symplectic 4-manifold. This
is, by definition, the first Chern class of the canonical line bundle

T*°M — M,

where the latter denotes the bundle of complex-bilinear alternating forms on M with respect
to any almost complex structure compatible with w. Using “” to denote the product on
H*(M;R) and identifying H*(M;R) with R via integration over the fundamental class, the
two conditions in the theorem then take the simple form

K- -[w]<0 and K-K<O0.
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In Chapter[7 we will prove a further corollary of these results which generalizes Theorem[Al
by allowing higher-genus symplectically embedded surfaces with positive first Chern number;
see Theorem [7.36l It should be emphasized however that results of this type do not supersede
Theorem [Al they merely weaken the hypotheses needed to apply it.

1.3. Summary of the proofs

The results stated in §I.2] are based on the powerful theory of pseudoholomorphic curves,
first introduced by Gromov in [Gro85]. The technical details can be quite intricate—
depending how deeply one wants to delve into them—mnonetheless it is not so hard to give
intuitive explanations for why most of these statements are true, and we shall do this in the
next several paragraphs. The proofs we will explain in this book are in spirit the same as
what was originally explained by McDuff, but they will differ in several details. The main
reason for this is that the most “natural” way to prove these results requires certain technical
ingredients that were not yet developed at the time [McD90] was written. As a consequence,
several steps that required very clever arguments in [McD90] can now be replaced by more
straightforward applications of machinery that has meanwhile become standard in the field.
Other, similarly modern treatments can be found in [LM96a] and [MS12| §9.4], but ours
will also differ from theirs in a few places—in particular, we will make use of the topological
notion of Lefschetz pencils, thus relating McDuff’s results to another strain of ideas that has
become quite important in symplectic topology since the 1990’s.

For the following discussion we assume that the reader has at least some basic famil-
iarity with holomorphic curves. The essential technical background will be summarized in
Chapter 21

The starting point for all of the above results is the following easy but fundamental lemma
(see also Proposition 2.2 for a sketch of the proof):

LEMMA 1.25. Suppose (M,w) is a symplectic manifold and S < M is a smooth 2-
dimensional submanifold. Then S is a symplectic submanifold if and only if there exists
an w-tame almost complex structure J preserving T'S.

1.3.1. Exceptional spheres. By definition, an exceptional sphere F ¢ (M,w) is em-
bedded symplectically, hence by the lemma above, one can choose an w-tame almost complex
structure J so that E becomes the image of an embedded J-holomorphic curve. The technical
work underlying Theorem [Bl is to show that this curve is remarkably stable under changes
in the data: for a generic homotopy of tame almost complex structures, one can find a
corresponding isotopy of pseudoholomorphic exceptional spheres. Theorem [B] will thus be es-
sentially a consequence of the following technical result, which is important enough to deserve
special mention in this summary (see Theorem [5.1] for a more precise statement):

PROPOSITION. If (M,w) is a closed symplectic 4-manifold, then for generic w-tame almost
complex structures J, every homology class A € Ho(M) for which there exists an exceptional
sphere E < (M,w) with [E] = A can be represented by a unique (up to parametrization)
embedded J-holomorphic sphere. Moreover, such J-holomorphic exceptional spheres deform
smoothly under generic deformations of J.

1.3.2. The case [S]-[S] = 0. Consider now the case of a closed and connected sym-
plectic 4-manifold (M,w) containing a symplectic sphere S ¢ (M,w) with [S]-[S] = 0. By
the fundamental lemma stated above, one can choose an w-tame almost complex structure
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J such that S is the image of an embedded J-holomorphic sphere. This implies that a cer-
tain connected component of the moduli space of (unparametrized) J-holomorphic spheres is
nonempty: call this component Mg(J). The hard part is then to use the analytical properties
of J-holomorphic curves to show the following:

LEMMA 1.26 (cf. Proposition 253]). After a generic perturbation of J, the component
Mg (J) is a nonempty, smooth, oriented 2-dimensional manifold whose elements are each
embedded J-holomorphic spheres with pairwise disjoint images, foliating an open subset of M.

LEMMA 1.27 (cf. Theorem [A.0)). If (M\S,w) is minimal, then Mg(J) is also compact.

We claim that these two results together imply (M,w) is a symplectic ruled surface if it
is minimal. To see this, let &/ < M denote the subset consisting of every point that lies in
the image of some curve in Mg(J). By Lemma [[L26] ¢/ is open, and Lemma implies
that it is also closed if (M\S,w) is minimal. Since M is connected, it follows that & = M, so
the images of the curves in Mg(J) form a smooth foliation of (M,w). We can then define a
smooth map

(1.7) T M —> Mg(J):x— ug,

where u, denotes the unique curve in Mg(J) that has z in its image. This map is a fibration,
and its fibers are embedded spheres which are J-holomorphic, and therefore also symplectic.

We can say a bit more if we are given not just one but two symplectic spheres Si,5 <
(M,w) with zero self-intersection which have one positive and transverse intersection with
each other. In this case, if (M,w) is minimal, the above argument gives two transverse
fibrations for which the fiber of one can be identified with the base of the other. Then (7)) is
a trivial sphere-fibration over S2, and we will be able to prove Theorem [E] by using a Moser
deformation argument to identify (M,w) with (5% x S% 01 ® 09).

A brief word on what happens when (M\S,w) is not minimal: in this case Lemma
fails, Mg(J) is not compact. It does however have a very nice compactification Mg(.J),
which is obtained from Mg(J) by adding finitely many nodal curves, each consisting of two
embedded J-holomorphic spheres that have self-intersection —1 and intersect each other once
transversely. In topological terms, these nodal curves look exactly like Lefschetz singular
fibers, with the result that (7)) becomes a Lefschetz fibration.

1.3.3. The case [S]-[S] > 0. If S ¢ (M,w) has self-intersection 1, then defining a
suitable J as above, the resulting moduli space Mg(J) is no longer a surface, but is 4-
dimensional. This is too many dimensions to define a foliation of M, but we can bring the
dimension back down to 2 by imposing a constraint: pick any point p € S and consider the
moduli space Mg(J; p) consisting of curves in Mg(.J) with a marked point that is constrained
to pass through p. Now Mg(J;p) is again 2-dimensional, and just as in the [S]-[S] = 0 case,
if (M\S,w) is minimal then the curves in Mg(.J;p) give a foliation of (M, w) by symplectically
embedded spheres, except that they all intersect each other at p. In topological language, the
fibration (L7)) is now replaced by a Lefschetz pencil

T M\{p} = Ms(J;p) : @ ug,
where the structure of the singularity at p dictates that its base Mg(J;p) must be diffeo-
morphic to CP'. This therefore gives a decomposition of (M,w) matching the decomposition

of (CP?,wrs) explained in Example L2l We can then use a Moser deformation argument to
show that (M,w) is symplectomorphic to (CP?, cwps) for a suitable constant ¢ > 0.
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The case [S] - [S] > 1 follows the same general idea, but now a topological coincidence
kicks in to simplify matters. Writing k := [S]-[S] = 2, we can define a suitable 2-dimensional
moduli space Mg(J;p1,...,pr) by picking distinct points pi,...,pr < S and defining our
curves to have k marked points constrained to pass through the points p1,...,pg. There are
now two possibilities for (M,w):

(1) It does not contain any symplectically embedded sphere S" with 0 < [S7] - [9'] < k.
(2) It does.

In the second case, we can go back to the beginning of the argument using S’, and repeat if
possible until the situation is reduced to [S] - [S] € {0,1}, which we already understand. In
the first case, the usual analytical arguments applied to Mg(J;p1,...,px) give us a Lefschetz
pencil

(18) W:M\{pla-"7pk}_)MS(J;ph""pk):x'_)umv

where again the structure of the singularities dictates Mg(J;p1,...,pk) = CP'. This Lef-
schetz pencil has k base points but no singular fibers. As it turns out, this can never happen:

LEMMA (cf. Proposition B.31)). On any closed oriented 4-manifold, a Lefschetz pencil with
fibers diffeomorphic to S? and at least two base points always has at least one singular fiber.

The reader who already has a bit of intuition about Lefschetz pencils will find it easy to
understand why this is true: if we have such a pencil with £ > 2 base points, then blowing
up k — 1 of them produces a pencil with one base point and no singular fibers—this can only
be CP2. But CP? is not the blowup of anything: it has no homology class A € Hy(CP?) with
A- A= —1, and thus no exceptional spheres.

The upshot of this discussion is that for [S]-[S] = k > 1, one can always reduce the
case k > 1 to the case k € {0,1}. Another way to say it is that the Lefschetz pencil (L.S8])
does exist in general, but it must always have some singular fibers, the components of which
are symplectically embedded spheres S” with [S’] - [S’] < k. Analyzing the possible singular
fibers a bit more closely, one finds in fact that one of the following most hold if k£ > 1:

(1) There exists a symplectically embedded sphere S’ ¢ (M,w) with [S’] - [S'] = 1.
(2) There exist two symplectically embedded spheres Sy, Sy < (M,w) with [S1] - [S1] =
[S2] - [S2] = 0 and one intersection which is positive and transverse.

In the first case, we saw above that (M,w) must be CP?, while in the second, Theorem [E]
says that it must be S? x S? with a split symplectic form.

The methods we have just sketched also produce a slightly more technical result that is
sometimes useful in applications. We state it here as an extension of Theorem [E} the proof
will be sketched as an exercise in Chapter 6

THEOREM G (cf. Exercise [6.3). Suppose (M,w) is a closed and connected symplectic 4-
manifold that contains a symplectically embedded 2-sphere S < (M,w) with [S]-[S] =: m = 0,
and p1,...,Pm € S is any fized set of pairwise distinct points. Then:

(1) For generic w-tame almost complex structures J, the Lefschetz pencil or fibration of
Theorem [Fl with base points p1, ..., pm is isotopic (with fized base points) to one for
which the irreducible components of all fibers are embedded J-holomorphic spheres.
Moreover, every J-holomorphic curve that is homologous to the fiber and passes
through all the base points is one of these.
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(2) Given w and J as above and a smooth 1-parameter family of symplectic forms
{ws}seo,1] with wo = w, for generic smooth 1-parameter families {Js}sepo,1] of ws-
tame almost complex structures with Jy = J, there exists a smooth isotopy of Lef-
schetz pencils or fibrations with fixed base points p1,. .., pm and Js-holomorphic fibers
for s€[0,1].

Notice that by the second statement in this result, the rigid symplectic Lefschetz pencil or
fibration structure on a rational or ruled surface cannot be destroyed by deforming the sym-
plectic form. In particular, the class of symplectic 4-manifolds containing symplectic spheres
with nonnegative self-intersection is invariant under symplectic deformation equivalence.

One subtlety in the statement of Theorem |G is that the definition of the word “generic”
depends on the choice of the points p1,...,p, € S, cf. Remark 22241 For the case (M,w) =
(CP? wrs) however, which is minimal and contains a symplectic sphere with [S]-[S] = 1,
it turns out that one can remove the genericity assumption in Theorem [G] altogether. One
obtains from this a proof of the following fundamental result of Gromov [Gro85, 0.2.B],
usually summarized with the statement that CP? contains a unique “J-holomorphic line”
through any two points:

COROLLARY (cf. Corollary B.5). For any tame almost complex structure J on (CP? wrs)

and any two distinct points p1,pa € CP?, there is a unique J-holomorphic sphere homologous
to [CP'] € Hy(CP?) passing through py and pa, and it is embedded.

1.4. Outline of the remaining chapters

The rest of the book will be organized as follows. In Chapter 2] we will explain the nec-
essary technical background on closed holomorphic curves, omitting most of the proofs but
supplying sketches in a few cases where the relevant results might not be considered “stan-
dard” knowledge. In Chapter B we will discuss the symplectic blowup and the basic theory of
symplectic Lefschetz pencils, including the proof of an important result of Gompf saying that
a Lefschetz pencil up to isotopy determines a symplectic structure up to deformation. We
then begin the serious analytical work in Chapter [ by proving some compactness results that
will be needed in the proofs of all the major theorems. These results are in some sense easy
consequences of Gromov’s compactness theorem, but they also depend crucially on the inter-
section theory of holomorphic curves and are thus unique to dimension four. In Chapter B we
will prove the main results on exceptional spheres, notably Theorems [Bl and [Cl The proofs of
Theorems [Al [D] [E] and [E] will then be completed in Chapter [6] with the proof of Theorem
sketched as an exercise. The remaining chapters cover a pair of topics that we have not
discussed in this introduction: first, Chapter [ gives a brief outline of the Gromov-Witten in-
variants and discusses McDuff’s generalization [McD92] of Theorem [A] to a statement about
symplectic 4-manifolds containing certain immersed symplectic spheres. In modern terms,
the result is a complete characterization of the symplectic 4-manifolds that are symplecti-
cally uniruled. Chapters [ and [@ then give an overview of some applications of similar ideas
outside the realm of closed symplectic manifolds, namely in 3-dimensional contact topology.
Appendix [Al outlines a proof of the folk theorem, important for the proof of Theorem [F] and
everything that depends on it, that 2-dimensional moduli spaces of embedded J-holomorphic
curves look like Lefschetz fibrations near nodal singularities.






CHAPTER 2

Background on Closed Pseudoholomorphic Curves

This chapter is preparatory: readers who are already sufficiently familiar with pseudoholo-
morphic curves may prefer to skip to Chapter [l and later consult this chapter for reference
as necessary. Its purpose is to fix definitions and notation and give a quick summary, mostly
without proofs, of the technical ingredients that are required to prove the main results. More
details on most of the material in §2.1] can be found in the lecture notes [Wenc|, and much
of the rest can also be found in [MS12]. We will give additional references to the literature
as needed.

2.1. Holomorphic curves in general

In this section we summarize the essential facts about closed pseudoholomorphic curves
in arbitrary symplectic manifolds.

2.1.1. Symplectic and almost complex structures. For any smooth real vector bun-
dle F — B of finite even rank, a complex structure on F is a fiberwise linear bundle map
J : E — E (i.e. a section of the vector bundle End(E) — B) such that J?> = —1. In this
book we shall only consider smooth complex structures, meaning that the section of End(FE)
is assumed to be smooth. If M is a smooth manifold of dimension 2n, a complex structure on
the bundle TM — M is called an almost complex structure on M, and the pair (M, J) is
then a smooth almost complex manifold. An important special case arises from complex
manifolds: if M admits an atlas of coordinate charts with holomorphic transition functions,
then it carries a natural almost complex structure J : TM — T M defined by choosing local
holomorphic coordinates and multiplying by 7. Any almost complex structure that can be
obtained in this way is said to be integrable, and one can in that case simply call it a complex
structure on M (without the “almost”). Most almost complex structures are not integrable,
except in real dimension 2: it is a nontrivial fact that every smooth almost complex struc-
ture on a surface is integrable. Almost complex manifolds of real dimension 2 are therefore
equivalent to complex 1-dimensional manifolds: these are what we call Riemann surfaces.
The most common example we will encounter is the Riemann sphere

(82%,4) := C U {00},

which is covered by the two holomorphically compatible coordinate charts pg = Id : $?\{oo} —
C and ¢y : S?\{0} — C : 2 = 1/2. The uniformization theorem implies that every complex
structure j on S? is biholomorphically equivalent to the standard complex structure i
defined in this way, i.e. there exists a diffeomorphism ¢ : S? — S? satisfying ¢*j = 1.

If (M,w) is a symplectic manifold of dimension 2n, then following Gromov |[Gro85|, one
says that J is tamed by w if all the J-complex lines in T'M are also symplectic subspaces
carrying the same induced orientation, which means

w(X,JX) > 0 for all nonzero X € TM.

17
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Further, one says that J is compatible with w (or sometimes also callibrated by w) if it is
tamed and the 2-tensor defined by

97(X,Y) =w(X,JY)
is also symmetric, which means it is a Riemannian metric. We shall denote
J (M) = {smooth almost complex structures compatible with the orientation of M}
Jr(M,w)={JeJ(M) | Jis tamed by w}
J(M,w)={JeJ(M) | Jis compatible with w},

all of which are regarded as topological spaces with the natural C*-topology, e.g. we consider
a sequence Jp € J(M) to converge in J(M) if all its derivatives converge uniformly on
compact subsets of M.

The following foundational lemma is originally due to Gromov:

PROPOSITION 2.1. On any symplectic manifold (M,w), the spaces J-(M,w) and J(M,w)
are both nonempty and contractible. O

Most of the theory of pseudoholomorphic curves in symplectic manifolds works equally
well whether one considers tame or compatible almost complex structures, but many authors
prefer to work only with compatible structures because they make the proofs of certain basic
results (including Proposition [2]) slightly simpler. For our purposes in this chapter, it will
make no difference if we work with J(M,w) or J-(M,w), so in order to avert the appearance
of lost generality, we shall use J,(M,w). Every statement made in the following remains true
if Jr(M,w) is replaced with J(M,w), though the situation will become less clear-cut when
we generalize to punctured curves in Chapter B cf. Remark

We can now restate and sketch the proof of Lemma [[.25] which will be the first step in
proving the results stated in the introduction.

PROPOSITION 2.2. Suppose (M,w) is a symplectic manifold and S < M is a smooth 2-
dimensional submanifold. Then S is a symplectic submanifold if and only if there exists an
w-tame almost complex structure J preserving T'S.

PROOF. In one direction this is immediate: if J € J(M,w) and J(T'S) = T'S, then for
any p € S and nonzero tangent vector X € T,,5, (X, JX) forms a basis of 7,5 and tameness
implies w(X, JX) > 0, hence w|rg is nondegenerate. Conversely, if S < (M,w) is symplectic,
we can find a neighborhood & < M of S and a splitting

TM|y=71®v

such that 7 and v are everywhere symplectic orthogonal complements and 7|g = T'S. Using
Exercise [Z.3] below, choose complex structures j, on 7 and j, on v, so that an almost complex
structure on U can be defined by Jg := j; @ j,. It is straightforward to check that this is
w-tame, in fact, it is w-compatible. Now choose any other w-tame almost complex structure
J" on a neighborhood of M\U whose closure does not intersect S. By Exercise 2.4 below, one
can then find another tame almost complex structure on M that matches Jg near S and J’
outside of U. U

The following two exercises both depend on the fact that certain spaces of complex struc-
tures are nonempty and contractible.

EXERCISE 2.3. Show that if F — M is any smooth orientable vector bundle of real rank 2
over a smooth finite-dimensional manifold M, then E admits a complex structure.
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EXERCISE 2.4. Suppose (M,w) is a symplectic manifold, A ¢ M is a closed subset and
J4 is an w-compatible (or w-tame) almost complex structure defined on a neighborhood of A.
Show that M then admits an w-compatible (or w-tame) almost complex structure J that
matches J4 on a neighborhood of A. Hint: choose any J' € J(M,w) and a smooth homotopy
between J' and J, on the latter’s domain of definition, then use a cutoff function.

2.1.2. Simple holomorphic curves and multiple covers. If (X,j) is a Riemann
surface and (M, J) is an almost complex manifold of real dimension 2n, then a C'-smooth
map u : X — M is called a pseudoholomorphic (or J-holomorphic) curve if it satisfies
the nonlinear Cauchy-Riemann equation

(2.1) Tuoj=JoTu.

Note that if J is integrable, this reduces to the usual Cauchy-Riemann equation and just
means that u is a holomorphic map between complex manifolds: in particular, it is therefore
always smooth. In the nonintegrable case, the latter is still true but is much harder to prove:
one can exploit the fact that (2.1 is a first-order elliptic PDE and use elliptic regularity
theory to show that every Cl-map satisfying ([Z.I)) is actually smooth/[]

If (3, ) and (X, j') are two closed and connected Riemann surfaces, then any holomorphic
map

v (55) — (X,5)
has a well-defined mapping degree deg(y) € Z, see e.g. [Mil97]. Moreover, the fact that ¢ is
holomorphic then implies the following:

PROPOSITION 2.5. If ¢ : (X,7) — (¥',7') is a holomorphic map between two closed and
connected Riemann surfaces, then one of the following is true:

e deg(p) =0 and ¢ is constant;

e deg(p) =1 and ¢ is biholomorphic i.e. ¢ is a diffeomorphism with a holomorphic
muerse;

e deg(p) =2 and ¢ is a branched cover, i.e. it is a covering map outside of finitely
many branch points at which it takes the form ¢(z) = 2* in suitable local holomorphic
coordinates, for integers k € {2,...,deg(p)}.

0

Notice that if ¢ : (X,7) — (¥',5') is holomorphic and u' : (X',5) — (M,J) is a J-
holomorphic curve, then one can compose them to define another J-holomorphic curve

(2.2) u=uop:(X,5) - (M,J).

If deg(p) = 1, then Proposition implies that u is merely a reparametrization of u'. If
however k := deg(p) > 2, then we say u is a k-fold multiple cover of v’. Any curve u which
is not a multiple cover of any other curve is called simple.

A smooth map u : ¥ — M is said to be somewhere injective if there is a point z € ¥
at which du(z) : T.% — T,,)M is injective and v~ (u(z)) = {z}; in this case we call z an
injective point. We will refer to any point z € ¥ at which du(z) fails to be injective as a
non-immersed point. Note that if u is a J-holomorphic curve, then z € ¥ is a non-immersed

Un fact it suffices to assume u : & — M is of Sobolev class W'? for any p > 2. This is useful in setting
up the Fredholm theory for J-holomorphic curves.
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point if and only if du(z) = 08 Observe moreover that multiply covered J-holomorphic curves
are obviously not somewhere injective. The following less obvious result says that the converse
is also true.

PROPOSITION 2.6. If (X, ) is a closed connected Riemann surface and u : (X, 7) — (M, J)
s a J-holomorphic curve, then the following conditions are equivalent:

(1) w is somewhere injective;

(2) w is simple;

(3) w has at most finitely many self-intersections and non-immersed points.
Moreover, if u is not simple, then it is either constant or it is a k-fold multiple cover of a
simple curve for some integer k = 2. O

In many applications it is useful to note that if w is a multiply covered holomorphic sphere,
then its underlying simple curve must be a sphere as well:

PROPOSITION 2.7. Suppose ¢ : (3,7) — (¥',5") is a nonconstant holomorphic map be-
tween two closed and connected Riemann surfaces. Then if ¥ has genus 0, so does X'.

PROOF. Suppose ¥ =~ S? and ¥’ has positive genus. Then the universal cover of ¥ is
contractible, thus ma(X') = 0, so «[X] = 0 € Ha(X') and thus deg(y) = 0, implying ¢ is
constant. U

The constant J-holomorphic curves can be characterized by their homology whenever J
is tamed by a symplectic form w. This follows from the observation that any J-holomorphic
curve u : X — M must then satisfy

fu*w >0,

with equality if and only if u is constant. As a consequence:

PROPOSITION 2.8. If (M,w) is a symplectic manifold, J € J-(M,w) and (3,7) is a closed
and connected Riemann surface, then a J-holomorphic curve u : 3 — M is constant if and
only if it is homologous to zero, i.e. [u] := uy[X] = 0 € Hao(M). O

2.1.3. Smoothness and dimension of the moduli space. Assume (M, J) is an al-
most complex manifold of dimension 2n. Fix integers m > 0 and ¢ > 0, and a homology
class A € Hy(M). The moduli space of unparametrized J-holomorphic curves in M
homologous to A, with genus g and m marked points is defined as

Myam(A439) = {(S 4., (G G}/ ~

where
e (X,7) is a closed connected Riemann surface of genus g;
e u: (X,j) — (M,J) is a pseudoholomorphic curve representing the homology class
A, ie. [u] :=u [X] = Ae Ho(M);
e ((1,...,(n) is an ordered set of m distinct points in ¥;

2Non-immersed points of J-holomorphic curves are also sometimes called critical points, though we
will avoid using the term in this way since its standard meaning in differential topology is different—strictly
speaking, if dim M > 4, then every point of a J-holomorphic curve u : ¥ — M is critical since du(z) : T.X —
Tw(uyM can never be surjective.
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o (X,5,u,(Cry.vyGn)) and (X, 5,0, ({],--.,C),)) are defined to be equivalent if and
only if there exists a biholomorphic map ¢ : (X,5) — (¥/,;') such that u = v/ o ¢
and o(¢;) = ¢/ foralli=1,...,m.

For situations where the homology class is not specified, we shall write
Mom(D) = | Mgm(A;7),
AEHQ(M)
and for the case with no marked points we will sometimes abbreviate
Mg(A4; ) == Mg o(A4;J), My(J) := Mg o(J).

The space Mg n,(J) admits a metrizable topology with the following notion of convergence:
we have

[k, i s (GFs -, G = (205w, (G Gn))] € Mg ()

if and only if one can choose representatives of the form

B . k k
(Ea.]l/gauz')(CD"'aCm)) ~ (Ek‘)]k‘)uka(gl)’”)gm))
such that uj, — u and j;, — j in C*. We shall sometimes abuse notation and abbreviate an

element [(X,7,u, (C1,...,(m))] € Mgm(J) simply as u € My, (J) when the rest is clear from
context.

REMARK 2.9. Observe that the above definition of convergence in My, (J) does not
depend on J, so in particular one can similarly define convergence of a sequence uy, € Mg 1, (Ji)
to an element u € My ,,(J), where the almost complex structures J, and J need not all be
the same.

We shall denote by
MG (A5 T) © Mg (A5 J), M (J) € Mg m(J)
the subsets consisting of all curves [(X, j,u, ((1,...,(n))] for which the map u : ¥ — M is

somewhere injective. Observe that this is always an open subset.

REMARK 2.10. While the marked points ((1, ..., () may appear superfluous at this stage,
their importance lies in the fact that there is a well-defined and continuous evaluation map
(2.3) ev=(evi,...,evp) : Mgm(J) = M™ : [(3, 4,4, (Cis- -, Cm))] — (u((l), . ,u((m))

This can be used for instance to define subspaces of Mg ,,(J) consisting of curves whose
marked points are mapped to particular submanifolds; see §2.1.4] and §2.2.3] for more on this.

For reasons that will become clear in Theorem 2Z.11] below, we define the virtual dimen-
sion of the moduli space Mg, (A4;J) to be the integer
(2.4) vir-dim Mg, (A4; J) := (n — 3)(2 — 29) + 2¢1(A) + 2m,
where we use the abbreviation
c1(4) :={c1(TM, J), A).

One can equivalently define ¢1(A) as the first Chern number of the complex vector bundle
(uw*TM,J) — ¥ if u is any representative of a curve in Mgy ,(A;J). Such a map u: ¥ — M
also naturally represents an element of My(A;J), the moduli space with no marked points,
and the virtual dimension of this space is also sometimes called the index of u:

(2.5) ind(u) := (n —3)x(2) + 2¢1([u]).
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Another way to write (24]) is thus
vir-dim Mg, (4; J) = ind(u) + 2m.

We would now like to state a result describing the local structure of Mg ,(A;J). This
will require an explanation of the term “Fredholm regular,” the proper definition of which
is rather technical—trying to state it here precisely would take us too far afield, but we will
summarize the idea. Due to Theorem below, one usually does not need to know the
precise definition in order to make use of it.

As preparation, imagine that instead of a moduli space of holomorphic curves, we want
to study the set of solutions to an equation of the form s(z) = 0, where s : B — E is a
smooth section of a finite-dimensional real vector bundle E — B. At any point z € s~1(0),
the section has a well-defined linearization Ds(x) : T,B — E,, and the implicit function
theorem tells us that if Ds(z) is surjective, then a neighborhood of z in s71(0) can be
identified with a neighborhood of 0 in ker Ds(z), hence it is a smooth manifold of dimension
dimker Ds(x) = dim B — rank E. When this surjectivity condition holds, we say that the
solution z € s71(0) is regular. The implicit function theorem then implies that the (necessarily
open) subset of regular points in s~1(0) is a smooth manifold.

One can study the space of holomorphic curves in the same manner, but now the vector
bundle and its base both become infinite dimensional, and one needs to apply the implicit
function theorem in a Banach space setting (see e.g. [Lan93| Chapter XIV] and [Lan99]).
The base will now be a smooth Banach manifold consisting of suitable pairs (j,u) where
u: Y — M is a map (in some Sobolev or Holder regularity class) and j is a complex structure
on Y. The corresponding vector bundle is an infinite-dimensional Banach space bundle £ — B
whose fiber over (j,u) is a Banach space of sections (again in a suitable regularity class) of
the bundle

m@((Tzaj)’ (U*TM’ J)) - X,

consisting of complex antilinear bundle maps (T'Y, j) — (v*T'M, J). The nonlinear Cauchy-
Riemann equation can then be expressed in terms of a smooth section of this bundle,

07:B—&:(ju)—»Tu+JoTuoj,

whose zero set can be identified with the moduli space of J-holomorphic curves. At a solution
(j,u) € 6,1(0), there is now a linearization

Da](ja u) : T(j,u)B - 5(j,u)7

which is a bounded linear operator between two Banach spaces. Most importantly—and this
is another deep consequence of elliptic regularity theory—the linearization in this case is a
Fredholm operator, i.e. the dimension of its kernel and codimension of its image are both
finite, and its Fredholm index

ind Dd;(j,u) := dimker Dd;(j,u) — codimim Dd;(j,u) € Z

is constant under small perturbations of the setup. The Fredholm index of Dd;(j,u) can be
derived from the Riemann-Roch formula: up to adjustments accounting for symmetries of
the domain and marked points, it is precisely what we called ind(u) in (2.35]) above, i.e. it is
the virtual dimension of the moduli space. Since kernels of Fredholm operators always have
closed complements, the Fredholm property makes it possible to apply the implicit function
theorem in much the same way as in the finite-dimensional example: if Dd;(j,u) is surjective,
then a neighborhood of u in the moduli space can be identified with a neighborhood of 0 in
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ker Ddy(j,u), whose dimension is precisely the Fredholm index. The miracle of Fredholm
theory is that this dimension is finite even though both dim B and rank £ are infinite.

With the preceding understood, we shall say that a curve u € My ,,(A;J) is Fredholm
regular if the linearization Dd;(j,u) : T(j,u)B — &(j,u) outlined above is a surjective operator.
This definition may sound ad hoc at first, as the functional analytic setup underlying the
section 0y : B — &£ depends on a number of choices (e.g. which Banach spaces to use as local
models for B and &), but one can show using the theory of elliptic operators that the notion
of Fredholm regularity does not depend on these choices.

There is one caveat that must be added to the above sketch: the local identification
between Mg, (A;J) and (_331(0) is only correct up to a finite ambiguity which depends on
symmetries. It depends in particular on the automorphism group

Aut(Z, 5,1, (Gry -5 Gm))s

which is defined to be the group of all biholomorphic maps ¢ : (X,j) — (X,7) such that
u=wuopand ¢(¢;) = ¢; for all t = 1,... ,m. This group is always finite unless u is constant,
and it is trivial whenever u is somewhere injective.

THEOREM 2.11. Let My (A4;J) € Mgm(A;J) denote the (necessarily open) subset con-
sisting of all curves in Mg, (A;J) which are Fredholm regular and have trivial automor-
phism groupE Then Mg (A; J) naturally admits the structure of a smooth oriented finite-
dimensional manifold with

dim M, (A; J) = vir-dim Mg, (4; J).
O

On its own, Theorem Z.TT]is quite difficult to apply since one needs a way of checking which
curves are Fredholm regular. In practice however, one can usually appeal to more general
results instead of checking explicitly. For intuition on this, consider again the example of a
finite-dimensional vector bundle £ — B with a smooth section s : B — FE. The zero-set
571(0) c B is geometrically the intersection of two submanifolds of the total space, namely
s(B) c E and the zero-section B < E. Another way of expressing the implicit function
theorem is then the statement that this intersection is a smooth submanifold whenever s(B)
and B intersect transversely; this is in fact equivalent to the requirement that the linearization
Ds(z) : T,B — E, be surjective for all z € s71(0). Transversality, of course, is a “generic”
property: it’s something that can typically be achieved by making small perturbations, and
one expects it to hold outside of exceptional (“non-generic”) cases, see for example [Hir94].
Thus in the finite-dimensional example, one can make a generic perturbation of the section s
so that every solution z € s~1(0) is regular.

Going back to holomorphic curves, the intuition from the finite-dimensional example
suggests that if we perturb the Cauchy-Riemann equation in some sufficiently generic way,
we may be able to ensure after this perturbation that every curve in our moduli space is
Fredholm regular. The most obvious piece of data to try and perturb is the almost complex
structure. It turns out that this is not generic enough to achieve transversality in general,

3A version of Theorem [ZZIT] holds without the assumption on the automorphism group, but in general
M5, (A; J) will then be a smooth orbifold rather than a manifold. More precisely, every Fredholm regular
curve u € Mg m(A;J) has a neighborhood that looks like the quotient of a vector space with dimension
ind(u) + 2m by an action of its automorphism group. This is explained in detail in [Wenc].
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but it does suffice for making all somewhere injective curves regular, which is good enough
for many important applications.

To set up the result in its most useful form, we shall suppose (M,w) is a 2n-dimensional
symplectic manifold, &/ < M is an open subset with compact closure and Jy € J-(M,w) is a
fixed w-tame almost complex structure. Define the subset

TJr(M,w;U, Jo) ={J e T (M,w) | J=Jyon M\U} < T-(M,w).

Note that in some applications, if M is compact, it suffices to take U = M so that Jy is
irrelevant and J,(M,w;U,Jy) = Jr(M,w), but this more general definition gives us the
useful option of perturbing J only within a fixed open subset. Now for any fixed integers
g,m = 0 and a homology class A € Hy(M), define

TEE(M, w; U, Jo) = {J e T.(M,w;ld, Jo) every u € Mg ,,(A; J) with an injective pomt} .

mapped into U is Fredholm regular

Note that by Proposition 2.6 every somewhere injective curve that passes through U/ neces-
sarily maps some injective point into . In the special case M = U, we simply write

Tr8(M,w) = Jr(M,w; M, Jy),

where Jj is in this case arbitrary.

Recall that a subset Y of a topological space X is called meager if it is a countable
union of nowhere dense subsets. Equivalently, a set is meager if its complement contains a
countable intersection of open dense sets, and this complement is then called comeager
Any countable intersection of comeager subsets is also comeager, and by the Baire category
theorem, if X is a complete metric space then every comeager subset is also dense. In the
following, the role of X will be played by J.(M,w;U, Jy), which is a complete metrizable space
whenever Y < M is precompact. The meager sets play a similar role in infinite-dimensional
settings to the sets of measure zero in finite dimensions: in particular, any statement (such
as the theorem below) that is true for all choices of J belonging to some comeager subset of
all the allowed almost complex structures is said to hold for generic choices.

THEOREM 2.12. Fiz any symplectic manifold (M,w), an open subsetUd < M with compact
closure, integers g,m > 0, A € Ho(M), and Jy € J(M,w). Then the set Jr8(M,w;U, Joy)
as defined above is a comeager subset of J.(M,w;U,Jy). In particular, every J € J(M,w)
matching Jo outside U admits a C™-small w-tame perturbation in U for which every some-
where injective curve in Mg, (A; J) passing through U is Fredholm regular. O

Since every somewhere injective curve has trivial automorphism group, Theorems 2.11]
and combine to endow the space of somewhere injective curves My (A;J) with the
structure of a smooth finite-dimensional manifold for generic J. For reasons that we will
discuss in §2.1.8, this manifold always carries a canonical orientation, so the result can be
summarized as follows:

COROLLARY 2.13. If (M,w) is a closed symplectic manifold, then for generic w-tame
almost complex structures J, the space M;m(A; J) is a smooth oriented finite-dimensional
manifold with its dimension given by (2.4]). O

41t has become conventional among symplectic topologists to refer to comeager sets as “Baire sets” or
“sets of second category,” though this seems to be at odds with the standard usage in other fields.
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REMARK 2.14. Our definition of J; (M, w;U, Jy) above depends on the choices g,m = 0
and A € Hy(M), though we have suppressed this in the notation. In practice it makes no
difference: since the set of all possible triples (g, m, A) is countable, the intersection of all the
spaces Jr o(M,w;U, Jy) for all possible choices of (g,m, A) is still a comeager subset, thus
one can still say that for a generic J € J(M,w), all the spaces M (J) are smooth.

There is a similar result for 1-parameter families of data. Fix a smooth 1-parameter
family of symplectic structures {ws}e[o,1) on M and define J-(M, {ws}) to be the space of all
smooth 1-parameter families of almost complex structures {Js}se[o,1] such that Js € J-(M, ws)
for all s € [0,1]. The space J(M, {ws}) carries a natural C*°-topology and is again nonempty
and contractible as a consequence of Proposition 21l Fixing any J € J;(M,wq) and J' €
Jr(M,w1), the same is true of the subset

Te(M {ws}; J, ) = {{Js} € Tr (M, {ws}) | Jo=J and J; = J'}.
Given a family {J;} € J-(M,{ws}), we define the parametric moduli space
Mg m (A {Js}) = {(s,u) | s €[0,1] and u e My, (A; Js)},

and write

Mg,m ({JS}) = U Mg,m (Aa{Js})

AEHQ(M)

This has a natural topology for which a sequence (sg,uy) converges to (s,u) if and only if
sk — s and uy — u, with the latter defined in the same way as convergence in My ,,,(J) (see
Remark [2.9)). Define also the open subsets

Mz,m (A;{Js}) © Mgm (A;{Js}), Mz,m ({Js}) © Mgm ({Js}) s
consisting of pairs (s,u) for which u is somewhere injective.
THEOREM 2.15. Given {Js} < J-(M,{ws}), let
MEE (A (J3)) € Moam(A; {,))

denote the (necessarily open) subset consisting of all pairs (s,u) for which u € My, (4; Js),
i.e. u is Fredholm regular and has trivial automorphism group. Then M (A;{Js}) naturally
admits the structure of a smooth oriented manifold with boundary

OIMGh (A {Ts}) = = ({0} x MEE, (A J0)) u ({1} x MG (A571)),
and the natural projection
Mg (Ai{Js}) = [0,1] : (s,u) — s
s a submersion. O

THEOREM 2.16. Suppose M is a closed manifold with a smooth 1-parameter family of
symplectic structures {ws}seo1), J € Jr *(M,wo) and J' € Jr*(M,w1). Then for every
g,m =0 and A€ Ho(M), J-(M,{ws}; J,J') contains a comeager subset

T8 (M {ws}; J, ) © Te(M, {ws}; J, ')
such that for all {Js} € Jr* (M, {ws}; J, J'), M., (A;{Js}) naturally admits the structure of
a smooth oriented manifold with boundary

OMG (A5 {Js}) = = ({0} x M (A3 o)) w ({1} x Mg, (4;h),
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Ficure 2.1. Possible structure of the parametric moduli space
Mg (A {Js}) in a case where vir-dim M7, (A;Js) = 0, with the map
Mg (A {Js}) — [0,1] @ (s,u) — s shown as having six critical values in
the interior (0, 1).

and all critical values of the projection
M;,m(A’ {‘]3}) - [0’ 1] : (S,U) —$
lie in the interior (0,1). O

It should be emphasized that in contrast to Theorem R.I5 the map M, (A;{Js}) —
[0,1] : (s,u) — s in Theorem 2.6l need not be a submersion, as there may exist pairs (s,u) €
M . (A; {Js}) for which the curve u is not Fredholm regular. Such points in M7 . (4; {Js})
can give rise e.g. to birth-death bifurcations in the family of moduli spaces M;‘ym(A; Js); see

Figure 211

REMARK 2.17. As in the discussion of the space Jr °(M,w;U, Jy) above, Theorem
and all the genericity results discussed in the next two subsections admit generalizations to
allow for perturbations that match fixed data outside of some chosen precompact open subset
U < M. The caveat is always that such results only apply to the open set of J-holomorphic
curves u : ¥ — M that have an injective point z € ¥ with u(z) € U. The crucial step in the
proofs of such theorems is typically a lemma about the smoothness of a “universal” moduli
space consisting of pairs (u, J), where J belongs to the space of admissible perturbed data, and
u is in the moduli space determined by J. This space is at best an infinite-dimensional Banach
manifold since the space of perturbations of J is quite large, but if it is smooth, then one
can apply Smale’s infinite-dimensional version of Sard’s theorem [Sma65] to the projection
(u,J) — J, giving a comeager set of regular values J for which the corresponding moduli
space is smooth. The standard arguments for proving smoothness of the universal moduli
space only require the data to be perturbable in an arbitrarily small neighborhood of the
point u(z), so long as z is an injective point. (For the technical details, see [MS12), Prop. 3.2.1]
or [Wenc, Prop. 4.55], and also [Wene, Lemma A.3| for the corresponding result needed for
§2.1.5] below.)

This level of generality is useful for at least two reasons. First, it will sometimes be
convenient in our proofs of the main theorems from Chapter[Ilto make perturbations that leave
unchanged some region where the holomorphic curves are already sufficiently well understood.
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A second reason involves the generalization to punctured holomorphic curves in Chapters 8
and O where the target spaces will always be noncompact, thus it is necessary for technical
reasons to choose a compact region in which the perturbations take place (cf. the discussion
preceding Theorem B.3T]).

Note that for closed curves u : ¥ — M, Proposition implies that having an injective
point z € ¥ with u(z) € U is equivalent to u being a somewhere injective curve that inter-
sects U. We will see in §83that the same is true for punctured curves, but the reader should
beware that it is mot true in general for curves with boundary and totally real boundary
conditions, see [Laz00].

Let us point out explicitly what these genericity results mean in cases where the virtual
dimension of the moduli space is negative. By definition, any smooth manifold with negative
dimension is empty. One sees from the example of the finite-dimensional vector bundle £ — B
that this is the right convention: if rank £ > dim B, then Ds(x) : T,B — E, can never be
surjective, so the fact that generic perturbations make s(B) and B transverse actually means
that after a generic perturbation, s~!(0) will be empty. This is also what happens in the
infinite-dimensional setting if the Fredholm index is negative, hence:

COROLLARY 2.18. Suppose (M,w) is a symplectic manifold, U < M is an open subset
with compact closure and J € J.(M,w). Then after a generic w-tame perturbation of J on U,
every J-holomorphic curve u with an injective point mapped into U satisfies ind(u) = 0. O

Since dim M . (A; {Js}) = dim M} . (A; Jo) + 1 in general, the transversality theory also
implies the following result, which can be strengthened a bit further in light of Remark
below.

COROLLARY 2.19. If M is a closed manifold with a smooth 1-parameter family of sym-
plectic structures {ws}se[0,1], then for generic families {Js} € Jr(M,{ws}), every somewhere
injective Jg-holomorphic curve u for every s € [0,1] satisfies ind(u) = —1. O

REMARK 2.20. It is sometimes useful to observe that since the index (2.5 is always even,
Corollary actually implies ind(u) = 0. As we’ll see in Chapter [ this plays an important
role in the proof of Theorem Bl It is not true however in more general settings, e.g. curves
with totally real boundary conditions or finite-energy punctured holomorphic curves can have
odd index in general, cf. Remark

It is not generally true that the entire moduli space Mgy, (J) can be made smooth or
that all curves with negative index can be eliminated just by perturbing J, unless one can
somehow rule out multiply covered curves. This fact causes enormous headaches throughout
the field of symplectic topology, but for our applications in dimension four it will not pose a
problem.

2.1.4. Moduli spaces with marked point constraints. A straightforward extension
of the above results is to consider moduli spaces of holomorphic curves with marked points
satisfying constraints on their images in the target. Such constraints can be defined using the
evaluation map ev : Mg, (J) — M™, see (Z3)).

Assume M is a 2n-dimensional manifold with either a fixed symplectic structure w or a
fixed smooth 1-parameter family of symplectic structures {ws}se[o,1]- For this subsection we
will assume M is closed, but the reader should keep in mind that this assumption can be
weakened in the spirit of Remark 2I7l Fix a smooth submanifold

Z < M™.
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Then for any J € J-(M,w) or {Js} € J-(M,{ws}), we define
Mg,m(A; J; Z) = eV_l(Z) - Mg,m(A§ J),

and
Mgm(A;i{Js} Z) = {(s,u) | s€[0,1], ue Mg m(4;Js; Z)},
with
Mom(T;Z2) = | ] Mgm(4A;T;2),
AEHQ(M)
Mg,m({Js};Z) = U Mg,m(A§ {Js};Z)'
AEHQ(M)

In other words, the elements of M, ,,(J;Z) can be parametrized by J-holomorphic curves
u: X — M with marked points (3,...,(, C X satisfying the constraint

(2.6) W(C1), .. u(Cm)) € Z.

The most common special case we will need is the following: given points p1,...,pm € M, we
can choose Z to be the 1-point set

Z = {(p17 .. 7pm)} )
and in this case use the notation

Mym(A; Tipr, .. pm) 1= Mym(A; T Z) = ev ™ (p1, ..., Pm),
so that elements u of My n,(A; J;p1,. .., pm) with marked points (i,. ..,y satisfy
w(G)=p; for i=1,....,m.

If u e Mgm(A;J;Z) is Fredholm regular and has trivial automorphism group, then
Theorem [ZT1] says that the unconstrained moduli space Mg, (A; J) is a smooth manifold of
dimension equal to vir-dim M, ,,,(A; J) near v. We will say that u is Fredholm regular for
the constrained problem and write

ue M (A; J; 2)

if, in addition to the above conditions, u is a transverse intersection of the evaluation map
ev : My m(A;J) — M™ with the submanifold Z. Note that in the case Z = {(p1,...,pm)},
this simply means (p1,...,pm) is a regular value of ev. The open subset My, (4;J;2)
Mgm(A; J; Z) is then also a smooth manifold, with dimension less than that of Mg, (4; J)
by codim Z, so in particular 2nm if Z = {(p1,...,pm)}. We thus define the virtual dimension
of the constrained moduli space by

vir-dim Mgy p, (A; J; Z) = vir-dim Mg, (A; J) — codim Z,
which we will sometimes also call the constrained index of any curve in u € M, ,,(4; J; Z).
In the case Z = {(p1,...,pm)}, we have
vir-dim Mg, (4; J; p1, - - . s pm) = vir-dim Mg . (A; J) — 2nm
(2.7) =(n—-3)(2—-29) +2c1(A) —2m(n — 1)
= ind(u) — 2m(n —1).
The neighborhood of a constrained Fredholm regular curve u € My (A;J; Z) can also be

deformed smoothly under any small deformation of the data J and Z, in analogy with The-
orem [2. 1]
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As usual, we shall denote by
MG n(As T3 Z) @ Mgm(A; J; Z)
M (A5 {5} Z) © Mgm(A;i{Js}; Z)
the open subsets consisting of somewhere injective curves. Observe that if J € J;°®(M,w),
then standard transversality results from differential topology imply that generic perturba-
tions of the submanifold Z < M™ make ev transverse to Z; in the case Z = {(p1,...,0m)},
this is an immediate consequence of Sard’s theorem. After such a perturbation, every curve in
MG 1 (A; J; Z) is also Fredholm regular for the constrained problem. Alternatively, the argu-

ments behind the transversality results in §2.1.3] above can be modified to prove the following
statement, in which Z can be fixed in advance but J must be perturbed:

THEOREM 2.21. Given the submanifold Z < M™, integers g,m = 0 and A € Ho(M),
there exists a comeager subset
TrE(M,w; Z) < Jr (M, w)
such that for all J € J;°®(M,w; Z), every somewhere injective curve in Mgy, (A; J; Z) is Fred-

holm reqular for the constrained problem. In particular, ./\/l;m(A; J; Z) is a smooth oriented
manifold with dimension equal to vir-dim Mg ,(A; J; Z). O

THEOREM 2.22. Suppose M is a closed manifold with a smooth 1-parameter family of sym-
plectic structures {ws}se[0,1], J € T8 (M,wo; Z), J' € Tr8(M,w1;Z), g,m = 0 are integers
and A € Ho(M). Then there exists a comeager subset

Tr8(M {ws}; Z; J,J") < Tr (M, {ws}; J, J')
such that for all {J5} € Tr#(M,{ws}; Z;J,J'), the space M}, (A;{Js}; Z) is a smooth ori-
ented manifold with boundary
OM (A {Js}: Z) = — ({0} x M3 (A3 Jos Z)) v ({1} x M3 (A5 v Z))
and all critical values of the projection
Mg (A s} Z) — [0,1] : (s,u) = s
lie in the interior (0,1). O

Once again the cases with negative dimension mean that the moduli space is empty. Let us
state two special cases of this that will be useful in applications: first, set Z = {(p1,...,pm)}-

COROLLARY 2.23. Fizx p1,...,pm € M. Then for generic J € J.(M,w), the space
M (A5 51, pm) is empty unless

(n—3)(2—2g) +2c1(A) = 2m(n —1).
Similarly, given a smooth family {ws}sejo,1) of symplectic structures, for generic choices of
J e T (M,wy), J' € Tr(M,wy) and {Js} € T (M,{ws}; J,J"), the parametric moduli space
MG o (AT} p1s - oo s pm) is empty unles
(n—3)(2—2g) +2c1(A) =2m(n—1) — 1.
O

5A version of Remark Z20] also applies to this result since the left hand side of the inequality is always
even, and this is useful in some applications—but again, this numerical coincidence does not usually occur in
more general settings (cf. Remark B32]).
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REMARK 2.24. The reader should be cautioned that in Corollary 2.23] and similar results
such as Corollary below, the definition of the word “generic” depends on the choice
of the points p1,...,pm. In most situations, there is no single J that can make the spaces
Mg (A Jip1, ..., pm) simultaneously smooth for all possible choices of p1,...,pm. Such a
J would need to belong to an wuncountable intersection of comeager subsets, which may in
general be empty.

One can derive various closely related corollaries that have nothing directly to do with
marked points. For instance, notice that if the points p1,...,pm, are all distinct, then the
image of the natural map

Mg m(A; T;p1, ..o pm) = Mg(A; J)

defined by forgetting the marked points consists of every curve u € My(A;J) that passes
through all of the points p1,...,pm. For generic J, restricting this map to the somewhere
injective curves gives a smooth map M . (A; J;p1,...,pm) = Mj(A;J), where

dim Mg ., (A; J;p1, -, pm) = dim Mg (A; J) — 2m(n — 1).

If n > 2, this means the domain is a manifold of dimension strictly smaller than the target,
so that by Sard’s theorem, the image misses almost every point in M;‘(A; J), implying:

COROLLARY 2.25. Given a closed symplectic manifold (M,w) of dimension 2n > 4 and
a nonempty finite set of pairwise distinct points pi,...,Ppm, there exists a comeager subset
Jree < J(M,w) such that for any J € J*8, g = 0 and A € Ho(M), the set of curves
in My (A; J) whose images do not contain {pi,...,pm} is open and dense. Moreover, every
curve u satisfying ind(u) < 2m(n — 1) belongs to this subset. O

The Sard’s theorem trick can be used to deduce a result about triple self-intersections
that will be useful in Chapter [ i.e. we would like to exclude curves u : ¥ — M that have
three distinct points z1, 29, 23 € X satisfying

u(z1) = u(ze) = u(zs).
Suppose we are given m > 0 and a collection of pairwise disjoint submanifolds Z1,...,Z,, c
M, set
=701 %X ...xX Ly M™,
and consider first the scenario in which a triple self-intersection occurs at three points that
are distinct from the marked points. We can deal with this by defining the submanifolds
A ={(p,p,p) |l peM}c M x M x M
and
Zn=Z x Ac M™3,
The latter has codim ZA = codim Z + 4n, thus
dim M . 3(A; J; Za) = vir-dim My 43(4; J) — codim Z — 4n
= vir-dim Mg ,,,(A; J) + 6 — codim Z — 4n
= dim M ,,,(A; J; Z) + 6 — 4n.
Applying Sard’s theorem to the natural map M* (A;J;Z8) — M (A5 J; Z) that for-

g,m+3
gets the last three marked points, we deduce that if n > 2 so that 6 — 4n < 0, an open

and dense subset of the curves in M (A;J;Z) will have no triple self-intersections dis-
tinct from the marked points, and this open and dense subset will include everything if
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vir-dim Mg, (4; J; Z) < 2(2n — 3). To allow for triple self-intersections involving marked

points, we observe that since the submanifolds 71, ..., Z,, are assumed disjoint, we only need
to worry about the case u(z1) = u(z2) = u(z3) where z; is a marked point while 2z and z3 are
not. We thus consider for each £k = 1,...,m the submanifold

Ap={(p1,-- - Pmy2) € M™ 2 | pp = prst = psa} € MM,
which has codimension 4n and intersects Z x M x M transversely, giving another submanifold
Zy:=(Z x M x M) n Ay c M™2
of codimension codim Z + 4n. Now
dim M3 ,,, 1 2(A; J; Zy,) = vir-dim Mg p42(A4; J) — codim Z — 4n
= vir-dim Mg ,,,(A; J) + 4 — codim Z — 4n
=dim M ,,(A; J; Z) + 4 — 4n,

so Sard’s theorem gives the same conclusion as long as 4 — 4n < 0, and in fact the self-
intersections in question are avoided altogether under a slightly weaker condition than before,
namely vir-dim Mg, (4;J; Z) < 4(n — 1). Letting k vary over 1,...,m and putting these
two cases together, we conclude:

COROLLARY 2.26. Suppose (M,w) is a closed symplectic manifold of dimension 2n > 4,
m = 0 s an integer,
Ziyeo s Zmm M
s a collection of pairwise disjoint submanifolds, and Z = Zy x ... X Zy,, < M™. Then for
generic J € Jr(M,w) and any g = 0 and A € Ha(M), the set of curves in M, ..(A; J; Z) that
have no triple self-intersections is open and dense. Moreover:
o [f vir-dim My, (A; J; Z) < 4n — 6, then no curve in My, (A;J;Z) has any triple
self-intersections.
o If vir-dim My, (A; J; Z) < 4n — 4, then no curve in My, (A;J;Z) has any triple
self-intersections at points that include a marked point.

0

EXERCISE 2.27. Derive the analogous corollary for the diagonal A ¢ M x M and use it
to deduce that if dim M > 6, the injective curves generically form an open and dense subset
of M7 (A;J). Notice however that you cannot prove this for dim M = 4; in fact it is false,
as there are strict topological controls in dimension four that prevent intersections from just

disappearing, see §2.2.21

By a slight abuse of conventions, we can also apply the above trick to J-holomorphic curves
whose domains have two connected components, producing statements about intersections
between two distinct curves, such as the following.

THEOREM 2.28. Under the same assumptions as in Corollary[2.20, fix integers k,g,h = 0
with k < m, homology classes A, B € Ha(M), and let

Z'=2Zy x...x Zj, < M*, 2" = Zp1 X ... X Ty < M™F,
Then for generic J € Jr(M,w), there exists an open and dense subset of

{(u,v) € M} (A T 2') x My, (B3 T3 Z27) | u # v}



32 2. BACKGROUND ON CLOSED PSEUDOHOLOMORPHIC CURVES

consisting of pairs (u,v) such that intersection points between u and v never coincide with
the self-intersection points of each. Moreover, all pairs (u,v) of distinct somewhere injective
curves have this property if the sum of their constrained indices is less than 4n — 6. O

2.1.5. Constraints on derivatives. One can also impose constraints on derivatives
of holomorphic curves at marked points, and some results of this type will be needed in
Chapter[ll The contents of this section will not be needed for the proofs of the main theorems
stated in Chapter [ so you may prefer to skip it on first reading. We will continue under the
assumption that M is closed, though this assumption can also be weakened if perturbations
of J are restricted to a precompact open subset (see Remark 2.17)).

To understand the moduli spaces of interest in this section, we can (at least locally)
enhance the evaluation map ev : My n,(A; J) — M™ with information that keeps track of the
derivatives of curves at each marked point up to some prescribed order. This information is
best expressed in the language of jets. Following [Zeh15], we define the space Jet% (M) of
holomorphic (-jets in (M, J) to consist of equivalence classes of J-holomorphic maps from
a neighborhood of the origin in C into M, where two such maps are considered equivalent if
their values and derivatives up to order ¢ are the same at the origin. It is straightforward
to check that the latter condition does not depend on any choices of local coordinates in M.
This is immediate in the case £ = 1, for which there is an obvious bijection with the vector
bundle

(2.8) Jeth (M) = {(p,®) | pe M and & : (C,i) — (I, M, J) is complex linear},

where p and ® represent the value and first derivative respectively of a local J-holomorphic
curve. The fact that every such pair (p, @) corresponds to a holomorphic 1-jet follows from
a somewhat nontrivial result on the local existence of J-holomorphic curves with prescribed
derivatives at a point, see [Wenc, §2.12] or [Zeh15] §2]. One can show in the same manner
that the space of holomorphic ¢-jets near a given point is in bijective correspondence with the
set of holomorphic Taylor polynomials of degree ¢, thus Jetf}(M ) is a smooth manifold with

dim Jet5 (M) = 2n(¢ + 1).

We can view Jet’ (M) as a submanifold of the space Jet®(M) of smooth (-jets of maps C — M;
the latter is locally in bijective correspondence with the set of all (not necessarily holomorphic)
Taylor polynomials, thus it has dimension 2n(14+2+3+...+ ({+1)) =n({ +1)({+2). For
our applications, we will only need the case £ = 1.

Recall from §2.T.3] that a neighborhood of any element in M5, (A;J) represented by a
curve ug : (X,j0) — (M,J) with marked points (i,...,(n € ¥ can be identified with the
zero-set of a smooth Fredholm section 0y : B — £. Here £ is a Banach space bundle over a
Banach manifold B consisting of pairs (j,u), where j is a complex structure on ¥ close to jg
and u : ¥ — M is a map close to ug in some Sobolev regularity class. One can define B so
as to assume that the complex structures j all match jo near the marked points, and then
fix holomorphic coordinate charts identifying a neighborhood of each marked point with a
neighborhood of the origin in C. If the Sobolev completion is chosen so that u is always of
class C*¢ or better for some ¢ > 1, then for any integers 0 < ¢; < € with j = 1,...,m, these
choices determine a jet evaluation map

ev: 071(0) — Jet} (M) x ... x Jet (M),

whose ith component at (j,u) € 5;1(0) for i = 1,...,m is the holomorphic ¢;-jet represented
by w in the chosen holomorphic coordinates at ;. One can now show that for any smooth
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submanifold Z’ Jetf}l (M) x...x Jetf}m(M ), generid] choices of J make ev transverse to 2/,
see e.g. [Wenel, Appendix A|. This discussion depends on several choices and is thus difficult
to express in a global way for the whole moduli space M;’m(A; J), but certain geometrically
meaningful submanifolds Z’ can be defined in ways that are insensitive to these choices and
thus give rise to global results. Rather than attempting to state a general theorem along
these lines, let us single out two special cases that will be useful.

First, use the identification (2.8]) to define

Zaie = {(p,0) € Jet§(M) | pe M} < Jet(M).
The resulting constrained moduli space
Mg.aie(A; J) = Mg (A; )
is the space of equivalence classes of curves u : (X,j) — (M, J) with a marked point { € ¥
such that du(¢) = 0. We have
codim Zjy = dim Jeth (M) — dim Zeye = 4n — 2n = 2n,
hence
vir-dim Mg orit (4; J) = vir-dim Mg 1 (4; J) — 2n = vir-dim My (4; J) — 2(n — 1).

More generally, one can combine the non-immersed point constraint with the pointwise con-
straints defined by a submanifold Z < M™ as in the previous subsection. Here we have
two cases to distinguish, depending whether the non-immersed point occurs at one of the m
marked points constrained by Z or not. For the latter case, we define the submanifold

Z X Zeyip © M™ x Jeth (M)
with codimension codim Z + 2n, giving rise to a moduli space
Mg merit(A; I3 Z) @ Mgmia(A; J3Z x M)

of curves u : ¥ — M that have marked points (1,...,(n, (" € X, with the first m marked
points satisfying the constraint ([2.6]) and the last one satisfying du(¢’) = 0. This space has
virtual dimension

vir-dim Mg it (4; J; Z) = vir-dim Mg 41 (A; J) — codim Z — 2n
= vir-dim Mgy, (A; J; Z) — 2(n — 1).
Alternatively, one can stick with only m marked points subject to the constraint (2.6) but

assume additionally that the kth marked point is non-immersed. For k = 1, this means
considering the transverse intersection of Z x M™! < Jeth (M) x M™ ! with

(r x 1d)"1(Z) < Jeth (M) x M™ 1,

where 7 : Jet} (M) — M denotes the bundle projection. Performing the analogous con-
struction for any k = 1,...,m gives a submanifold of codimension codim Z + 2n in M*~1 x
Jet} (M) x M™% so the corresponding moduli space

My merity (A T Z) © Mg m(A; J; Z)

6As with Remark [Z24] it is important to understand that in this statement the definition of the word
“generic” depends on the submanifold Z’.
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satisfies
vir-dim Mg, erity, (43 J; Z) = vir-dim Mg, (4; J) — codim Z — 2n
= vir-dim Mg, (A; J; Z) — 2n.
As usual, we shall denote the sets of somewhere injective curves in these moduli spaces by
gt (A5 I3 Z) © Mg m eie(A; J; Z), (A Z) © Mg mcrity (A3 5 Z).

g m,crity
THEOREM 2.29. Given Z < M™, for generic J € J-(M,w), the spaces M7 . (A J; Z)
and M;mcmk (A; J; Z) for k =1,...,m are all smooth manifolds with dimension matching
their virtual dimensions. O

Applying Sard’s theorem to the natural maps My . (4;J;Z) — Mg (A;J;Z) and

M (A;J;Z) — M . (A; J; Z), where the former forgets the extra marked point, we

g,m,crity
deduce:

COROLLARY 2.30. Suppose (M,w) is a closed symplectic manifold of dimension 2n > 4,
m = 0 is an integer and Z < M™ is a submanifold. Then for generic J € J;(M,w) and any
g =0 and A € Hy(M), the set of curves in M . (A;J;Z) that are immersed is open and
dense. Moreover:

o [f vir-dim My, (4; J; Z) < 2n — 2, then all curves in M . (A;J; Z) are immersed.
o [f vir-dim My, (A; J; Z) < 2n, then no curve in My, (A J; Z) has a non-immersed
point at any of its marked points.

O

Next, we consider the problem of ensuring that self-intersections of a simple curve in

dimension four are transverse. Define the submanifold
Zian = {((p,®), (p,V)) | pe M and ¥ = c® # 0 for some c € C} = Jet}; (M) x Jeth (M),
which has codimension
(2.9) codim Zy,, = 4n — 2.
The resulting constrained moduli space
Mg an(A; J) © My (A5 J)

consists of equivalence classes of curves u : (X, j) — (M, J) with two marked points (1, (s € X,
both of them immersed points for w, such that u(¢;) = u(¢2) and im du(¢;) = imdu(¢2). We
say in this case that u has a tangential self-intersection. In light of (2.9]), we set

vir-dim Mg tan (A4; J) = vir-dim Mg 2 (A; J) — (4n — 2)
= vir-dim My(A4; J) — (4n — 6).
One can just as easily combine this with the pointwise constraints defined via a submanifold
Z < M™ as in the previous subsection, though some extra assumption is necessary in order
to ensure the necessary transversality. One reasonable option is to restrict our attention (as
in Corollary 2.26]) to submanifolds of the form
Z=Z1%X...X Ly M™

for a collection of pairwise disjoint submanifolds Zi,...,72,, < M. We can then define a
moduli space
Mg mgan(A; 3 2) © Mgmia(A; J; Z x M x M)
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with
vir-dim Mgy, tan (A; J; Z) = vir-dim Mg . (A; J; Z) — (4n — 6)

consisting of curves u : ¥ — M with marked points (1, ..., (n, (', (" € X satisfying (Z.6]) such
that u(¢") = u(¢”) is a tangential intersection. For each k = 1,...,m, there is also a moduli
space

Mg m an, (45 J; Z) © Mgmi1(A;J;Z x M)
with
vir-dim Mg, tan, (4; J; Z) = vir-dim My . (A; J; Z) — (4n — 4),

in which the tangential intersection involves the kth marked point and the extra marked
point. There is no need to consider intersections involving two of the m marked points
since the constraint submanifolds Z1, ..., Z,, are all disjoint. We shall again use superscript
asterisks to indicate the sets of somewhere injective curves.

THEOREM 2.31. Fiz m = 0 and pairwise disjoint submanifolds Z1,...,Z, < M, defining
Z =71 X ...x Zym < M™. Then for generic J € Jr(M,w), the spaces My, an(A; J; Z) and
o motan, (A5 5 Z) for each k = 1,...,m are all smooth manifolds with dimension matching

their virtual dimensions. O

As with Theorem 228 one can also apply this technique to curves with domains having
two connected components, producing results about pairs of J-holomorphic curves that inter-
sect each other tangentially. Putting all this together and applying the usual Sard’s theorem
trick, we have:

COROLLARY 2.32. Suppose (M,w) is a closed symplectic manifold of dimension 2n > 4,
g, h,m,k = 0 are integers with k < m, A,B € Ho(M), and Z1,...,Zy < M are pairwise
disjoint submanifolds defining Z = Z1 X ... X Zp, € M™ and

7' =7y % ...x Z « M*, Z" = Zpiq X ... X Ty < MM
Then for generic J € Jr(M,w):

o The set of curves in M, (A; J; Z) that have no tangential self-intersections is open
and dense.

o [f vir-dim My ,,,(A; J; Z) < 4n — 6, then no curve in My . (A;J; Z) has tangential
self-intersections.

o If vir-dim My, (A; J; Z) < 4n — 4, then no curve in M, (A; J;Z) has tangential
self-intersections at points that include a marked point.

Moreover, the set of pairs (u,v) € ./\/l;‘k(A; J; ZN) x M5 (B; J; Z") for which w and v have
no tangential intersections with each other is open and dense in the subset {(u,v) | u # v}, and
all such pairs have this property if the sum of their constrained indices is less than 4n—6. 0O

REMARK 2.33. Corollary is not very interesting when dim M > 4, since one can use
the simpler methods of §2.1.4] in that case to show that generic simple J-holomorphic curves
are injective (cf. Exercise [2.27]) and generic pairs of distinct simple curves are disjoint. In
dimension four this is generally false, and the homological intersection number A - B € Z
guarantees intersections whenever it is nonzero, but the corollary allows us to conclude that
generically such intersections will be transverse.
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2.1.6. Gromov compactness and singularities. The space M, ,,(A;J) is generally
not compact: sequences of J-holomorphic curves can degenerate into non-smooth objects,
but it is another deep consequence of elliptic regularity theory that one can characterize
precisely what kinds of degenerations are possible. The result is that M, ,,(A;J) has a
natural compactification, called the Gromov compactification Mg,m(A; J), which contains
Mgm(A;J) as an open subset.

We define the moduli space of unparametrized nodal .J-holomorphic curves with
arithmetic genus g and m marked points representing the homology class A € Hy(M)
as a space of equivalence classes

Mg,m(AQ‘]):{(S’j’u’(gl"”’cm }/N

where the various symbols have the following meaning. We assume (.5, j) is a closed (but not
necessarily connected) Riemann surface, and u : (S,j) — (M, J) is a J-holomorphic curve
such that if Si,..., S, denote the connected components of S,

u] = Zu*[Si] — A Hy(M).

The marked points ((1,...,(y) are again an ordered set of distinct points in S. The nodes
are encoded by A, which is a finite unordered set of unordered pairs

A ={{z,%1},.. ., {&, %}
of points in S, such that all the points 21, Z1, ..., 2, Zr, (1, . - ., (n are distinct and
(2.10) u(z) =u(Z) fori=1,...,r.

We shall usually refer to the individual points Z;, Z; as nodal points, while referring to each
pair {Z;,Z;} € A as a node. The arithmetic genus condition means the following: first, one
can define a compact surface S with boundary by replacing each of the nodal points Zi ,2:Z in
A with circles C; and Cj. Next, for each i = 1,...,, glue together the circles C; and C; in
order to form a closed oriented surface S see Flgure We require S to be a connected
surface with genus g. Observe that in light of (ZI0), u : S — M naturally determines a
continuous map 1 : S — M.

Finally, we define (S, j,u, (C1,...,¢m), A) ~ (S, 5,4/, (¢f, ..., (), A’) if the double points
A’ can be written as

A= {{Zlv Ei}v BRI {27,"7 ,\Z/;,}}
so that there exists a biholomorphic map ¢ : (S,7) — (5, 7') with u = v’ 0 ¢, ¢({;) = (] for
i=1,...,mand ¢(%;) = Z], p(%;) = Z for i = 1,...,r. Taking the union for all homology
classes, we denote
Mom(D) = | Mgm(A;7),
AeHy(M)

and the case with no marked points will sometimes be abbreviated

My(A;J) == Mg o(A; ), My(J) = Mgo(J).

We shall sketch below a notion of convergence for a sequence of smooth holomorphic
curves approaching a nodal curve. There’s a slight subtlety if one wants to use this notion to
define a Hausdorff topology on Mg, (A;J), as the most obvious definition produces limits
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FIGURE 2.2. Four ways of viewing a nodal holomorphic curve with arithmetic
genus 3 and two marked points. At the upper left, we see the disconnected
Riemann surface (S, 7) with marked points ({1, (2) and nodal pairs {Zz;, Z;} for
i = 1,2,3,4. To the right of this is a possible picture of the image of the
nodal curve, with nodal pairs always mapped to identical points. The bottom
right shows the surface S with boundary, obtained from S by replacing the

points z;, Z; with circles @, Cv’z Gluing these pairs of circles together gives the
closed connected surface S at the bottom right, whose genus is by definition
the arithmetic genus of the nodal curve.

that are not necessarily unique. This problem is fixed by the following additional definition,
due to Kontsevich.

DEFINITION 2.34. A nodal curve (S,j,u, (C1,...,(n),A) is said to be stable if, after
removing all the marked points (1,...,(n and nodal points A from S to produce a punc-
tured surface .S, every connected component of .S on which u is constant has negative Euler
characteristic.

With this notion in place, the definition of M, ,,, (A; J) is supplemented by the requirement
that all elements [(S, j,u, (C1,...,Cmn), A)] € Mym(4;J) should be stable, and M, (A; J)
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then turns out to be a metrizable space. It admits a natural inclusion
Mg m(A; ) @ Mg m(A;J)

by regarding each [(3,7,u, ((1,...,(m))] € Mgm(A;J) as a nodal curve with A = ¢f; we
will call these the smooth (or sometimes non-nodal) curves in My ,,(4;J). More generally,
one can take any [(S,j,u, (C1,...,Cn)s A)] € Mg m(A;J) and restrict u, j and the marked
point set to each connected component of S, producing the so-called smooth components
of [(S,7,u, (C1,---,¢m),A)], which are elements of spaces M, x(B;J).

Spherical components of S on which w is constant play somewhat of a special role in
Gromov compactness: they are referred to as ghost bubbles. The stability condition requires
that the total number of nodal points and marked points on each ghost bubble should always
be at least three.

We can now state the version of Gromov’s compactness theorem that we will need. For
any symplectic manifold (M,w) with an w-tame almost complex structure J, we define the
energy of a closed J-holomorphic curve u : ¥ — M by

B, (u) = L wrw.

This is nonnegative in general, and it vanishes if and only if u is constant (cf. Proposition 2.8)).
Moreover, it depends only on [u] € Ho(M) and [w] € H3g (M), so in particular, the energy of
all curves in Mgy, (A; J) for a fixed A € Hy(M) is uniformly bounded.

THEOREM 2.35. Suppose M is a closed manifold with a sequence of symplectic structures
wg converging in C* to a symplectic structure w, J € Jr(wk) is a sequence of tame almost
complex structures converging in C* to J € Jr(w), and up, € Mgm(Ji) is a sequence of
nonconstant holomorphic curves satisfying a uniform energy bound

Ewk (uk;) <C

for some constant C' > 0. Then uy has a subsequence that converges to a stable nodal curve

in Mg.m(J). O

The precise definition of convergence to a nodal curve is somewhat complicated to state,
but for our purposes it suffices to have the following description. Recall from the above
discussion that any given nodal curve [(S, j,u, (C1,--.,Gm), A)] € Mg m(J) determines a closed

oriented surface S which is connected and has genus g, and u : S — M determines a continuous
map

0:8—>M
which is constant on each of the special circles where S is glued to form S ; we shall denote
the union of all these circles by

Ccs.
Since the marked points (1, ..., (,, are disjoint from A, they can also be said to lie on §\C
in a natural way. Now if [(Z, jk, uk, (CF, ..., C%))] € Mym(Jk) is a sequence coverging to

[(Svjvuv (Clv s 7Cm)7 A)] € Mg,m(‘])v

the crucial fact is that there exists a sequence of diffeomorphisms

or: 8-y
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such that pg(¢;) = Cik for i = 1,...,m, while uy o ¢ converges to @ in both C’O(g, M) and in

Toe(S\C, M).

Observe that by this notion of convergence, the homology class [u] € Ha(M) of the limit
u € Mg, (J) must match [uy] for all sufficiently large k, and the evaluation map (Z3)) admits
a natural continuous extension

ev: Mg, (J) — M™.
A related result which plays a major role in proving Gromov’s compactness theorem is
the theorem on remowval of singularities. We state it here in a local form that will also be
applicable to punctured curves in Chapter [8

THEOREM 2.36. Suppose (M,w) is a symplectic manifold with J € J:(M,w), and u :
DA\ {0} — M is a punctured J-holomorphic disk that satisfies SDQ\{O} u*w < 00 and has image

contained in a compact subset. Then u extends smoothly to a J-holomorphic disk u : D> —
M. O

2.1.7. Gluing. It is sometimes also possible to describe the local topological structure
of the compactification Mg, (4; J), analogously to our local description of M, ,,,(A;J) via
the implicit function theorem in §2.1.31 This subject is known as “gluing,” because describing
the smooth curves in the neighborhood of a nodal curve requires some procedure for reversing
the degeneration in Gromov’s compactness theorem, i.e. for gluing the smooth components
of the nodal curve back together. We now sketch the simplest case of this, since it will be
needed in Chapter [7

Assume [(S, jo, u0, (C15---,Cm), A)] € MQM(A; J) is a nodal curve that has exactly one
node and two smooth components uj and wug, which live in spaces Mg+ ,+(AT;J) and
Mg - (A7 J) respectively with g™ + g~ = g, m* + m™ = m and AT + A~ = A. Denote
the domains of u* (i.e. the connected components of S) by %, so by assumption, A consists
of a single pair {z,27} with 2* € ©*, and z* and 2z~ are both distinct from any of the
marked points (i, ..., (y. Any nodal curve u € My ,,,(A;J) in a neighborhood of ug can be
written as a nearby map on the same domain S with a nearby complex structure and the
same marked points and nodal points, and if we view its smooth components u® as elements
of Mg+ p+ +1(A%; J) with 2% as the extra marked point, it satisfies the incidence relation

(2.11) evm++1(u+) = evm—+1(u7)'
DEFINITION 2.37. Given a pair [(S%, 5%, u®, ((F,..., ¢y, 25))] € Myt e 1 (A% ) sat-

isfying the incidence relation (2Z.I1]), let

utH#HuT € My m(A4;J)
denote the nodal curve consisting of the disjoint union of the maps u™ : (X*,5%) — (M, J
and v~ : (X7,57) —» (M, J), with marked points Cf,...,(;;“(f,...,(;t_ and node A
{{z", 271}

Since a neighborhood of ug in M, ,,,(A; J) may contain both smooth curves and nodal
curves, an obvious prerequisite for having a nice description of this neighborhood is that the
set of nodal curves in it should on its own have a nice structure. To this end, we impose the
following conditions on ug:

~—

1) ug and uy are both somewhere injective and are not identical curves (up to para-
0 0
metrization);



40 2. BACKGROUND ON CLOSED PSEUDOHOLOMORPHIC CURVES

(2) ug and ug are both Fredholm regular;
(3) The intersection at (ug ,ug ) between evy,+ 1 : Mg+ e 1(AT;J) — M and ev,,— 4
My —11(A75J) — M is transverse.
Note that the third condition is equivalent to requiring the map

(€Vin+ 41, €Vip—41) Mg+7m++1(A+;J) x Mg —11(A75J) = M x M

to be transverse to the diagonal. If the ua—r are distinct curves and both are simple, then the
results stated in §2.T.3]and §2.T.41 imply that the required transversality conditions can all be
assumed for generic J € J(M,w), and the set

(2'12) {(u+7u_) € Mg+,m++1(‘4+§ J) X Mg_,m—Jrl(A_; J) ‘ eVm++1(u+) = eVm—Jrl(u_)}
is a smooth manifold near (ug,ug ) with dimension
(2.13) vir-dim M g+ ,,+ (AT J) +vir-dim M-, - (A7 J) +4—2n = vir-dim M ,, (A; J) —2.

THEOREM 2.38. Under the transversality conditions listed above, there exists a neighbor-
hood U of (ug ,ug ) in the space 2I2) and a smooth embedding

U x [0,00) x ST My n(A; )

whose image contains every smooth curve in some neighborhood of the nodal curve ug €
Mg m(A;J). Moreover, ¥ admits a continuous extension

U x [0,00] x ST — My m(A4;)
such that for each 6 € S* and (u,u™) el,
U((ut,u),00,0) =ut#u,
and the maps
evol(,,R,): U x St - M™
are Cl-convergent to ev o¥(-,00,-) as R — 0. ]

We call the map W in this theorem a gluing map. Notice that by (2I3]), the domain and
target space of ¥ have the same dimension. The two extra parameters (R, #) € [0,00) x S!
in the domain can be understood as follows. The first step in defining ¥ is to define a
so-called pre-gluing map whose image is not in Mg,,(A4;J) but is close to it; in other
words, we associate to each nodal curve with smooth components u* : (X*,;7) — (M, J)
and v~ : (X7,j7) — (M,J) various approzimately J-holomorphic curves that are close
to degenerating to ut#u~. One way to do this starts with fixing holomorphic cylindrical
coordinates on X* near each of the nodal points z* so that punctured neighborhoods of z*
and 2z~ are identified with [0,00) x S and (—o0,0] x S! respectively; here S* is defined as
R/Z and the standard complex structure on R x S is defined such that the diffeomorphism

R x ST — C\{0} : (s,t) > 27(5H0)

is biholomorphic. Writing (s,t) € R x S! for the cylindrical coordinates, the maps u* (s, t) and
u~ (s, t) are approximately equal to the same constant p := u*(2") = u~ (27) when [s] is large,
so for any sufficiently large constant R > 0, one obtains approximately J-holomorphic maps
a% by multiplying u* with a cutoff function in coordinates near p so that 4% (s,t) = u(s,t)
for |s| < R—1 but 4% (s,t) = p for |s| > R. After this modification, one can glue (X*,j*) and
(X7,77) together to form a Riemann surface (Xg,jr) of genus g by truncating the ends of
Y+ and X~ to [0,2R] x St and [-2R, 0] x S respectively, then identifying them via the shift
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map (s,t) — (s—2R,t) so that ™ and u~ glue together to form a smooth and approximately
J-holomorphic map

wH# R 2R — M.

This construction is designed so that u*#fu~ degenerates to the nodal curve ut#u™ as
R — 0. As described above, however, the construction depends somewhat arbitrarily on
the choice of holomorphic coordinate charts near z* and z~, and in particular, one obtains
an equally valid construction by rotating one of these charts. This freedom introduces an
extra parameter § € S', which can be incorporated into the above picture by generalizing
our identification of [0,2R] x S with [-2R,0] x S! to allow rotated shift maps (s,t)
(s —2R,t + 0), resulting in a more general family of glued Riemann surfaces (X(r ), j(r,0))
and approximately J-holomorphic maps

u+#(R’6)u_ : YR — M.

This description accounts for both of the extra parameters in the domain of the gluing map V.

The proof of Theorem then proceeds via a delicate application of the implicit function

theorem (or equivalently the contraction mapping principle) to show that when R > 0 is large

enough, one can perturb each ut#9yu~ to a unique element of Mgm(A;J) by moving a

small distance in the space of maps ¥(pg) — M in a direction orthogonal to Mg, (A;J).

The analytical details are carried out (in a slightly different setting) in [MS12| Chapter 10].
The specific case of Theorem that will be needed later is the following.

COROLLARY 2.39. Suppose (M,w) is a symplectic 4-manifold, J € J(M,w), m = 0
is an integer, {p1,...,pm} © M 1is a finite set partitioned into two subsets {pi—r,...,p:—;i},
and u € MQM(A; Jip1,. .y pm) 18 a nodal J-holomorphic curve having exactly one node,
which connects two inequivalent smooth components u® e Mgt (A%; J;pli, .. ,pii), both
of them simple and Fredholm reqular for the constrained problem, with constrained index 0, and
intersecting each other transversely at the node. Then every other curve in some neighborhood
of u in ngm(A; J;p1y ..., pm) is smooth, and this neighborhood has the structure of a 2-
dimensional topological manifold.

PrOOF. The constrained regularity and index assumptions mean that both of the eval-
uation maps ev : Mg+ .+ (A*;J) - M m* are diffeomorphisms between neighborhoods
of ut and (p{-r,...,p:—;i). Since dim M = 4, having u* and u~ intersect transversely at
the node means moreover that the transverse evaluation map condition needed for Theo-
rem is satisfied, and since isolated transverse intersections cannot be perturbed away,
a neighborhood U of (u™,u™) in the space (2I2)) is in this case simply a neighborhood in
Mgt i+ (A*5J) x My 1~ (A7;J). Choose the neighborhood U so that it contains no other
pair of curves satisfying the same marked point constraints. Then if ¥ : U x [0,00) x St —
Mg m(4;J) is the gluing map, the C'-convergence of the evaluation map as R — o0 implies
that for any (R, ) with R sufficiently large, there will also be exactly one element ¢ (R, 0) € U
such that

U(P(R,0),R,0) €ev (p1,...,Pm),

and the map U — M™ : (vF,v7) — ev(¥((vt,v7), R,60)) is also a local diffeomorphism near
(R, 0). Thus for Ry > 0 sufficiently large, the embedding

[Ro,0) x S <o My m(A; J;p1,- ., pm) : (R,0) — U((R,0), R,0)
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parametrizes the set of all smooth curves in M, (4;J;p1,...,pm) near u. Identifying
[Ry,©) x S' with a punctured disk via (R,0) — e~ 27+ e obtain a homeomorphism
between the 2-dimensional disk and a neighborhood of w in Mg, (A; J;p1, ..., Pm)- O

REMARK 2.40. We are intentionally avoiding any claims about a smooth structure for
Mg,m(A; J;p1,...,pm) in Corollary 239 as the question of smoothness as R — oo is fairly
subtle. This detail will not make much difference for the application we have in mind, since
the moduli space is only 2-dimensional.

2.1.8. Orientations. The theorems of §2.1.3] and §2.1.4] on smooth manifold structures
for moduli spaces all included the word “oriented,” which we snuck in although it does not
follow from the implicit function theorem in infinite dimensions. In fact, there is no sensible
notion of orientation on infinite-dimensional Banach manifolds, thus some additional ideas are
required in order to see why certain finite-dimensional submanifolds carry natural orientations.
Let us briefly sketch how this works for a moduli space of constrained somewhere injective
curves

M (A3 T3 Z) = ev 1 (Z) € MG (A5 )

as in §2Z.1.41 where Z < M™ is a smooth oriented submanifold and J is chosen generically
with respect to Z. (Similar ideas apply also for parametric moduli spaces as in Theorem [2.15],
and for spaces satisfying jet constraints as in §2.1.51)

Since M is naturally oriented and an orientation is also assumed on Z, it suffices to orient
MG (A5 J), as the co-orientation of Z then determines an orientation of the submanifold
MG 1 (A; J; Z). Recall the functional analytic picture sketched in §2.1.3F locally near a curve
up @ (3,j0) — (M,J) with marked points (1,...,(m € X, the space My (A;J) can be
identified with 8;'(0)/G, where the nonlinear Cauchy-Riemann operator

EJ:TXB—>5:(]',U)|—>T’U,+JOT’U,O]'

is a smooth Fredholm section of an infinite-dimensional Banach space bundle £ — T x B, and
G is the automorphism group of the domain (X, jo, ((1,...,(n)), hence a finite-dimensional
and naturally complex manifold. The base of the bundle £ — 7T x B consists of a smooth
finite-dimensional manifold 7 of complex structures near jy that parametrize the Teichmiiller
space of 3 with its marked points, plus an infinite-dimensional Banach manifold B containing
maps u : X — M in some Sobolev regularity class. For notational simplicity, let us pretend
for the moment that the group G is trivial and the identification is global, so that elements
of Mg, (A;J) can be written as pairs (j,u) € 07%(0). We say that (j,u) € MG (A T) is
regular if the linearization D0y (j,u) : T(;.)(T x B) — &) is surjective, in which case the
implicit function theorem implies that a neighborhood of (j,u) in My (A;J) is a smooth
finite-dimensional manifold and its tangent space at (j,u) has a natural identification

(2.14) Ty My i (A; J) = ker DO (j, ).

Differentiating the evaluation map ev : 6;1(0) — M™ : (j,u) — (u(¢1),-..,u((n)) gives the
linearized evaluation map

d(ev)(jv u) : kerDa](j, u) - ev(j,u)Mm : (,%77) — (n(c1)7 s 7n(Cm))7

and (j,u) is also regular for the constrained problem if the image of this linear map is trans-
verse t0 Toy(j)24-
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If J is generic so that every (j,u) € 5;1(0) is regular, then orienting M . (4;J) is a
matter of choosing an orientation for the kernel of each of the Fredholm operators

L = Doy (j,u) : T;T ® T, B — EGuys
varying continuously with (j,u) € 5;1(0). This operator takes the form
Liuw(y,n) = JoTuoy+ Dyn,

where D, is the extension to a suitable Sobolev space setting of a real-linear Cauchy-Riemann
type operator

D, : T(u*TM) —» Q"N w*TM) :n+— Vn+ JoVnoj+ (VyJ)oTuoj.

Here a symmetric connection V is chosen in order to write down the operator, but one can
check that D, does not depend on this choice. We now observe two things about L; ,: first,
its domain and target are both naturally complex vector spaces, though in general L; ) is
only a real-linear map. On the other hand, the first term y — JoTwuoy in L, is complex
linear, as a consequence of the assumption that d;(j,u) = 0. If D,, happens also to be complex
linear, then ker L; ,,) is a complex vector space and thus inherits a natural orientation from
its complex structure. This observation actually solves the whole problem in certain settings,
e.g. if the almost complex structure J on M is integrable, then D,, is always complex linear
and the moduli space M ,(A;J) inherits a natural orientation as a consequence.
When D, is not complex linear, it nonetheless has a well-defined complez-linear part

DSy (Dn JD,(Jn)),

which is also a Cauchy-Riemann type operator and thus Fredholm, and in fact the difference
between D, and D(C is a zeroth-order term, so as a bounded linear operator between the
relevant Sobolev spaces of sections, it is compactE This implies that there is a natural
homotopy through Fredholm operators from D, to DS. Combining this with the first term

in L(;,) yields in turn a canonical homotopy through Fredholm operators from L; ,) to its

complex-linear part L((Cj,u). If we could prove that all the operators in this homotopy are

surjective, then we would be done: the natural prescription for orienting M;’m(A; J) would
then be to assign to each ker L;,) whichever orientation extends along the homotopy to
reproduce the natural complex orientation of ker L((C )" The trouble with this idea is that,
usually, we have no way of ensuring that the Fredholm operators along the homotopy from
L) to LC Giv) will remain surjective; in general their kernels will have jumping dimensions and
the notion of “continuously” extending an orientation of the kernel ceases to be well defined.
An elegant solution to this problem is provided by the notion of the determinant line
bundle. Given a real-linear Fredholm operator T between Banach spaces, its determinant
line is defined to be the real 1-dimensional vector space

det(T) = (A" ker T) ® (A™** coker T)*

with the convention that det(T) is canonically defined as R if the kernel and cokernel are
both trivial. Choosing an orientation for det(T) is equivalent to choosing an orientation for
ker T @ coker T, or simply ker T whenever T is surjective. Note that if the domain and

"This is the major detail that will differ when we replace closed Riemann surfaces with punctured surfaces
in §83.6F zeroth-order terms over noncompact surfaces are not compact operators, thus the orientation story
in the punctured case is more complicated.
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target of T have complex structures and T is also complex linear, then ker T and coker T
both inherit complex structures, hence det(T) is naturally oriented; in the case where T is
a complex-linear isomorphism, the natural orientation of det(T) is taken to be the standard
orientation of R. The usefulness of determinant lines comes from the following standard
result, proofs of which can be found e.g. in [MS12, Appendix A.2], [Wend| Chapter 11] or
[Zin16].

THEOREM 2.41. Fiz real Banach spaces X and Y and let Fredr(X,Y’) denote the space
of Fredholm operators X — Y, with its usual topology as an open subset of the space of all
bounded linear operators X — Y. Then there exists a topological vector bundle

det(X,Y) > Fredr(X,Y)
of real rank 1 such that 7=1(T) = det(T) for each T € Fredg(X,Y). O

With this result in hand, the prescription for orienting My, (A;J) is to assign to each
of the real 1-dimensional vector spaces det(L; ) whichever orientation extends continuously
along the homotopy from L;,) to reproduce the natural orientation of det(L((iju)) arising
from the fact that L((Cj,u) is complex linear. In light of Theorem 24T] the question of whether
each operator in the homotopy is surjective no longer plays any role.

REMARK 2.42. We made two simplifying assumptions in the above discussion. One was
that the correspondence between pairs (j,u) € 0;'(0) and elements of MG (A J) is global,
but it is easy to check that the prescription described above gives a well-defined orientation
for M;m(A; J) without this assumption. The other was that the group G of automorphisms
of the domain is trivial. Here the key fact is that every positive-dimensional Lie group that
can appear in this context is naturally complex, hence so its Lie algebra, and its impact is
therefore to replace the right hand side of (ZI4]) with a quotient by a complex subspace.
The only modification required in the rest of the discussion is thus to include the canonical
orientation of this complex subspace in the picture.

For most applications it suffices to know that M7, (A4;J) and M7, (A; J; Z) have orien-
tations without worrying about where those orientations come from, but we will encounter a
situation in Chapter [[l where slightly more information is needed. To set up the statement,
observe that whenever vir-dim M . (4; J; Z) = 0, orienting M7 (A; J; Z) means assigning a
sign to each element u € My . (A; J; Z) that is Fredholm regular for the constrained problem.
Given an orientation of My . (A;.J), this sign must match the sign of the isolated transverse
intersection at u between ev : My (A;J) — M™ and Z < M™. While the hypotheses in
the following result may appear improbable out of context, we will be able to verify them in
certain low-dimensional settings using automatic transversality (see Proposition 2:47)).

LEMMA 2.43. Suppose Z < M™ 1is an almost complex submanifold, /\/l’;’m(A; J; Z) has
virtual dimension 0, and u : (X,7) — (M, J) with marked points (i, ...,(m € X represents an
element of M . (A; J; Z) that is Fredholm regular for the constrained problem. Let {Lj} ¢o,1]
denote the canonical homotopy of Fredholm operators Ty T@TyB — &; .,y from Ll := Dd;(j,u)
to its complex-linear part LO. Assume additionally that the following hold for every T € [0, 1]:

(1) L7 is surjective;
(2) The linear evaluation map

ker LZ - Tev(u)Mm : (y7 77) = (77((1), e 777(Cm))
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is transverse t0 Toy(y)Z -

Then the sign of u determined by the natural orientation on /\/l’;,m(A; J; Z) is positive.

PROOF. The surjectivity of L], for every 7 € [0,1] means that the spaces ker L] vary
continuously with 7 and they have orientations determined by the orientations of det(L),
which vary continuously and become the natural complex orientation at 7 = 0. In light of
the transversality condition for the linear evaluation maps, it follows that the sign of the
intersection at u between ev and Z matches the sign of the intersection between Tt (,)Z and
the linear evaluation map at 7 = 0. The latter is positive since the linear evaluation map at
7 = 0 is a complex-linear map and Z is almost complex. ]

2.2. Dimension four

The theory of holomorphic curves has some special features in dimension four, mainly as
consequences of the fact that Riemann surfaces are 2-dimensional and 4 = 2+ 2. Throughout
this section, we shall assume (M, J) is an almost complex manifold of real dimension four.

2.2.1. Automatic transversality. The most important difference between the follow-
ing result and Theorem [2.12] above is that there is no need to perturb J. This is one of the
few situations where it is possible to verify explicitly that transversality is achieved.

THEOREM 2.44. Suppose (M, J) is an almost complex 4-manifold and v € My(J) is an
immersed J-holomorphic curve satisfying ind(u) > 29 — 2. Then u is Fredholm regular. [

COROLLARY 2.45. In any almost complex 4-manifold, every immersed pseudoholomorphic
sphere with nonnegative index is Fredholm regular. O

Theorem 2.44] was first stated by Gromov [Gro85] and full details were later written down
by Hofer-Lizan-Sikorav [HLS97|. There are also generalizations for non-immersed curves
[IS99] and for punctured curves with finite energy in symplectic cobordisms (see §83.7] or
[Wen10al), but all of them depend crucially on the assumption that dim M = 4.

We will need the higher genus case of the above result only once in this book, namely for
Theorem [7.36], which strictly speaking is a digression, unconnected to our main applications.
But we will frequently need the following extension of the genus zero case to curves with
pointwise constraints, as defined in §2.1.41

THEOREM 2.46. Suppose (M, J) is an almost complex 4-manifold, p1,...,pm € M are
arbitrary points for m = 0, and u € Mo (J;p1,-..,Pm) is an immersed J-holomorphic
sphere satisfying ind(u) = 2m. Then w is Fredholm regular for the constrained problem,
i.e. u€ MBG:EI(J;pl, ey Pm)-

Notice that by (2.1), the virtual dimension of Mg, (J;p1,...,pm) is ind(u) — 2m, so the
index condition just means vir-dim Mg, (J;p1,...,pm) = 0. (This simple interpretation is
unique to the genus zero case—the generalization of Theorem for higher genus curves
requires a more stringent index condition as in Theorem [2.44])

Let us sketch a proof of Theorem There are three essential assumptions:

(1) dim M = 4;
(2) w is immersed;
(3) ¢ =0 and ind(u) = 2m.
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The first two imply that one can split the bundle u*TM — ¥ into a sum of two complex line
bundles T & N,,, where N,, — ¥ denotes the normal bundle. We thus have
(2.15) c1([u]) = x(5%) + e1(NVa),

where ¢ (N,,) is an abbreviation for the first Chern number {c1(N,), [S?]) € Z. One can then
study nearby curves in the moduli space by identifying them (up to parametrization) with
small sections of N,. One can show that at the linearized level, such sections n € T'(N,)

represent curves in Mo, (J;p1,...,pn) if and only if they vanish at the m marked points
and satisfy the linearized Cauchy-Riemann equation,
Dy =0,

where DY is just the restriction of the usual linearized operator Dd;(j,u) to sections of
the normal bundle. Moreover, Fredholm regularity can now be restated as the condition
that DUN , operating on a suitable Banach space of sections of N, vanishing at the marked
points, must be surjective. The domain of DY is thus a subspace of codimension 2m in the
domain of the unconstrained linearized problem, which by the Riemann-Roch formula has

index x(52) + 2¢1(N,), thus
ind(DY) = x(5?) + 2¢1(N,) — 2m.

If you inspect (Z35) with n = 2 and plug in ([ZI5]), you'll find that this equals ind(u) — 2m.
The third assumption therefore means

ci(Ny)=>m—1, and ind(DY)>o0.

By the definition of the Fredholm index, we have dimker DY > ind(DY), with equality if
and only if DY is surjective. Thus the result follows if we can show that

(2.16) dimker DY < 24 2¢;(N,) —2m  whenever ¢ (N,) =m — 1.

This will follow essentially from the fact that every nontrivial section of N, satisfying a linear
Cauchy-Riemann type equation can have only isolated and positive zeroes. The technical
ingredient behind this fact is known as the similarity principle [Wencl, §2.7], though one can
also prove it using Aronszajn’s theorem, see [MS12]. Given this fact, it’s easy to see why
(2I6) holds when ¢1(N,) = m — 1: in this case ind(D.') = 0, and since any nontrivial section
n € ker DUN is constrained to vanish at m points, there can be no such sections, hence Div is
injective and therefore also surjective. If ¢;(N,) = m, we set k = ¢1(IN,) — m + 1 and argue
as follows: choose any set of distinct points z1, ..., 2; € X that are disjoint from the marked
points, and define the linear “evaluation” map

ev:kerDY - (N,)., ®...® (Nu)z, 1 — (7](21), . ,n(zk)).

Any nontrivial 77 € ker DY has only positive zeroes, and already vanishes at the m marked
points, so it can have at most k — 1 additional zeroes since ¢1(N,) = m+k— 1. It follows that
the right hand side can only be trivial if  is trivial, showing that ev is injective. Since the
target of this map is a real vector space of dimension 2k = 2¢1(N,) — 2m + 2, the inequality
([2.16]) follows, completing the proof of Theorem

The proof of Theorem [2.44] for higher genus curves also uses the similarity principle,
but requires one additional idea: every Cauchy-Riemann type operator D on a complex line
bundle F has a formal adjoint D*, which is equivalent to a Cauchy-Riemann type operator
on some other bundle E’ and satisfies ker D* =~ coker D. Thus if the goal is to prove that
D is surjective, it is just as well to prove that D* is injective, which will be true whenever
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¢1(E") < 0 since nontrivial sections in ker D* must always have a nonnegative count of zeroes.
The sufficient condition stated in Theorem [2.44] turns out to be equivalent to the condition
c1(E") < 0 in the case where F is the normal bundle of an immersed J-holomorphic curve.
The methods in our proof of Theorem above can also be applied to understand
orientations in the space Mg, (J;p1,...,Pm). Notice that in counting the positive zeroes of
sections in ker DY, we do not use any special facts about DY except that it is a Cauchy-
Riemann type operator (and thus satisfies the similarity principle). The only other important
detail is the value of ¢;(1V,), which means that the same argument proves surjectivity for all
Cauchy-Riemann type operators homotopic to DUN ; in particular, the conclusion holds for
every operator in the canonical homotopy from D) to its complex-linear part. One can
transform this into a statement about D0y (j,u) and linear evaluation maps using the setup
in [Wenl0al, §3.4], and this is enough to establish the hypotheses of Lemma 2.43] proving:

PROPOSITION 2.47. Under the assumptions of Theorem [2.40, suppose additionally that
ind(u) = 2m, so vir-dim Mg, ([u]; J;p1,...,pm) = 0. Then for the natural orientation of
Mom([ul; J5p1,. .., pm), u has positive sign. O

REMARK 2.48. We can now outline a proof of the claim from Remark [[.16] that the map
7 : Diff | (S?) — J(5%) : o p*i
is a Serre fibration. The claim means that 7 satisfies the homotopy lifting property with

respect to disks (see e.g. [Hat02) §4.2]), so for every integer k > 0, given continuous (in the
C*-topology) families of diffeomorphisms {¢, € Diff+(52)}76{0}xm and complex structures
{jr € j(SQ)}TE[Oyl]XDk satisfying j, = o¥i for all 7 € {0} x D¥, we need to extend the family
of diffeomorphisms to all 7 € [0, 1] x D¥ so that j, = ¥i is always satisfied. This would mean
that the maps
7t 1 (8%,4) = (5%, jr)

are all pseudoholomorphic, and by Proposition 5] any pseudoholomorphic map S? — S2
with degree 1 is automatically a diffeomorphism, hence the real task here is to understand
how the space of j-holomorphic spheres of degree 1 in S? behaves under deformations of the
complex structure j € J(S?) on the target space. Any such map u : (S%,i) — (52%,5) can
naturally be regarded as an element of the moduli space M 3([S?];j), where the purpose of
the three marked points is to eliminate the reparametrization freedom; indeed, each element
Uu € Mo,g([Sz]; j) has a unique parametrization that places the marked points at 0,1, 00, and
we shall refer to this in the following as the standard parametrization. By (2.4)),

vir-dim Mo 3([S?];5) = —2x(S?) + 2¢1 (u*TS?) + 6 = 6
for a chosen map u : S? — S$? parametrizing an element of Mo 3([S?],j), as deg(u) = 1
implies ¢ (u*TS?%) = ¢1(TS?) = x(5?%). Any u € Mg 3([S?];4) is then also an element of the
constrained moduli space Mo 3([S?]; j; p1, P2, p3), With the constraint points py,pa,p3 € S?
chosen to be the images under u of the three marked points, and we have
Vir—dimMO,f}([SQ];j;p17p27p3) = 0.

We claim that every element of this space, for any j € J(S?) and any three distinct constraint
points p1, p2, ps3, is Fredholm regular for the constrained problem. This is most easily seen by
fixing standard parametrizations, thus identifying Mg 3([S?]; j) with the degree 1 component
of the zero-set of a smooth section

0j:B—>E:u—Tu+joTuoi,
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where B is a Banach manifold of maps S? — S? in some Sobolev regularity class, e.g. W*?
for k = 1 and kp > 2E and £ — B is a Banach space bundle whose fiber &, over each u € B is a
Sobolev space of sections (e.g. of class W*~1P) of the vector bundle Homg (752, ), (u*T'S?, 5))
of complex-antilinear maps (7'S?,i) — (u*T'S?,j). The linearization of d; at some u € (_3;1(0)
is a linear Cauchy-Riemann type operator

D, : F(u*TSQ) — F(Homc((Tsz,i)7 (U*T‘Szvj))v

extended to a bounded linear operator on the relevant Sobolev spaces of sections, and the
Riemann-Roch formula gives its Fredholm index as

ind D, = x(S?) + 2¢; (u*TS?) = 3x(5?%) = 6.
As in the proof of Theorem [2.46] we can now consider the linearized evaluation map
(2.17) ev :ker D, — T),, S* ® T, S> ® Tp, S* : 1 — (1(0),n(1),n(0)),

and observe that since all zeroes of nontrivial sections n € ker D,, are isolated and positive,
with total signed count equal to c; (u*T'S?) = x(S?) = 2 < 3, this map is injective. It follows
that dimkerD,, < 6 = ind D,,, hence D,, has trivial cokernel and u is therefore Fredholm
regular. Moreover, ([2.I7) is also the derivative at u of the nonlinear evaluation map

ev : Mos([S7]:5) = 87 x 8% x S+ w s (u(0), u(L), u(e0)),

and the above argument shows that it is an injection between equidimensional spaces and
therefore an isomorphism, proving the claim about regularity for the constrained problem.
It follows now from the implicit function theorem that the given family of maps u( ) :

(S%,i) = (52, j(0.)) defined for 7 € D* admits an extension to a family

{ugsr @ (5%,1) — (Szaj(s,r))}(s,T)e[o,e)ka

for € > 0 sufficiently small, and the extension is uniquely determined if we impose the con-
straint

U(s,) (C) = U(o,7) (C) for ¢ =0,1,00.

To show that this extension actually exists for all s € [0,1], we combine the above with a
compactness argument: it is an easy consequence of Gromov’s compactness theorem that
for any C®-convergent sequence ji, — j € J(S?), a sequence uy € Mo3([S?];sjr) has a
subsequence converging to an element of M0,3([52]; j), as any nodal curve appearing in such
a limit would need to have smooth components whose degrees are all nonnegative and add
up to 1, and the stability condition precludes the existence of a nodal curve with arithmetic
genus zero having ghost bubbles in addition to a single degree 1 component. One can therefore
extend the family to s = ¢ and use the implicit function theorem again to go beyond this,
showing that there is no upper bound for s € [0,1] beyond which the family cannot be
extended.

8The condition kp > 2 is related to the Sobolev embedding theorem, as it guarantees that all maps
5% — S? of class W"P will be continuous, see e.g. [AF03].
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2.2.2. Positivity of intersections and adjunction. The single most useful feature of
the case dim M = 4 is that intersections between two distinct holomorphic curves may be
transverse, and even when they are not, they can be counted. We shall denote by

Hy(M) x Hy(M) —Z:(A,B) — A-B

the homological intersection pairing on Hs(M), which is well defined only when M is 4-
dimensional. A local statement of the result known as “positivity of intersections” asserts
that if u,v : D> — M are any two J-holomorphic disks in an almost complex 4-manifold
(M, J) with u(0) = v(0), then unless they have identical images near the intersection (which
would mean they are locally both reparametrizations or branched covers of the same curve),
the intersection must be isolated and count positively; in fact, its local intersection index is
always at least 1, with equality if and only if the intersection is transverse. In particular,
a non-transverse intersection of two holomorphic curves cannot be perturbed away, but will
always give rise to even more transverse intersections under a generic perturbation. This
implies the following global result:

THEOREM 2.49. Suppose (M, J) is an almost complex 4-manifold and v : ¥ — M, v :
¥ — M are both closed and connected J-holomorphic curves whose images are not identical.
Then u and v have finitely many points of intersection, and

[u] - [o] > [{(z:2) € £ x &' | u(z) = o())}]

with equality if and only if all the intersections are transverse. In particular, [u] - [v] = 0 if
and only if the images of u and v are disjoint, and [u] - [v] = 1 if and only if there is exactly
one intersection and it is transverse. U

If w: ¥ — M is a closed J-holomorphic curve which is simple, then Proposition
implies that it also intersects itself in at most finitely many places, and one can count (with
signs) the number of self-intersections. In particular if u is simple and immersed, one defines
the integer

(2.18) 5@):% S iz 2),

where the sum ranges over all ordered pairs (z, 2’) of distinct points in ¥ at which u(z) = u(2’),
and i(z, 2’) € Z is defined to be the algebraic index of the isolated intersection between w(U,)
and u(U,) for sufficiently small neighborhoods z € U, < ¥ and 2’ € U, < X. Positivity
of intersections implies that i(z,z") > 0 for all such pairs, so it follows that §(u) > 0, with
equality if and only if u is embedded.

If w is simple but not immersed, one can define 6(u) to be 6(u'), where v’ is a C*-close
immersed perturbation of u. This can be chosen in a sufficiently canonical way so that &(u’)
does not depend on the choice and, moreover, is strictly positive whenever v has non-immersed
points (see [MW95] or [Wenf]).

REMARK 2.50. There is no sensible way to define d(u) when w is a multiple cover, thus
the important Theorem 2.51] below applies only to somewhere injective curves.

One can also relate d(u) to the obviously homotopy invariant numbers [u] - [u] and
c1([u]), producing the so-called adjunction formulal] originally due to McDuff [McD94]

9In some sources, notably in [MS12], the adjunction formula is stated as an adjunction inequality, which
is equivalent to our Theorem [2Z5I] but looks a bit different. The reason for the discrepancy is that some
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Ue

Ficure 2.3. Computing the homological self-intersection number of an im-
mersed holomorphic curve.

and Micallef-White [MW95]. The idea in the immersed case with transverse self-intersections
is easy to understand: [u]-[u] can be computed by counting the algebraic number of intersec-
tions between u and a small perturbation u, of it, defined via a generic section of its normal
bundle, see Figure 2.3l Each transverse self-intersection of u contributes 2 to this count, while
the zeroes of a section of N, contribute ¢; (NN, ), which equals the homotopy invariant quantity
c1([u]) = x(2). The definition of §(u) in the non-immersed case is conceived to ensure that
the resulting relation will remain true in general:

THEOREM 2.51. Ifu: 3% — M is a closed somewhere injective J-holomorphic curve in an
almost complex 4-manifold (M, J), then

[u] - [u] = 26(u) + c1([u]) — X (%),
where §(u) € Z satisfies §(u) = 0, with equality if and only if u is embedded. O

Observing that every term in this formula other than §(u) manifestly depends only on
the homology class [u] € Hy(M) and genus of X, we obtain:

COROLLARY 2.52. If (M, J) is a 4-dimensional almost complex manifold and v € My(A; J)
is embedded, then every other somewhere injective curve in Mgy(A; J) is also embedded. [

2.2.3. An implicit function theorem for embedded spheres with constraints.
We now explain a more specific result that will be useful in our main applications. Observe
that for any embedded curve u € Mgy(J) and any set of pairwise distinct points pi,...,pm
in the image of u, one can also regard u naturally as an element of the constrained moduli

space Mg (J;p1,...,pm) we defined in §2.1.41

PROPOSITION 2.53. Suppose (M,.J) is an almost complex 4-manifold and u : S* — M is
an embedded J-holomorphic sphere with [u] - [u] = m = 0. Then for any choice of pairwise
distinct points pi1, ..., pm € u(S?), the curve

u e Mo,m(JQPL cee 7pm)

is Fredholm regular for the constrained problem, and a neighborhood U < Mo m(J;p1,. .., Pm)
of u admits the structure of a smooth 2-dimensional manifold such that the following condi-
tions are satisfied:

authors prefer a different and simpler definition of §(u), in which it just counts the number of geometric
self-intersections, without worrying about the local intersection index or requiring an immersed perturbation.
Our version of d(u) is generally larger than this one, but equals it if and only if w is immersed and all its
self-intersections are transverse.
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(1) Each curve v e U is embedded, and any two curves v, w € U intersect each other only
at the points p1,...,pm, with all intersections transverse;

(2) The images v(S*)\{p1,...,pm} for v € U form the leaves of a smooth foliation of
some open neighborhood of u(S*)\{p1,...,pm} in M\{p1,...,pm}

SKETCH OF THE PROOF. Writing A := [u], the space Mg, (A4; J;p1,...,pm) has virtual
dimension given by (2.7)), where we can deduce c¢;(A) from the adjunction formula (Theo-
rem [2.57]). Indeed, since u is embedded and satisfies [u] - [u] = m, adjunction gives

m = c1(4) — x(5%),
hence ¢1(A) = m + 2. Plugging this and n = 2 into (27]) gives
vir-dim Mg, (A4; J5p1, -, pm) = =2 + 2¢1(A) —2m = 2.

Theorem then implies that u is Fredholm regular for the constrained problem. It will be
helpful to review why this is true in the case at hand: since u : S — M is embedded, we
can define its normal bundle N,, — S? and identify nearby curves v € Mo (A; J;p1,- -, Pm)
with small sections n of N, satisfying the linear Cauchy-Riemann type equation

DUN n = 0.
In light of the constraints v(¢(;) = p;, we can also set up the identification so that these
sections vanish at all of the marked points (1, ..., (n. The restriction of DY to the space of
sections satisfying this constraint is then a Fredholm operator of index 2. We claim now that
nontrivial sections in the kernel of this operator vanish only at (y,...,(yn, and their zeroes

at these points are simple. Since solutions of D¥n = 0 have only isolated positive zeroes, the
claim follows from the observation that, in light of the computation ¢;(A) = m + 2 above,

c1(Nu) = e1(A) = x(8%) = m.

With this understood, it follows that the vector space of sections 7 € I'(N,,) satisfying DY 7 =
0 and vanishing at the marked points is at most 2-dimensional: indeed, choosing any point
z e S2\{(1,...,(n}, the linear evaluation map taking a section 7 to n(z) € (V). is now an
injective map into a real 2-dimensional vector space. Since this space is the kernel of an
operator with Fredholm index 2, it follows that the operator is surjective, i.e. transversality
is achieved.

The remaining statements in Proposition 253l follow essentially from the observation that,
by the above discussion, not only is Mo, (A;J;p1,...,pm) smooth near u but its tangent
space TyMom(A; J;p1,...,pm) is naturally isomorphic to the space of sections n € I'(N,)
satisfying Dy = 0 and vanishing at the marked points—and as we just showed, these
sections have zeroes only at (y,...,(n, all of them simple. This may be thought of as the
“linearization” of the statement that the curves in Mg, (4;J;p1,...,pm) near u foliate an
open subset of M\{p1,...,pm}

One can also use Theorem 249 to analyze the intersections of any two distinct curves
v, w € Mo m(A4;J;p1,...,pm) near u: since

[v] [w]=A-A=m

and the two curves are already forced to intersect at the points p1,...,pm, there can be no
additional intersections, and the m forced intersections are all transverse. O






CHAPTER 3

Blowups and Lefschetz Fibrations

In this chapter we discuss a few standard topics from symplectic topology that are mostly
independent of holomorphic curves. We begin with the blowup operation, which was sketched
already in Example and appears in the statements of several of the main theorems in 1.2
It can be defined in both the complex and the symplectic category, and for our purposes it
will be important to understand both definitions and their relation to each other. We then
discuss Lefschetz pencils and Lefschetz fibrations, their topological properties, and how they
determine deformation classes of symplectic structures.

3.1. The complex blowup

Suppose M is a complex n-dimensional manifold with n > 2, and z € M is a point. As a
set, we define the complex blowup of M at z to be

~

M = (M\{z}) v P(T: M),

where P(T, M) = CP" ! is the space of complex lines in T,M. For example, blowing up
C™ at the origin produces a set that can be naturally identified with the tautological line
bundletautological line bundle

Cr = {(E,v) eCP" ! x C ’ veﬁ},

where elements of CP"~! are regarded as complex lines £ = C". Using the holomorphic coor-
dinate charts on CP"~! discussed in Example 4] one can easily construct local trivializations
that give the projection

m:C" - CP" 1 (4,0) — ¢
the structure of a holomorphic line bundle, such that the so-called blowdown map

6:@”—%@”:(5,’0)'%?)

is a holomorphic map of equidimensional complex manifolds. Notice that away from the
zero-section CP" ! := CP"! x {0} = C", B restricts to a biholomorphic diffeomorphism

(3.1) cmcp! - e\ (o},
but it collapses the entirety of the zero-section to the origin in C™. This discussion carries
over to the blowup of an arbitrary complex manifold M at z € M by choosing holomorphic

coordinates near z: the blowup M thus becomes a complex n-dimensional manifold, and the
natural blowdown map

B M— M
collapsing P(T, M) to z while identifying M \P(T, M) with M\{z} is holomorphic. The projec-
tivization P(T,M) c M forms a complex hypersurface biholomorphic to CP"~! and is called
an exceptional divisor. When n = 2, it is a copy of CP! ~ S? and is thus also called an

53
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exceptional sphere. Exercise below implies that its self-intersection number in this case
is —1. One can use the following exercise to show that the smooth and complex structures
on M do not depend on the choice of holomorphic coordinates near p; moreover, it is clear
that if M is connected, then moving p does not change the diffeomorphism type of M.

EXERCISE 3.1. Suppose U,U’ < C™ are two neighborhoods of the origin, U, U’ = C"
denote the corresponding neighborhoods of the zero-section CP"~! C" under the identifi-
cation 1)), and f : U — U’ is a biholomorphic diffeomorphism with f(0) = 0. Show that
the map f : U\CP" ! — U\CP"! defined by restricting f to 24\{0} and then using the
identification (B.I]) has a unique continuous extension fN': U — U’ which preserves CP"~! and
is biholomorphic. Conversely, show that every biholomorphic diffeomorphism f: u—u
that preserves CP" ! arises in this way from some biholomorphic diffeomorphism f : U — U’
that fixes 0.

EXERCISE 3.2. Show (e.g. by counting the zeroes of a section) that the tautological line
bundle over CP! has first Chern number —1.

EXERCISE 3.3. Show that if M is the blowup of a complex surface M at a point, then
M admits an orientation-preserving diffeomorphism to M #@2, where the bar over CP?
indicates a reversal of its usual orientation. Hint: if B2 = C? denotes the e-ball and Ef c C2
is its blowup at the origin, you need to show that the closure of Ef is orientation-reversing
diffeomorphic to the complement of a ball in CP?. The latter is equivalently a tubular
neighborhood of the sphere at infinity CP' < CP?. Compare the normal bundle of the
latter with that of the zero-section CP' = C2: what are their Euler classes?

REMARK 3.4. One can generalize the exercise above to show that if dim¢ M =n = 2, the
blowup of M is diffeomorphic to M#CP".

The inverse of this operation, the complex blowdown, can be performed on any complex
manifold M containing a complex hypersurface £ M with a neighborhood biholomorphi-
cally identified with a neighborhood of CP"~! in C". The blowdown is then the complex
manifold M obtained by replacing this neighborhood with the corresponding neighborhood
of the origin in C", the effect of which is to collapse F to a point. One can again use Exer-
cise Bl to show that this construction does not depend on any choices beyond the exceptional
divisor E = M.

REMARK 3.5. As a set, the blowup of M at z € M depends on the complex structure only
at z, while the definition of its smooth structure requires an integrable complex structure on
a neighborhood of z. We can therefore define M as a smooth (but not necessarily complex)
manifold given only the germ of a complex structure near z, and M then inherits the germ of
a complex structure near the exceptional divisor. In our applications, we will have occasion
to define the blowup of an almost complex manifold (M, J) at a point z € M under the
assumption that J is integrable near z. This gives rise to an almost complex manifold (]\7 , J )
and a pseudoholomorphic blowdown map

(3.2) B:(M,J)—> (M,J).
Similarly, one can blow down an almost complex manifold (]\7 ) j) along any exceptional

divisor E < M such that J is integrable and can be identified with the standard complex
structure of C" on some neighborhood of E.
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Notice that if @ : (2,5) — (M, J) is a J-holomorphic curve, then u := Bo i : (X,5) —
(M, J) is J-holomorphic, and conversely, removal of singularities (Theorem 2.36) defines a
unique lift of any nonconstant J-holomorphic curve u : (2,5) — (M, J) to a j—holomorphic
curve u : (X,5) — (]\7, j) such that uw = 8o .

EXERCISE 3.6. Given pseudoholomorphic curves u in (]\7 J ) and u = B o1 in its almost

complex blowdown (M, J) along an exceptional divisor F < M in the sense of Remark 3.5
show that if ¥ is immersed and transverse to E, then u is also immersed. If additionally
dimg M = 4, show that the normal bundles N,, and N are related by

c1(Nu) = er(Ny) + [a] - [E],
and that v is embedded and passes through S(FE) if and only if @ is embedded with [u]-[E] = 1,

in which case
[u] - [u] = [a] - [a] + 1.

3.2. The symplectic blowup

The starting point of the symplectic blowup construction is the definition of a suitable
symplectic form on the total space of the tautological line bundle 7 : Cr - cp L. Using
the fact that 7 and the complex blowdown map 5 : C" — C" are both holomorphic, it is not
hard to show that for any constant R > 0,

wr = fFwg + R? ¥ wpg
is a Kahler form on @”, meaning it is symplectic and compatible with the natural complex
structure. This depends on the fact that wg; and wrg are also Kahler forms on C™ and cpr!
respectively. The zero-section is now a symplectic submanifold of (C",wpr) endowed with a
canonical symplectomorphism to ((C]P’”_l, R2wrg). In the following, for each r > 0 we shall

denote by B2" < C" the open ball of radius r about the origin, and denote the corresponding
neighborhood of CP*~! in C* by

B?" .= B~Y(B?") c C".
It turns out that neighborhoods of CP*~! in (@", wpg) with the zero-section removed are
naturally symplectomorphic to annular regions in (C™,wg). To see this, let us use the natural

identification C"\CP"~* = C™\{0} and write down wg in “cylindrical coordinates” on the
latter, i.e. using the diffeomorphism

(3.3) T:R x 521 o €0} : (8, 2) — ef/?2.

This map is chosen to have the convenient property that Vi := ;Y is the so-called standard
Liouville vector field on C™\{0}, which in coordinates (z1,...,2,) = (p1 +1iq1,...,Pn +iqn)

takes the form
1 & 0 0
Vit = = — — .
Pl <p]9pj +q]5qy')

j=1
Being a Liouville vector field means that it satisfies Ly, wst = wgt, so by Cartan’s formula,
the corresponding Liouville form
n
Ast 1= Wst(‘/st") = Z(pj dgj — 4 dpj)

1
24
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satisfies d)\g; = wg; and
'CVst)\st = d(LVst)\st) + LVstd)\st =d (Wst(‘/sta ‘/st)) + Wst(‘/sta ) = )\st-

The time t flow of Vi; thus dilates \g; by a factor of ef, and we therefore have T* g = efoyg,
where oy is defined on S?"~! by restriction to the unit sphere,

ast = Astlrg2n-1,
and consequently

T*ws = d(eag).
Using the characterization of the Fubini-Study form in (2], we also have T*(1m*wps) = dot,
hence

(3.4) T*wr = d(e'ag) + R? dag = d((et + RQ)ast).
Notice that (e! + R?)ag, = F*(efay) if we define the embedding F : R x §2"~1 < R x §2n~1

by F(t,z) := (log(e! + R?),z2), thus YT*wr = F*d(e'ag). This leads us to write down the
symplectomorphism

pi=YoFoT ! (éﬁ”\@]}»ﬂ*l, wR> = (B%\E?;, wst)

(3.5)
z /2|2 + Rzi,
2]

where on the left hand side we are implicity identifying B2"\CP"~! with B2"\{0} c C" via
the blowdown map.

DEFINITION 3.7. Given a symplectic manifold (M,w) of dimension 2n > 4 and a sym-
plectic embedding ) : (B%{fF o wst) — (M,w) for some constants R,e > 0, the symplectic
blowup of (M,w) with weight R along v is defined by deleting the image of E?{L from M
and gluing in a sufficiently small neighborhood of CP"~! in (C",wg) via the symplectic map

®p in (BE), that is,
~ ~ _2 ~
(M,W) = (M\¢(BRTL))W) Uqu)R (BgnawR) )

with § > 0 chosen so that vVR?+ 2 < R + e. The resulting symplectic submanifold
(CP" !, R%wps) < (B?",wg) in (M,&) is called the exceptional divisor.

It is clear that the choice of § > 0 in this definition does not matter, so long as it’s small

enough to fit ® R(ég") inside Bf}LRQ—JFGQ\E?;. The choice of € > 0 also does not especially

matter, in the sense that if © : (312{1 o
and restrict 1 to a smaller neighborhood of Ein; any two blowups produced in this way by

alternative choices of € > 0 will be naturally symplectomorphic. The diffeomorphism type of

wst) < (M,w) is given, then we are free to shrink e

M is also independent of the weight R > 0, though the symplectic structure & depends on this
parameter in essential ways, e.g. it determines the cohomology class [&] € H3z (M), in partic-

ular its evaluation on the exceptional divisor. The dependence of (]\7 ,w) on the embedding
1 is a slightly subtle issue, mostly because basic questions about the topology of the space of
symplectic embeddings (B%{l o Wst) — (M,w) are typically difficult to answer—nonetheless it
is straightforward to show that smooth deformations of such embeddings yield symplectic de-
formation equivalences for the resulting blowups. The second part of the following statement

is based on this, in combination with the Moser stability theorem.
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THEOREM 3.8. Suppose 1), : (B%{jﬁ,wst) — (M, w) for T €0,1] is a smooth 1-parameter
family of symplectic embeddings of standard Darboux balls of varying radii R:+€, and (]\77, Wr)
denotes the symplectic blowup of (M w) with weight R > 0 along ¥,. Then for each T € [0, 1]
there exists a diffeomorphism ¢, : Mo — M such that the family of symplectic forms @k, on
M() depends smoothly on T; in particular, all of the (MT,wT) are symplectically deformation
equivalent. Moreover, if the weights R, > 0 are constant in T, then one can arrange for each
©r to be a symplectomorphism (Mo, Do) — (M, &7). O

Observe that for any given R > 0, the existence of a symplectic embedding (B%{l o Wst) —

(M,w) for some € > 0 is a nontrivial condition, though of course it is always satisfied for R
sufficiently small. It is not hard to show that ¢ > 0 plays no role in this condition, i.e. any

symplectic embedding of the closed ball (Ein,wst) — (M,w) can be extended symplectically
over a slightly larger ball B%{l .- Similarly, while it is difficult in general to tell whether two
embeddings (Eén,wst) — (M,w) are symplectically isotopic, any symplectic isotopy of such
embeddings can be extended over slightly larger balls for the sake of applying Theorem 3.8
It turns out that allowing the weight R to vary simplifies matters considerably: if M is

connected, then any two symplectic embeddings ; : (E?{z,wst) — (M,w) for i = 0,1 can be
related by a smooth family v, : (P%ﬁ,wst) — (M,w) for 7 € [0, 1] with varying (possibly very
small) weights R, > 0. This surprisingly simple fact is based on the observation that, since
every symplectic embedding ¢ : (Pzn,wst) — (R?" wy) fixing the origin is symplectically
isotopic via 1(z) := %w(mc) to its linearization at 0, the space of symplectic embeddings
(BE, wst) — (R?",wy) is connected, cf. [MS17, Exercise 7.1.27]. We conclude:

COROLLARY 3.9. For any connected symplectic manifold (M,w), the symplectic blowup
(M,®) of (M,w) is independent of all choices up to symplectic deformation equivalence. [

To discuss the blowdown of a 2n-dimensional symplectic manifold (]\7 ,w), we call a
symplectic submanifold E in (]\7 ,w) an exceptional divisor if it is symplectomorphic to
(CP" !, R%wg) for some R > 0 and its symplectic normal bundle has first Chern class equal
to minus the canonical generator of H?(CP"~!). In dimension four, this reduces to the con-
dition that F is a symplectically embedded sphere with

[E]-[E] = -1,
and we call it an exceptional sphere. The symplectic neighborhood theorem [MS17, §3.4]

then identifies a neighborhood Uc Mot E symplectically with (Eg",wg) for sufficiently
small § > 0, where the constant R > 0 is uniquely determined by the symplectic volume
of E. Using the map ®r in (33]), (U\E,D) is thus symplectomorphic to the annular region

—2
(B2r5\BR s wst)-
DEFINITION 3.10. Given a symplectic manifold (M @) of dimension 2n > 4 and a sym-
plectic embedding 1 : (CP" !, R%wpg) — (M ,w) whose image is an exceptional divisor F, the
symplectic blowdown of (M,®) along FE is defined by deleting E and gluing in a standard

symplectic ball (E?{n,wst). More precisely, we choose an extension of ¢ : CP" ™! — F to a
symplectic embedding U : (B",wg) — (M,&) and define

(M’w) = (M\E,(:I) U\Iloq)El (Blz%Tjre’wSt)’
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where f1>}_{1 is restricted to B3 E\Ein and € > 0 is chosen so that R + e < vV R? + 2.

THEOREM 3.11. Up to symplectomorphism, the blowdown (M,w) in Definition [310 de-
pends only on the symplectic isotopy class of the embedding ¢ : (CP" !, R?wpg) — (M,Q)
that parametrizes the exceptional divisor E.

PrOOF. If ¢, : (CP", R?wpg) — (]\7 ,@) is a smooth 1-parameter family of symplectic
embeddings for 7 € [0, 1] whose images are exceptional divisors, then we can choose a smooth
family of extensions ¥, : (E?",wR) — (Z\7 ,w) for § > 0 sufficiently small. This follows by a
parametric version of the symplectic neighborhood theorem; the proof is the same as in the
usual version, using the Moser deformation trick (cf. [MS17, Theorem 3.4.10]), one only needs
to keep track of the extra parameter. With this understood, the embeddings ¥, can be used
to construct a 1-parameter family of blowdowns (M;,w,) via Definition B.I0 above, and one
can construct a family of diffeomorphisms ¢, : My — M, such that the symplectic forms pFw;
on My depend smoothly on 7. Moreover, these symplectic forms will be cohomologous, so the
Moser stability theorem can be applied to change ¢, into a family of symplectomorphisms
(Mo, wo) - (MT, wT).

It therefore remains only to check that the symplectomorphism type of (M,w) in Def-
inition B.I0] does not depend on any of the auxiliary choices, namely on the extension ¥ :
(Eg",wR) — (]\7,&7) of ¢ : (CP", R%wpg) — (]\7,(:)), and on € > 0. Given W, it is easy to see
that § and € can each be shrunk without changing the construction, i.e. given two blowdowns
produced by alternative choices of constants with € small enough so that &5 (B3 6\Eén) fits
inside E?”, there exists a natural symplectomorphism between them.

To see why there is also no dependence on the extension of v, suppose V; : (E?", WR) —
(]\7 ,w) for i = 0,1 are two choices of such extensions, and let (M;,w;) denote the resulting
blowdowns. Differentiating each W, at the zero-section gives a pair of symplectic bundle
isomorphisms from C" to the normal bundle of E which we shall denote by DW;. Since
the linear symplectic group on R? is retractible to U(1) =~ S! the space of such bundle
isomorphisms is retractible to the space of smooth maps CP"~' — S, which is connected
since 71 (CP" 1) = 0 implies that maps CP"~! — S! always admit lifts CP"~! — R to the
universal cover of S'. We can therefore pick a smooth homotopy from DV, to DW¥; and,
using the symplectic neighborhood theorem (after possibly shrinking ¢ > 0), accompany this
with a smooth family of symplectic embeddings U : (Eg", wpr) = (M,%) for 7 € [0,1] such
that \TJO = VU, and the derivative of \Tll at the zero-section matches DW;. In this case the
argument of the previous paragraph shows that the blowdowns constructed via each V.. are
all symplectomorphic.

The above discussion allows us now to assume without loss of generality that DWVg = DWq,
in which case, after shrinking § > 0 further, ¥y and ¥; may be assumed to be arbitrarily
Cl-close. For e € (0,6] and i = 0, 1, denote

U = (B> < M.
Choosing a vector field whose flow gives ¥y o Wy ! on its domain of definition and then

multiplying it by a suitable cutoff function, we can now find a diffeomorphism @ : M — M
that is globally C'-close to the identity, has compact support in ng , and matches ¥y o U !
on UJ for some & € (0,4). This in turn gives rise to a diffeomorphism

o My — M



3.2. THE SYMPLECTIC BLOWUP 59

which is the identity (hence symplectic) on the glued in ball Eén and matches @ on MO\E? =
Mo\E. The symplectic form ¢*w; on My is then C%close to wy and matches it precisely
outside the region Z/Ig\ﬂg . The latter has the homotopy type of S?*~!, thus wy — ¢*w; is

exact and we can linearly interpolate between wy and ¢*w; by cohomologous symplectic forms,
producing a symplectomorphism (My,wg) — (M7,w;) via the Moser stability theorem. [

DEFINITION 3.12. As in Chapter [Il we will say more generally that (M7, w;) is a blowup
or blowdown of (My,wy) whenever the former can be produced from the latter by a finite
sequence of symplectic blowup or blowdown operations respectively.

One disadvantage of the symplectic blowdown in comparison to its complex counterpart
is that there is no natural notion of a “blowdown map” 3 : (]\7 ,@) = (M,w), cf. 32]). When
dealing with pseudoholomorphic curves, in particular, this makes it more convenient to apply
the almost complex blowup and blowdown operations described in Remark The next two
results give us a means of interpreting these operations symplectically.

THEOREM 3.13. Suppose (M,w) is a symplectic manifold of dimension 2n > 4, ¢ :
(B2 wg) — (M,w) is a symplectic embedding of a standard symplectic ball for some

R+e’
R,e >0, and J denotes the integrable complex structure i on U := (B%, ) < M. Let

R+e
M := (M\{z}) U P(T, M)
denote the complex blowup ofM at z :=1(0) with respect to the complex structure J, which
mhemts a blowdown map B : M M and an integrable complex structure J on the region
U:=pU) = Bé’le Then M admits a symplectic form & that matches w on M\L{ = M\U

and 1s compatible with J on Z/Nl, such that (]\7,&7) 18 symplectomorphic to the symplectic blowup
of (M,w) along ¢ with weight R.

THEOREM 3.14. Suppose (M W) is a symplectzc manifold of dimension 2n > 4, E M
18 an exceptional divisor, U : (Eg ,WR) — (M,w) is a symplectic embedding for some 6 > 0
and R > 0 with Y(CP"™') = E, and J denotes the integrable complex structure W.i on
U:= \IJ(E(?”) < M. Let

M= (JTJ\E) {2}

denote the complex blowdown of M along E with respect to the complex structure j, which
inherits a blowdown map G : M — M and an integrable complex structure J on the region
U:=pU) =~ B3, Then M admits a symplectic form w that matches & on M\U = M\L{ and
s compatible wzth J on U, such that (M,w) is symplectomorphic to the symplectic blowdown
of (]\7,@) along E.

We will prove both of these theorems by working in the “cylindrical coordinates” defined
via the diffeomorphism T : R x $27~1 — C"\{0} = C"\CP" " in (B3). The next two exercises
provide us with a fairly general family of symplectic structures that are compatible with the
standard complex structure on R x $?"~1. We will see them again when we discuss the energy
of punctured pseudoholomorphic curves in §83.11

EXERCISE 3.15. Show that the complex structure J := Y*i on R x §?"~! has the following
properties:
e [t is invariant under the natural R-action by translations of the first factor;
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e It preserves the subbundle & := ker oy < TS 1

e The pairing (X,Y) — dag (X, JY) for X,Y € & defines a bundle metric on &;

e J0; is always tangent to the levels {t} x S?"~! and defines a vector field on $2"~1
such that dag(J0;, ) =0 and ag(J ;) is a positive constant.

EXERCISE 3.16. Using only the properties of J = Y*i on R x $2"~! established in Exer-
cise 3.I5] show that for any smooth function f: R — R with f/ > 0 everywhere,

(3.6) wyf 1= d(ef(t)ast)
defines a Kihler form on (R x S?"~1 .J).

ProOOFS OF THEOREMS [3.13] AND [3.14] As in the statement of Theorem [B.13] denote
U=pBE,) c M 2=190),J =i, U =5"U c M, and J = §*J. Let us use
TR x 21— ™\ {0} = C"\CP" ! to identify both 2/\{z} = M and U\P(T.M) < M with
the cylinder (—o0,T) x §?"~1 where T € R is defined to satisfy e’/? = R + e. Under this
identification, we have

(3.7) wst = d(e'og)  and  wp=d ((et + R2)ast) .

Since e’ > R?, we can choose a smooth function f : (—00,T) — R with f/ > 0 such that

f(t) =t neart = T and e/®) = ¢! + R? near t = —co, then set
D=defag) on (—0,T)x S =U\P(T.M) < M.

By construction, & extends to a smooth symplectic form matching w on M \Z/Nl M\U, and it
also extends smoothly over P(T, M) since it matches wr nearby. Exercise B.I6implies that &
is compatible with J on U. To see that (M @) is symplectomorphic to a symplectic blowup of
(M,w), we observe that (Z/l , ) is symplectomorphic to (Bg ,wr) where 0 := /(R + €)? — R?;
indeed, a natural symplectomorphism from the former to the latter is defined by identifying
both with suitable subsets of R x 2"~ and writing a diffeomorphism of the form

G:(—0,T) x 81 & (=00, T') x 8271 (t,2) — (g(t), 2),
where g : (—o0,T) — R is chosen such that e9 = ef — R?, hence G*((e! +R2)ast) = efag. We
can therefore view (M @) as obtained from (M,w) by replacing a copy of (B#,.,ws) with a
copy of (Bg", wr), where these are identified with each other by the natural symplectomor-
phism near their boundaries, thus matching the definition of the symplectic blowup along
with weight R. This proves Theorem [3.13]

Theorem [B.14] is proved by a similar trick: given Uc M ,J, U = M and J as in
the statement, we use Y to identify both \E and U\{z} with (—o0,T) x $?"~1, where
eT/2 = §, and again wr and wy are given by the formulas in B7). Choose a smooth function
f: (=00, T) = R with f' > 0 such that e/() = ¢! + R? near t = T and f(t) = t near t = —o0,
then set

w=deag) on (—0,T)x S =i\{z} c M.
Analogous arguments as in the previous paragraph show that this extends smoothly to a
symplectic form on M satisfying all of the desired properties. O

REMARK 3.17. We will not need it, but with a little more care, one can tweak the proof
of Theorem [3.14] to produce a blowdown containing a Darboux ball of radius greater than R

on which the complex structure is also standard. This is achieved via a more precise reversal
of the proof of Theorem [3.131
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3.3. Smooth topology of Lefschetz pencils and fibrations

Lefschetz pencils and Lefschetz fibrations are each “fibration-like” objects that facilitate
the description of 2n-dimensional manifolds in terms of (2n — 2)-dimensional data. This is
especially useful in the study of symplectic 4-manifolds since the classification of symplectic
structures in dimension two is trivial. We already saw two examples in the introduction:

e Any smooth fibration 7 : M — X of an oriented 4-manifold over an oriented surface
is also a Lefschetz fibration (with no singular fibers).

e The holomorphic spheres in CP? described in Example [4] form the fibers of a Lef-
schetz pencil with one base point (and no singular fibers).

Lefschetz fibrations generalize the first example by allowing a finite set of fibers to be
singular, where the degeneration from a smooth fiber to a singular one can be likened to the
convergence of smooth J-holomorphic curves to a nodal curve in the Gromov compactification
(see §2.1.0). Singular fibers will thus provide a convenient topological description of the
degenerations of holomorphic curves that occur in our proofs of Gromov’s and McDuff’s
results stated in Chapter [[I It is not strictly necessary to understand Lefschetz fibrations in
order to prove most of those results, but we will find that they provide valuable intuition.
Pencil singularities (see Definition below) will also play a crucial role in our arguments
for the case [S]-[S] > 0.

DEFINITION 3.18. Suppose M and X are closed, connected, oriented, smooth manifolds
of dimensions 4 and 2 respectively. A Lefschetz fibration of M over X is a smooth map

T M —>X

with finitely many critical points M, := Crit(r) € M and critical values Yeyit 1= 7(Meit) <
Y such that near each point p € M, there exists a complex coordinate chart (z1,292) and a
corresponding complex coordinate z on a neighborhood of 7(p) € ¥ in which 7 locally takes
the form

(3.8) m(21,29) = 22 + 22

REMARK 3.19. In the above definition, and also in Definition below, we always
assume that the orientation induced by any choice of local complex coordinates on M or X
matches the given orientation. The more general object obtained by dropping this orientation
condition is called an achiral Lefschetz fibration.

REMARK 3.20. One can think of critical points in a Lefschetz fibration as satisfying a
complex Morse condition: the coordinates near M, and X determine integrable complex
structures on these neighborhoods such that m becomes a holomorphic map near M, and
its critical points are nondegenerate. The proof of the standard Morse lemma (see [Mil63])
can be adapted to show that any nondegenerate critical point of a holomorphic map C? — C
looks like (B.8]) in some choice of holomorphic coordinates.

EXERCISE 3.21. Show that near any Lefschetz critical point, one can also choose complex
coordinates such that 7 takes the form m(z1, 22) = 2129.

We shall denote the fibers of a Lefschetz fibration 7 : M — 3 by
M, =1'2)c M

for z € 3. The regular fibers M, for z € ¥\X,;; are closed oriented surfaces, which we shall
always assume to be connected (see Exercise B:222] below). For z € ¥, the singular fiber
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FIGURE 3.1. A Lefschetz fibration over the torus, with fibers of genus 2. The
singular fibers shown in this example each have two irreducible components.

M, is generally an immersed closed oriented surface with transverse self-intersections; it may
in fact be a union of several irreducible components that have transverse double points
and intersect each other transversely, and its arithmetic genus (defined the same as for nodal
holomorphic curves, cf. §2.1.6]) matches the genus of the regular fibers. Figure B.Jlshows some
examples of what singular fibers can look like and how they relate to nearby regular fibers.
It follows from the orientation condition (Remark B.I9 above) that the self-intersections of a
Lefschetz singular fiber are always not only transverse but also positive.

EXERCISE 3.22. Assuming M and ¥ are closed and connected, show that if 7 : M — ¥ is
a Lefschetz fibration with disconnected fibers, then one can write 7 = pon’ where p : ¥/ — %
is a finite covering map of degree at least 2 and 7’ : M — Y’ is a Lefschetz fibration with
connected fibers.

ExaMpPLE 3.23. To make the relationship between Lefschetz singular fibers and nodal
holomorphic curves more explicit, let us write down a family of parametrizations of the fibers
near a critical point. For this purpose it is convenient to use the model from Exercise B.21],

so assume 7 : C? — C is the map 7(z1,22) = 2122, and let E? — C? denote the closed e-ball

about the origin for some ¢ > 0. The portion of the singular fiber 7=1(0) in E? is then the
union of the transversely intersecting images of two embedded holomorphic disks

uf :D? - C?, ug (2) = (e2,0) and  ugy (2) = (0,€2).
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For any w = re?™ e C\{0} close enough to 0, 7! (w) n EZ: is the image of the embedded
holomorphic annulus

Uy : [_1%7 R] « Sl 2. (S,t) . (\/77627r(5+it)’\/77627ri06—27r(s+it))

where
1 €2
3.9 R:=—cosh™ ' — .
o Lot (2)
Fixing # and letting 7 — 0 in w = re*™ the domains of these annuli expand toward infinite
length and we have

lir%uw(s + R,t) = uf (e%(sﬂf)) for (s,t) € (—o0,0] x St
lin% Uw(s — R, t) = uy (G_QW(S+i(t_6))) for (s,t) € [0,00) x S,

with C}% -convergence on the half-cylinder in each case. Moreover, for any sequence wy €
C\{0} with 7 := |wg| — 0 and Ry, related to r; via ([B.9]), together with a sequence (s, tx) €
[~ Ry, Ri] x St such that s, + R, — o and Ry, — s — o0, we find

’U,wk (Sk, tk) — 0.

In particular, if we consider the compact topological annulus Z constructed by gluing [0, c0] x
St to [—o0,0] x ST along the obvious homeomorphism {00} x S1 — {—o0} x S, there is a con-
tinuous map @ : Z — C? that matches ug (e27**™) on [—o0,0] x S and ug (e~ 2 (s+i(t=0))
on [0,00] x S, and we can choose a smooth structure on Z and a smooth family of diffeo-
morphisms
¢r:Z —[-R,R] x S!

such that for w = re?™ w,, o ¢, converges in C°(Z,C?) to ug as r — 0. This is simply a
local picture (near the node) of the notion of Gromov convergence that we described in §2.1.6}
the annuli u,, are converging in the Gromov topology as w — 0 to a “broken annulus” with
smooth components uar and u, that intersect each other transversely at a node.

27160

A Lefschetz pencil is a further variation on the above which allows one more type of sin-
gularity. To motivate the definition, consider again the decomposition of CPP? in Example [4
The holomorphic spheres in that example are the fibers of the map

(3.10) 7 CP\{[1:0:0]} — CP': [21 : 29 : 23] = [22: 23].

This defines a smooth fiber bundle structure on CP?\{[1 : 0 : 0]}, but near the singular point
[1:0:0], where all the fibers intersect, we can choose a complex coordinate chart identifying
[1: 21 : 23] with (21, 22) € C? and write 7 in these coordinates as

7T(21,22) = [2’1 : ZQ].
This helps motivate the following notion.

DEFINITION 3.24. Suppose M is a closed, connected, oriented, smooth manifold of di-
mension 4. A Lefschetz pencil on M is a Lefschetz fibration

7+ M\ Mpase — CPL,

where Mpase © M is a finite subset, such that near each base point p € M., there exists a
complex coordinate chart (z1,z2) in which 7 locally takes the form

(3.11) 7T(21,22) = [2’1 : 2’2].
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(070) 52 X {O} (0070)

FIGURE 3.2. A Lefschetz pencil on S? x S? with two base points, two singular
fibers, and genus 0 regular fibers isotopic to the diagonal.

We shall regard the fibers of a Lefschetz pencil as the closures
M, =r"1(z)c M

for z € CP'. For z € Y\ Xcrit, these are embedded, closed, oriented surfaces that all contain
Myase and intersect each other transversely (and positively) there. For z € ¥4, the singular
fibers M, have additional transverse (and positive) double points in M\ Mpase.

EXERCISE 3.25. Show that if M is closed and connected, then any Lefschetz pencil 7 :
M\ Mpase — CP' with My, # & has connected fibers.

EXAMPLE 3.26. There is an obvious Lefschetz pencil on S? x S?, namely the trivial
fibration over 52 = CP!, but we can also define a more interesting Lefschetz pencil as follows.
Regarding S? = C U {0} as the extended complex plane and identifying CP' with S2, we
define
(3.12) ™ (52 x SO\(0,0), (00,00)} — S%: (21, 29) — =2

Z1
Take a moment to convince yourself that this map can be written as (3I]) in suitable coor-
dinates near the base points (0,0) and (00,00). Moreover, the fibers 7—1(z) for z € S%\{0, o0}
are embedded spheres homologous to the diagonal, but there are two singular fibers

71 (0) = (8% x {0}) U ({oo} x )
7 (00) = ({0} x §%) U (8% x {0}),

each with a single critical point at (0,00) and (c0,0) respectively. A schematic picture is
shown in Figure
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NOTATION. For convenience, we shall wherever possible regard Lefschetz fibrations and
Lefschetz pencils as special cases of the same type of object, which we’ll denote by

T+ M\ Mpase — 2.

Here it is to be understood that the finite subset Mp,se € M may in general be empty, but
whenever it is nonempty, ¥ must be CP!.

There is a lot that one could say about the topology of Lefschetz fibrations, most of which
we do not have space for here (see e.g. [GS99| for much more on this topic). We will merely
point out the features that figure into the main arguments on rational and ruled symplectic
manifolds.

PROPOSITION 3.27. Suppose m : M\Myase — CP! is a Lefschetz pencil with fibers diffeo-
morphic to S%, having exactly one base point Myase = {p} and no singular fibers. Then M
admits a diffeomorphism to CP? identifying 7 with (B.10).

PRrROOF. Let U, = M denote an open neighborhood of the base point p that is identified
with some standard ball B} = C? in complex coordinates where 7 takes the form (BIT)).
Then the restriction of 7 to the sphere o, = S® is isomorphic to the Hopf fibration. This
same fibration, with the orientation of its fibers reversed, is also the boundary of

7T|M\Up . M\Z/{p — C]P)l,

which is a disk bundle, and its first Chern number is therefore uniquely determined. Since
complex line bundles over CP! are classified by the first Chern number, it follows that the disk
bundle 7ypy, is isomorphic to the restriction of (3.I0) to the complement of a neighborhood
of its base point, and this isomorphism can then be extended via the local model [BI1]) to a
fiber-preserving diffeomorphism of M to CP2. U

Observe that the complex coordinates defined on a neighborhood of any base point of
a Lefschetz pencil 7 : M\ Mpase — CP' determine an integrable complex structure on this

neighborhood, so one can then define the complex blowup M of M at a base point p € Mypse
(cf. Remark B.5]). This means replacing p with the space of complex lines through p, forming

an exceptional sphere E ¢ M. While any two distinct fibers of 7 : M\ My — CP! intersect

each other transversely at p, it is not hard to show that they have lifts to M which pass
through E at distinct points, resulting in a new Lefschetz pencil

T M\Mbase — CP!,

where Mbase = Myase\{p}, see FigureB3l To see this explicitly, observe that under the natural
identification of C2\{0} with the complement C*\CP" of the zero-section in the tautological
line bundle, the model projection 7(z1, z2) = [21 : 22] has a natural extension to a holomorphic
map T : C2 — CP! that is the identity at the zero-section. The exceptional sphere E M is
then a smooth section of 7 : M \Mbase — CP.

This process can also be reversed: suppose 7 : M \Mbase — CP! is a Lefschetz pencil
with an exceptional section E — M, i.c. a smooth section that satisfies [E] - [E] = —1.
The normal bundle Ngp — FE of F < M then has Euler number —1, so it is isomorphic as
an oriented real vector bundle to the tautological line bundle ¢? - CP. Using the obvious
identification of Ng with the vertical subbundle of the fibration along F, one can then identify
a neighborhood Ug < M of E with a neighborhood ég‘ < €2 of CP' such that fibers of %
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~

M M

F1GURE 3.3. The effect of blowing up a Lefschetz fibration at a base point p,
shown here together with the blowdown map 8: M — M.

passing through Ug are identified with fibers of the tautological line bundle near its zero-
section, hence 7 in U becomes the bundle projection Eg — CP!. Replacing Egl with Bg1 c C?
to define the blowdown M thus produces a new Lefschetz pencil 7 : M\ Mpase — CP!, with
Mypse 1= Mbase U {p} where p € M is the image of F under the blowdown map £ : M — M.

Alternatively, one can consider the complex blowup at a regular point p € M\(Mcit U
Myase) of a Lefschetz fibration/pencil 7 : M\ Mp,se — . To make sense of this, we can first
choose complex local coordinates (compatible with the given orientations) near p and m(p)
such that p is the origin in C? and 7 locally takes the form

7T(?«‘l,?«?) =z

Composing this with the standard blowdown map C2 — C2 : ([21 : 22], Az1, Aza) — (A1, Az2)
produces

(3.13) F:C? > C: ([21: 22], (21, Az)) — Azt

EXERCISE 3.28. Show that the map (B13)) is holomorphic and is regular everywhere except
at [0:1] € CP! = C2, which is a Lefschetz critical point.

The exercise implies that the blown-up manifold M inherits a Lefschetz fibration/pencil
T M\Mbase — ¥ with Mbase := Mpase and with one extra critical point: the fiber MZ
for z := w(p) is now singular, and can be identified with the union of the original fiber
M, and an exceptional sphere E that intersects it transversely, see Figure 341 Conversely,
Proposition below will enable us to blow down certain kinds of singular fibers so that
they become regular.

LEMMA 3.29. Suppose m : M\Mypase — X is a Lefschetz fibration or pencil containing
a singular fiber M, with an irreducible component that is the image of an immersion S
M, that intersects other irreducible components of M, exactly k times, has d transversely

immersed double points, and intersects My,se exactly b times. Then its normal bundle Ng — S
satisfies ¢1(Ng) = —k — 2d + b.

ProOF. This can be deduced from the observation that away from Mg U Mpage, any
choice of oriented basis for T,Y induces on M, a canonical normal framing. One can then use
the local models (B.8]) and ([B.I1]) to compute exactly how many zeroes appear if one extends
this framing over the singularities to define a global section of Ng: each critical point (of
which there are k + 2d on S) contributes —1, while each base point contributes +1. 0



3.3. SMOOTH TOPOLOGY OF LEFSCHETZ PENCILS AND FIBRATIONS 67

M, M,

W
by lz by lZ

F1GURE 3.4. The effect of blowing up a Lefschetz fibration 7 : M — ¥ at a
regular point p € M,, shown with the blowdown map 8 : M — M.

PROPOSITION 3.30. Suppose w : M\ Mypase — X is a Lefschetz fibration or pencil containing
a singular fiber M, with an irreducible component E c M, that is disjoint from Myase and
intersects other irreducible components of M, exactly once. Then [E]-[E] = —1.

PRrROOF. Assume E has d > 0 transversely immersed double points, so Lemma [3.29 gives
¢1(Ng) = —1 — 2d. Then by the same argument as in the proof of the adjunction formula
(see the paragraph preceding Theorem 2.5T]),

[E] - [E] = 2d + c1(Ng) = —1.
O

The 0perat10n of blowing up at a regular point can now be reversed as follows Suppose

M \Mbase — Y has a singular fiber M with an irreducible component E M that is an
embedded sphere with only one critical point. A tubular neighborhood of E then admits a
smooth orientation-preserving diffeomorphism to a neighborhood of the zero-section CP! in
the tautological line bundle @2, and we are free to choose this diffeomorphism so that the
unique critical point in F is identified with [0 : 1] and 7 matches (B.I3]) near this point for a
suitably chosen local coordinate on ¥. Since all points in the rest of this neighborhood are
regular and 7 sends the rest of E to the same point, we can then assume after a C'*-small
isotopy that (BI3]) holds exactly on a sufficiently small neighborhood of the zero-section.
Replacing this neighborhood with a ball then produces a blown-down manifold M with a
Lefschetz fibration/pencil 7 : M\Mpase — X in which My,se = Mbase and M, has one less
critical point.

The blowup/blowdown operations described above depend on various choices, e.g. the
integrable complex structure used for the blowup at a base point My,se € M is guaranteed
to exist, but it need not be unique, and the smooth structure of M depends on this choice.
This ambiguity should not be a cause for concern. We will show in the next section that
compatible symplectic structures on Lefschetz pencils/fibrations can always be chosen such
that the blowup and blowdown operations are equivalent to the symplectic operations in §3.2}
as we have seen, these operations are well defined up to symplectic deformation equivalence
(or symplectomorphism, in the case of the blowdown).

The following topological observation will play a crucial role in the proof of Theorems [A]

and
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ProprosITION 3.31. There does not exist any closed oriented 4-manifold carrying a Lef-
schetz pencil with fibers diffeomorphic to S? and strictly more than one base point but no
singular fibers.

PROOF. Arguing by contradiction, suppose 7 : M\Mpae — CP! is such a pencil, with
m = 2 base points. Then the pencil 7 : M \Mbase — CP' that results from blowing up m — 1
of these base points is isomorphic to the standard pencil on CP? by Proposition But
CP? cannot be a blowup of M since it contains no exceptional sphere: indeed, Hg((CIP’Q) has
a single generator [CP'] satisfying [CP'] - [CP'] = 1, hence there is no A € Ho(CP?) with
A-A=-1. O

3.4. Symplectic Lefschetz pencils and fibrations

By a well known result of Thurston [Thu76] (see also [MS17, Theorem 6.1.4]), every 4-
dimensional fibration over an oriented surface, with the property that the fibers are oriented
and homologically non-torsion in the total space, admits a symplectic structure on its total
space that makes the fibers into symplectic submanifolds. In this section we shall prove an
extension of this result to Lefschetz fibrations and pencils which is due to Gompf [GS99].
The prominent role played by Lefschetz fibrations in symplectic topology since the 1990’s is
largely a consequence of this theorem in combination with its (much harder) converse due
to Donaldson [Don99|, which states that every closed symplectic manifold, after a small
perturbation of its symplectic form, admits a symplectic Lefschetz pencil. In dimension four,
one therefore obtains a topological characterization of the closed smooth manifolds that admit
symplectic structures: they are precisely those which admit Lefschetz pencils.

DEFINITION 3.32. Given a Lefschetz fibration or pencil 7 : M\Mpase — X, we shall say
that a symplectic structure w on M iscompatible with 7 if the following conditions are
satisfied:

(1) The smooth part of every fiber M, \(Mpase U Meyit) for z € ¥ is a symplectic sub-
manifold;
(2) For any almost complex structure J defined near Mpase U Myt that restricts to
a smooth positively oriented complex structure on the smooth parts of all fibers
M\ (Mypase W Merit), J is tamed by w at Mpase U Merit -
Likewise, if (M, w) is a symplectic manifold and 7 : M\ My,se — X is a Lefschetz fibration or
pencil, we call 7 a symplectic Lefschetz fibration/pencil if w is compatible with 7.

THEOREM 3.33 (Thurston [Thu76] and Gompf [GS99]). Assume 7 : M\Mpase — 2 is
a Lefschetz fibration or pencil for which the fiber represents a non-torsion class in Ha(M)
(cf. Proposition below). Then M admits a symplectic structure compatible with w, and
any two such structures can be connected by a smooth 1-parameter family of symplectic struc-
tures compatible with .

It is useful to note that the assumption on the homology class of the fiber is always
satisfied outside a very limited range of cases:

PROPOSITION 3.34. If m : M\Myase — X is a Lefschetz fibration or pencil such that the
fiber represents a torsion class in Ho(M), then My.se = & and the fiber is a torus.

PrOOF. We use the fact that a torsion class necessarily has vanishing intersection product
with every other homology class: indeed, if A, B € Ho(M) with kA = 0 for some k € N, then

0=kA-B=Fk(A-B),
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implying A- B = 0. Suppose M, c M is a smooth fiber. If there are m > 0 base points
in Mpase, then by counting intersections of M, with any other fiber M, ¢ M we have

[M.] - [M.] =m,

implying by the above observation that [M.] € Ho(M) cannot be torsion. If My, = &,
then we instead argue as follows. Choosing complex coordinates (z1, z2) near each p € Mt
in which (21, 22) = 27 + 22, define a vector field o near p by

0(21,22) = (—22,21),

and notice that o is tangent to every fiber in this neighborhood and vanishes only at p. Now
extend o to a global vector field on M that is everywhere tangent to the fibers, i.e. it is a
smooth section of the vertical subbundle

VM (@ TM|M\MC — M\Mcrit,

rit
whose fibers are (V M), = T,M, for any regular point p € M,. After a generic perturbation

that leaves o unchanged near M.,it, we can assume it is transverse to the zero-section of VM,
so its zero-set is the union of M.t with a closed 2-dimensional submanifold

7 =0 Y (0)\Mey, © M.

By Sard’s theorem, Z intersects almost every regular fiber M, transversely, and the restriction
of o to such a fiber is then a smooth vector field on M, with nondegenerate zeroes, whose
signed count is x(M,). This proves

[Mz] ’ [Z] = X(Mz)a
which is nonzero unless M, =~ T2, thus implying that [M,] is not torsion. O

ExAMPLE 3.35. The following shows that Theorem [B.33] cannot always be applied for
torus bundles. Let my : S® — S? denote the Hopf fibration, and define a torus bundle
7: 8 x 83 - S? by

m(0,p) = mo(p).
Observe that the fibers of my : $% — S? are nullhomologous since Hi(S®) = 0, so it follows
that the fibers of 7 : S' x §3 — S? are also nullhomologous. And indeed, S* x S? does not
admit any symplectic structure since H3z (S x S%) = 0.

The rest of this section will be devoted mainly to the proof of Theorem 333l The main idea
is to reduce the construction of symplectic forms in dimension 4 to a problem in dimension 2,
where symplectic geometry is comparatively trivial. In particular, we will make essential use
of the fact that on any given oriented surface, the space of symplectic forms is both nonempty
and contractible—indeed, it is a convex subset of a vector space. As an intermediary between
the two and four-dimensional settings, we introduce the following notion.

DEFINITION 3.36. Assume 7 : M\Mypase — X is a Lefschetz fibration or pencil. A fiber-
wise symplectic structure on M with respect to 7 is a closed 2-form w such that:

(1) w restricts to a positive area form on the smooth part of every fiber M,\(Mpase U
Mcrit);

(2) For any almost complex structure J defined near Mpase U Myt that restricts to
a smooth positively oriented complex structure on the smooth parts of all fibers
M\ (Mpase W Merit), w is nondegenerate and tames J at Myase U Meyig.
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The only difference between this and Definition is that we do not require w to be
nondegenerate except at Mpase U Merit; a 2-form w is thus a symplectic structure compatible
with 7 if and only if it is fiberwise symplectic and satisfies w A w > 0. The advantage we
gain in dropping nondegeneracy in the above definition is that for any fixed 7 : M\ Mp,se —
Y., the space of fiberwise symplectic structures is convex; see Proposition below. The
following lemma shows that the apparent choice of an auxiliary almost complex structure in
Definitions and is not actually a choice.

LEMMA 3.37. Given a Lefschetz pencil/fibration 7 : M\My,se — 3, suppose J and J' are
two almost complex structures defined on a neighborhood of Myase W Mt which both restrict

to positively oriented complex structures on all the smooth fibers in this neighborhood. Then
J=1J at Mypase W Meyig

PrOOF. Identifying a neighborhood of any point in p € Mpage U Mgt with a neighbor-
hood of the origin in C? via (B.8) or [B.11)), we see that in these coordinates, every complex
1-dimensional subspace of the standard C? occurs as a tangent space to a fiber in every neigh-
borhood of p. Since J and J’ are continuous, it follows that every J-complex 1-dimensional
subspace of T,M is also J'-complex and both structures induce the same orientation, so the
claim follows from Lemma below. O

LEMMA 3.38. Suppose J is a complex structure on the vector space C™ with n > 1 such
that J preserves every t-complex line. Then J = +1.

PROOF. Let (eq,...,e,) denote the standard complex basis of C™. The assumption on J
implies that there are numbers a;,b; € R with b; # 0 such that Je; = aje; + bjie; for
j =1,...,n. Moreover, for v := Zj ej, there are numbers a,b € R with b # 0 such that
Jv = av + biv. Since (ey,...,ep,le1,...,le,) is a real basis of C", combining these two
formulas implies

ag=...=a,=a and by =...=b,=0b.
The condition J? = —1 now implies J(ie;) = —1Jg)a2 ej — aie; for j = 1,...,n. Then for
w := e1 + tey, there are also constants A, B € R with B # 0 such that Jw = Aw + Biw,
implying

1+ a?
b
= A(ey + iex) + B(—ea + ieg)

J(e1 + ieg) = aey + biey — €9 — aies

and thus

1 2
a=A, b=B8B, —za - B,  —a=A

We conclude a = 0 and b = 1/b, hence b = +1, which proves J = +i. ]

Lemma [3.37] implies that when applying Definition or [3.36] one can fix a suitable
choice of almost complex structure near Myp,se U Mcit, and the resulting notions do not
depend on this choice. Now observe that on any complex vector space (V,J), the space of
antisymmetric real bilinear 2-forms €2 that satisfy

Qv,Jv) >0 for all ve V\{0}

is convex, i.e. whenever () and ' are in this space, so are sQ+ (1 —s)€ for all s € [0, 1]. Since
the spaces of closed 2-forms and 2-forms that restrict positively to any given 2-dimensional
subbundle are also convex, this implies:
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PROPOSITION 3.39. On any Lefschetz fibration/pencil m : M\Mpase — %, the space of
fiberwise symplectic structures is convex. O

LEMMA 3.40. Assume 7 : M\Mypase — X is a Lefschetz fibration or pencil for which
the fiber represents a non-torsion class in Ho(M). Then M admits a fiberwise symplectic
structure with respect to .

Before proving the lemma, let us go ahead and use it to prove Theorem B33l In order
to turn fiberwise symplectic structures into actual symplectic forms, we use a trick originally
due to Thurston [Thu76].

Suppose {ws}se[0,1] is @ smooth 1-parameter family of fiberwise symplectic structures. Fix
an area form o on Y; in the case Myase # &, we shall assume specifically that o is the standard
symplectic form wpg on CP'. As we saw in §LI] this can be defined by the property that if
75 8% — §3/81 = CP! denotes the Hopf fibration, then

WEWFS = dast )

where ag; := Agt|7gs is the restriction to the unit sphere S3 < C2? of the standard Liouville
form

1 2
Ast 1= 5]; (pjdqg; — q; dp;)

on C?, using coordinates zj = p;j +iq; for j =1,2.

Near each point in My,se U Meit, fix a neighborhood with coordinates as in (3.8]) or
(BI1), and let J denote the integrable complex structure on a neighborhood of My ,se U Meyit
determined by these coordinates. Note that for this choice, all smooth parts of fibers are
J-complex curves wherever J is defined. For each p € My, (B.8) also involves a complex
coordinate chart near 7(p) € X, which determines a complex structure j, near 7(p). For these
choices, the map 7 is J-j,-holomorphic near p € Mc;¢, and it is J-i-holomorphic near Myase,
where i denotes the standard complex structure on CP'.

Since wy is fiberwise symplectic for all s € [0, 1] and tameness is an open condition, one can
fix a small neighborhood U = M of Myaee W Mrit within the above coordinate neighborhoods
on which wy is symplectic and tames J for all s. Denote the union of the connected components
of this neighborhood containing Mpase by Upase- Now choose a smooth function

p: M —[0,1]

such that 1 — p has compact support in Up,se, while p vanishes near My s and in Upgse it
takes the form

p(z) = f(lzl),  z:=(21,22) € C?

for some smooth function f : [0,00) — [0,1] with f > 0, using the coordinates of (BII]).

Define the projection
z

v:CH{0} - S :2— =
} E

This data allows us to define a closed 2-form on M by

= {d (p ' V*aSt) on ubase,
Up =

3.14
( ) o on M\Upase-
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LEMMA 3.41. There exists a constant Ky = 0 such that for all constants K = Ky and all
€ [0,1], the 2-forms

(3.15) wl = ws + Ko,

o
are symplectic and compatible with . Moreover, if ws is already symplectic for all s € [0,1],
then it suffices to take Ko = 0.

PROOF. We claim first that for all K > 0, wX is symplectic in the neighborhood U ase
and tames .J. At Mg this is clear since p = 0 nearby and thus w® = w,. In Upase\Mpase,
we have

wf =ws+ Kpvidag + Kdp A viasy = ws + Kpn¥o + K dp A v¥a.

Applying this to a pair (X, JX) with X € TUpase nonzero, the first term is positive, and the
second is nonnegative since p > 0 and 7 is J-i-holomorphic:

70 (X, JX) = o(me X, me JX) = o(me X, ime X) = 0.

The third term vanishes whenever dp = 0 and is also nonnegative when dp # 0: indeed, it
is then positive on the complex lines spanned by vectors pointing radially outward, while its
kernel contains all vectors that are orthogonal to these lines.

Similarly, we claim that wX is symplectic and tames .J for all K > 0 on the compo-
nents U, < U containing critical points p € Mcyi¢. Since 7 is J-jp-holomorphic on such a
neighborhood, we have for any nontrivial vector X € TU,,,

WE(X,JX) = ws(X, JX) + K o(me X, T JX) = ws(X, JX) + K o(m: X, jpme X),

in which the first term is positive and the second is nonnegative.

Finally, consider w’ on M\U. Since the fibers are all smooth in M\U, we can define the
vertical subbundle VM < T'M|ypy, whose fibers are V,M = T,M, for p € M,. The fact
that wy is fiberwise symplectic then implies wX|y 3 = ws|yar > 0, so VM is transverse to its
ws-symplectic orthogonal complement, which is the subbundle HM < T'M |z, defined by

HM = {X € TM’M\Z/I ’ wS(X, )‘VM = 0}

Observe that this is simultaneously the w-symplectic orthogonal complement for every K €
R, since for any V € VM and H € HM in the same tangent space,

WwE(V,H) = wy(V,H) + Kn*o(V,H) = 0.
K

Now wX is symplectic on M\U if and only if wX|gys > 0, which is true for sufficiently large
K > 0 since
wSK\HM:K (W*U+%ws>‘ ,
HM
and 7*o|ga > 0. It is also true for all K > 0 if wg|gar > 0, which is the case if and only if
ws is symplectic. O

PROOF OF THEOREM [3.33] The existence of a symplectic form compatible with 7 follows
immediately from Lemmas 340 and 341l Now suppose wg and w; are two such forms.
By Proposition [3.39] we can then define a smooth family of fiberwise symplectic structures
connecting these by

ws = swi + (1 — $)wo, s € [0,1].
Since nondegeneracy is an open condition, we can choose ¢ > 0 sufficiently small so that wy
is symplectic for all s € [0,¢) U (1 —¢,1]. Now choose a smooth function 5 : [0,1] — [0, 1]
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with compact support in (0,1) that is identically 1 on [¢,1 — ¢]. Defining wX as in (B.I5),
Lemma [3.471] then implies that for a sufficiently large constant K > 0,

W= wf Bls)
is a smooth family of symplectic forms compatible with 7 and satisfying w{ = wp, W} = wi. O

REMARK 3.42. Given a section S < M of the Lefschetz fibration/pencil 7 : M\ My,se — X,
we can always arrange the compatible symplectic structure on M in the above proof so that
S becomes a symplectic submanifold. This is simply a matter of choosing the constant K > 0
in Lemma .47 sufficiently large.

It remains to prove Lemma [3.40] on the existence of a fiberwise symplectic structure. This
is accomplished in two steps: first we choose a suitable cohomology class, and then we use a
partition of unity to realize this class by a 2-form that is positive on all fibers. The first step is
the only place where we will make a simplifying assumption: we shall assume 7 : M\ My5e —
¥ has the property that no two critical points lie in a single fiber, i.e. 7|pr.,;, : Merit — Zerit
is a bijection. This assumption is not necessary, but doing without it would require some
tedious linear algebra (see in particular [Gom05| Lemma 3.3]), so we will content ourselves
with proving a slightly less general statement than would be possible, as it suffices in any case
for the main applications.

LEMMA 3.43. Assume m : M\Mpase — X is a Lefschetz fibration or pencil for which

the fiber represents a mnon-torsion class in Ho(M). Then there exists a cohomology class
B e HgR(M) such that for all irreducible components E < M of fibers,

f 5> 0.

E

PROOF (ASSUMING 7|z, © Merit — Zerit BWECTIVE). By Poincaré duality, it suffices to
find a homology class A € Ho(M;R) such that A - [E] > 0 for all irreducible components of
fibers E' M, as then we can set § to be the Poincaré dual of A. Let [F]| € Ho(M) denote the
homology class of the fiber. We shall handle the cases with and without base points slightly
differently.

If Myase # &, then [F] - [F] > 0 is the number of base points, and all irreducible
components £ < M of fibers satisfy [F] - [E] > 0 except for those containing no base
points, which satisfy [F'] - [E] = 0. Denote the collection of the latter components by I'. By
Proposition B30, each of them satisfies [E]-[E] = —1 since it must be connected via a unique

critical point to another irreducible component E’ which does contain a base point. Let

A=[F] -5 Y [E] € Ho(M: ).

Eel’
Then A - [F] = [F] - [F] > 0, establishing the desired result for all regular fibers as well as
singular fibers with no irreducible components belonging to I'. For any E € I', we also have
A-[E] = 1/2 > 0 since none of these components intersect each other. Now if E’ is the
other irreducible component in the same fiber with some Ey € I, then [F] - [E’] > 1 since E

necessarily contains base points, but the uniquess of the critical point in each fiber implies
[E'] - [Eo] =1, so

A-[E]=[F]-[E']-5 Y [E] - [E]>1-5 >0,



74 3. BLOWUPS AND LEFSCHETZ FIBRATIONS

and we are done.

If Mpase = &, then we instead appeal to the assumption that [F'] € Hy(M) is not torsion,
so by the nondegeneracy of the intersection product, there exists A € Hy(M) with A-[F] > 0,
and any class with this property will suffice for the regular fibers and singular fibers with only
one irreducible component. By Proposition B30, any other singular fiber now consists of two
irreducible components E; and E_ with [E4]|-[E_] =1, [E4]-[E+] = —1 and [F]-[E+] =0,
and we have

A-[Ef]+A-[E-]>0.

If either of the terms in this sum is nonpositive, we can choose the labeling so that without
loss of generality A-[E_] <0, and then it follows that

0<—-A-[E_]<A-[E4].
Choose ce R with —A - [E_] <c¢ < A-[E;], and set
A= A —c[E_] € Hy(M;R).

Now A" - [F]=A-[F] >0, A -[Ey]=A-[Ey]—c>0and A - [E_]=A-[E_]+c¢>0.
Repeating this procedure for every singular fiber eventually produces a homology class with
the desired properties. O

PRrOOF OF LEMMA [3.40] (ASSUMING 7|ps.., © Marit — Zerit BWECTIVE). Fix a closed 2-
form [ representing the cohomology class provided by Lemma 343 and fix also a neigh-
borhood Upase © M of Mypase with complex coordinates in which 7 takes the form (B.IT).
Since all closed 2-forms are cohomologous in a ball, we may choose 3 without loss of gener-
ality (after shrinking Upase if necessary) to match wgy in Upase, where the latter denotes the
standard symplectic form of C2, defined on U via the coordinates.

For every z € ¥X\Xqit, choose an area form w, on the smooth fiber M, such that the
restriction of w, to M, NUpase matches the restriction to this submanifold of wg, and § M, W =
SMZ B. Now for a sufficiently small neighborhood U, < ¥ of z, we can use a retraction of
7 1(U,) to M, to extend w, to a closed 2-form on 7~1(U,) that has these same properties for
every fiber M, with 2’ € U.,.

We next do the same trick on neighborhoods of each singular fiber. For z € ¥ and
D € My N M., fix a neighborhood U, = M of p with complex coordinates in which 7 takes
the form (B:8)). Shrinking U, if necessary, we can extend wg from U, U Upase to a closed
2-form w, on 71 (U,) for some neighborhood z € U, ¥ which restricts to every irreducible
component E of every fiber in 7~ (U.) as an area form satisfying §, w. = {, 8.

Since ¥ is compact, the open cover ¥ = | J,_yyU; has a finite subcover, which we shall
denote by

zeX

E:UL{Z.

zel

Choose a partition of unity {p, : U, — [0,1]},e; subordinate to this subcover. By construc-
tion, the 2-forms w, defined on 7~1(i4,) are cohomologous to the restrictions of 3 to these
neighborhoods, so there exist smooth 1-forms a, on 7~ (U,) satisfying

w, =B +da, onw HU,).
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Since w, and S both match wg in Upase, we may also assume without loss of generality that
o, vanishes in Upaee. Now let

wZﬁ"‘Ed((pzoﬂ)az)'

zel

This matches wg; on Upase, and at any p € M, we have dm = 0 and thus

w = Z(pz om) (B + day) = Z(pz O )Wy = Wet.

zel zel

On any smooth piece of a fiber M, we have similarly d(p, o 7)|rar, = 0 and thus

wirar, = Y (p= o) (B + daz) [rar, = Y (p= 0 Mw:|rar. >0,

zel zel

so w is a fiberwise symplectic structure. O

Finally, let us revisit the blowup and blowdown operations that were defined for Lefschetz
pencils and fibrations at the end of §3.3]

THEOREM 3.44. Assume m : M\ Myase — X is a Lefschetz pencil or fibration, p e M is ei-
ther a regular point of ™ or a base point in Myase, and T : M\Mbase — X is the Lefschetz pencil
or fibration obtained from w by blowing up M at p. Then there exist symplectic structures w
on M compatible with ™ and & on M compatible with T such that (]\7, W) is symplectomorphic
to the symplectic blowup of (M,w) along some Darboux ball centered at p.

PROOF. Consider first the case where p € Mpase, S0 7 is a Lefschetz pencil over ¥ := CP*.
The key observation is that in our proof of Theorem [3.33] we constructed a symplectic form w
compatible with 7 : M\ Mpase — CP! which matches the standard symplectic form wg; in some
choice of holomorphic coordinates near p. Indeed, by Lemma B.41] we can construct w to be
globally of the form wgy, + Ko, for some K » 0, where o, is a closed 2-form that vanishes near
Myase (see (B14))) and wgy, is a fiberwise symplectic form as in the proof of Lemma B3.40] which
was constructed in that proof to match wg near Myaee. With these choices in place, we have
a symplectic manifold (M,w) with a symplectic Lefschetz pencil 7 : M\ Mpaee — CP! and a
holomorphic symplectic embedding ¢ : (B +erWst) = (M,w) centered at p, for any R,e > 0
sufficiently small. Now use Theorem B.I3] to define a symplectic form @& on the complex
blowup M such that & is compatible with the complex structure near the exceptional divisor
E < M and matches w elsewhere, and (]\7 ,w) is symplectomorphic to the symplectic blowup
of (M,w) along 1 with weight R. Compatibility of & with the complex structure guarantees
that all fibers of 7 : M \Mbase — CP! near E are also symplectic, hence & is compatible
with 7.

In the case where p € M is a regular point of 7, the same argument works after finding
a symplectic embedding ) : (le{ﬂ,wst) — (M,w) with 1(0) = p such that, in complex co-
ordinates (z1, z2) on le% +e» TOY(21,22) = z1. This again can be extracted from the proof of
Theorem B33t indeed, writing z = 7(p), one can start by trivializing 7 over some neighbor-
hood of z in ¥\X, and use this trivialization to select a fiberwise symplectic structure wgy,
that matches dpy A dgy in some coordinates (z1,22) = (p1 + iq1,p2 + iq2) near p for which
7(21,22) = z1. We can then arrange without loss of generality for w = wg, + Ko, to have
the form K dpy A dgi + dps A dgo in this same neighborhood, so a suitable rescaling of the
z1-coordinate produces the desired result. ]
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One nice application of this result is to show that the minimal symplectic blowdown of a
symplectic 4-manifold is not generally unique. We will see in Chapter [7 that this phenomenon
can only occur in the world of rational and ruled symplectic 4-manifolds (cf. Corollary [7.9]):

PRrROPOSITION 3.45. There exist two minimal symplectic 4-manifolds that are not homeo-
morphic but have blowups that are symplectomorphic.

PRrROOF. Recall from (B.10) and (B.12) respectively the Lefschetz pencils
CPP\{[1:0:0]} - CP' and 7 : (5% x S?)\{(0,0), (o0,0)} — §? =~ CP*,

where both have fibers of genus zero, w1 has no singular fibers, and o has the two singular
fibers 7, 1 (0) and 7, ' (20), each of which has two irreducible components that are spheres with
self-intersection number 0. Both Lefschetz pencils admit compatible symplectic structures by
Theorem B.33, which are necessarily minimal since neither CP? nor S? x S2 contains any
degree 2 homology class A with A- A = —1. Now define

%1 . Ml\{p} - Cpl
from 71 by blowing up CP? at two regular points of 7 in distinct fibers; by Exercise 5.6} this

produces two singular fibers that each have two irreducible components, both spheres, one
with self-intersection 0 and the other an exceptional sphere. Define

%y 0 My\{p} — CP'
in turn from 7 by blowing up one of its base points, so 7y also has two singular fibers,
and they are of the same type as 7, again due to Exercise 3.6} see Figure If we then
regularize both of these singular fibers by blowing down the unique exceptional sphere in each

of them, we obtain a Lefschetz pencil with one base point and no singular fibers, which by
Prop. B.27] is diffeomorphic to m. This proves that 7 and 7y are diffeomorphic Lefschetz
pencils on M, = (CIP’Q#Z(CIP’ >~ (52 x Sz)#(CIP’ ~ M. Now applymg Theorem BEL we find
compat1ble symplectic structures wy on CP? , wy on 8% x S?, I on M1 and Wy on Mg such
that (Ml,wl) is a symplectic blowup of (CP? w;) and (Mg,wg) is a symplectlc blowup of
(82 x S% wy). By the uniqueness statement in Theorem [3.33] (Ml, w1) and (MQ,(.UQ) are also
symplectically deformation equivalent. After choosing a diffeomorphism to identify them as
smooth manifolds, the deformation from @; to @y gives rise via Theorem [Bl to an isotopy
of exceptional spheres and thus a symplectic deformation of the corresponding blowdowns,
hence after a further deformation of either w; or wo, we may assume that they have symplectic
blowups which are symplectomorphic. O

ExXAMPLE 3.46. For an alternative proof of the above proposition, we claim that if ¥ is
any closed oriented surface, then there exist trivial and nontrival symplectic ruled surfaces
¥ x §2 and ¥ %52 respectively which have symplectomorphic blowups. To see this, it suffices
to think in terms of almost complex blowups and their effect on Lefschetz fibrations, since
Theorem [3.44] can then be used to convert these into symplectic operations. With this un-
derstood, let M ~ (3 x SQ)#@2 denote the blowup of ¥ x S? at a point p, which admits
a symplectic Lefschetz fibration 7 : M — ¥ with exactly one singular fiber. This fiber is a
transverse union of two exceptional spheres Ey and E4, where we take E; to be the excep-
tional sphere produced by blowmg up, and Ej is the lift of the fiber in ¥ x S? through P
via the blowdown map (5 : M — ¥ x S2. Now let M denote the result of blowing down M
along Ej, so it is also a symplectic ruled surface 7 : M — . Choose sections S’ « M of m and
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5

FIGURE 3.5. The Lefschetz pencil %y : My\{p} — CP' in the proof of
Prop. B45 is obtained from Figure by blowing up one of the base points,
producing an exceptional section F.

S < ¥ x 52 of the trivial bundle such that both are disjoint from the blowup point: these then
give rise to sections S, S’ < M of the Lefschetz fibration, with S intersecting Fy but not Fjy,
and S” doing the opposite. One can check that in this situation, the self-intersection numbers
[S]-[S] and [S] - [S’] differ by an odd number (see Exercise [[.66]), so by Exercise [[14] the
fact that ¥ x S2 is the trivial bundle implies that 7 : M — ¥ is the nontrivial bundle Y% S2.
A special case of this phenomenon appeared in the proof of Proposition above: since the

blowup C]P’2#@2 is also the nontrivial rational ruled surface S2X.S?2, we have
(S2 x S2)#CTP” = (CP*#CP)#TP” =~ CP2#2CP .

One can show that whenever ¥ has positive genus, both ¥ x $2 and % S? are minimal; see
Exercise [T.7)

EXERCISE 3.47. Let Q(m) denote the space of symplectic structures compatible with a
given Lefschetz fibration or pencil 7 : M\ My,se — X, with the natural C*-topology. Adapt
the proof of Theorem B.33] to show that 7 (2(7)) = 0 for all integers k£ > 0. (We proved this
above for k = 0.)

REMARK 3.48. One can give the space Q(7) in the previous exercise the structure of an
infinite-dimensional metrizable Fréchet manifold, so a result of Palais implies that it
has the homotopy type of a CW-complex. By Whitehead’s theorem (see e.g. [Hat02]), the
exercise therefore implies that () is contractible.

REMARK 3.49. The notions of Lefschetz pencils and Lefschetz fibrations can be generalized
to dimensions greater than four, but things become much more difficult. A Lefschetz fibration
or pencil on a 2n-dimensional manifold (see e.g. [Gom04b]) has fibers of dimension 2n — 2,
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thus it is no longer a trivial question whether the fibers even admit symplectic structures,
which means there are no straightforward generalizations of Theorem [3.33] or Exercise B.47]
One can however generalize the notion of a fiberwise symplectic structure (Definition [3.30])
and show that the obvious map from the space of compatible symplectic structures to the
space of fiberwise symplectic structures is a homotopy equivalence—the caveat here is that
the latter space may be quite hard to understand in general, e.g. it could be empty, or its
homotopy type may be completely unknown. In another direction, one can consider fibration-
like objects in which the fibers are 2-dimensional but the base has dimension 2n — 2. Now the
symplectic geometry of the fibers is trivial, but one must assume more about the base—one
natural assumption is to take a standard symplectic manifold such as CP"~! for the base,
which leads to the notion of a hyperpencil. Gompf [GomO04a| has shown that a hyperpencil
always gives rise to a distinguished deformation class of symplectic forms, but it is not known
whether this result has a converse involving existence of hyperpencils in general.



CHAPTER 4

Compactness

4.1. Two compactness theorems for spaces of embedded spheres

In this chapter we prove a pair of compactness results for the moduli spaces of holomorphic
spheres that arise in our main applications. Assume (M, w) is a symplectic 4-manifold with an
w-tame almost complex structure J, and fix an integer m > 0 together with a set of pairwise
distinct points p1,...,pm € M. As in §2.1.4] for any given A € Hy(M) we shall denote by

Mom(A; T;p1, .. s Pm)

the moduli space of unparametrized J-holomorphic spheres homologous to A with m marked
points satisfying the constraint

ev(u) = (pla e apm))
where ev : Mo, (A4;J) — M™ is the natural evaluation map (see (23])). In other words,

the maps u : S2 — M representing curves in Mo, (4;J;p1,...,pm) each have a set of
distinguished points (1, ..., n € S? such that

(4.1) u(G) =p1, w()=p2 .. ullm)=DPm

Recall that the virtual dimension of Mg, (J;p1,...,pm) is, by (1),

(4.2) vir-dim Mo (A; J;p1, ..., pm) = =2 + c1(A) — 2m.

The union of these moduli spaces for all homology classes will be denoted by

Mom(Jipts--ipm) = | Mom(4; 731, pm)-
AEHQ(M)

To obtain reasonable compactness results, we will need to impose a genericity condition
on the almost complex structure. Specifically, we shall write

Je T (w;p1,--..Pm)

if J has the property that for every A € Hy(M) and every ordered set (p;,, ..., p;,.) of distinct
points in {p1,...,pm}, we have

Vir—dimMO,r(A; J;p’ilv s 7p’ir) = 0

whenever Mg (A; J;piy, ..., pi,) contains a somewhere injective curve. By the transversality
results in §2.T.4] this condition can be achieved for all J outside some meager subset of
Jr(M,w); in fact, since the virtual dimension is always even, it also suffices to have J belonging
to a generic 1-parameter family (cf. Remark [2.20]).

Our results concern the following special open subsets of the above moduli space of con-
strained holomorphic spheres.

79
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DEFINITION 4.1. Let MY . (J;p1,...,pm) © Mom(J;p1,...,Pm) denote the subset con-

emb
sisting of curves v : S — M that are embedded and satisfy

[u] - [u] =m — 1.
In the case m = 0 we’ll denote this space simply by M . (J). Similarly, define

emb

Mzmb(J;pl" .. ’pm) - MO,mU?Pl,- .. apm)

or M2, (J) = My(J) respectively to consist of curves u that are embedded and satisfy
[u] - [u] = m.

Observe that for m = 0, the images of curves ./\/lgmb(J ) are exceptional spheres. The
curves we will use in Chapter [0l to trace out the fibers of Lefschetz fibrations or pencils will be
elements of Mgmb(J iP1,---,Pm), and the singular fibers will be nodal curves with components
in spaces of the form MY, (J;pi,,...,pi, )

The subscripts in the above notation refer to the virtual dimensions of the moduli spaces:

PROPOSITION 4.2. Ifue M° ., (J;p1,...,pm), then
ci(lu]) =m+1, and  vir-dim Mg, ([u]; J;p1,...,pm) = 0.
Ifue M2, (Jip1,...,Pm), then
c(lu) =m+2, and vir-dim Mo, ([u]; J;p1,...,pm) = 2.

PROOF. Suppose u € M2, (J;p1,...,pm) and [u] = A € Hy(M). Since u is embedded,
the adjunction formula (Theorem 251]) gives

m—1=A4-4=25(u)+c1(A) — x(5?) = ¢1(A) — 2,
thus ¢;(A) = m + 1, and vir-dim Mg, (4; J;p1,...,pm) = 0 follows by ([@2)). Similarly if
ue M2 ,(J;p1,...,pm) and [u] = A, adjunction gives
m=A-A=ci(A) -2
hence ¢1(A) = m + 2, and this implies vir-dim Mg ,,,(A4; J;p1,...,pm) = 2. O

The fact that MY, (J;p1,...,pm) has virtual dimension 0 implies that for generic J, it is a
discrete space. In fact, this is true for all J due to automatic transversality, Theorem 2.46] but
there is also an easier way to prove that Mgmb(J iP1,---,Pm) is discrete, without knowledge

of transversality:

PROPOSITION 4.3. Ifu and v’ are any two distinct elements of MO, (J;p1,...,pm), then
[u] # [w'] € (M),

PROOF. Assume v and v’ are inequivalent curves but are homologous. Then they cannot
both be covers of the same simple curve, thus they have at most finitely many intersections,
and since they are forced to intersect at pi,...,pm, positivity of intersections implies the
contradiction

By a completely analogous argument, we have:
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PROPOSITION 4.4. If u and v’ are two inequivalent but homologous elements of the space
Mgmb(J;pl, ...,Dm), then they intersect only at the constraint points pi,...,pm, and those
intersections are transverse. ]

The local structure of MZmb(J D1y -, Pm) was discussed already in §22.3} in particu-
lar, the combination of Prop. 253 with Prop. {4 above implies that M2, (J;p1,...,Pm)
is a smooth 2-manifold consisting of embedded curves that intersect each other only at the
constraint points py, ..., py, and foliate an open subset of M\{p1,...,pm}. Our goal now is
to understand the global structure of Mgmb(J iP1,---,Pm), Namely its compactness or lack
thereof. As a first step, we must also study the compactness of ./\/lgmb(J iD1s- s Dm)-

The proofs of the following two theorems will occupy the bulk of this chapter. For both
statements, we fix a C®-convergent sequence of symplectic forms

WEg — Woo,
together with a corresponding C'*-convergent sequence of tame almost complex structures
Jk_)g]:)o7 JkGJT(M,wk), kZl,...,OO.

THEOREM 4.5. Assume Jy € T8 (Wi P1y---,Pm) and uy € Mgmb(Jk;pl,...,pm) s a
sequence satisfying a uniform energy bound

f upwy, < C
Wk

for some constant C > 0. Then up has a subsequence converging to an embedded curve
U € Mgmb(JDO;plv e 7pm)

This implies in particular that for any fixed generic J € J"¢(w;p1,...,Pm), any sub-
set of ./\/lgmb(J iP1,---,Dm) satisfying a given energy bound is finite. The situation for
Mgmb(J D1, -+, Pm) is slightly more complicated: we will not have compactness in general,
but we can give a very precise description of its compactification, the upshot of which is that

the only possible nodal curves look like Lefschetz singular fibers.

THEOREM 4.6. Assume Jy € J"8 (Wi P1y---,Pm) and uy € Mgmb(Jk;pl,...,pm) s a
sequence satisfying a uniform energy bound

f ujwg < C
Wi

for some constant C > 0. Then a subsequence of ux converges to one of the following:

(1) An embedded curve ug, € M2, (Jooi 1, -, Pm);
(2) A nodal curve with exactly two smooth components

0 . 0 .
V4 € Memb(!]o()apip .. )pir)a v-— € Memb(JOOapir+1) .. )pim)
for some permutation i1,...,iym of 1,....m and 0 < r < m, where vy and v_ have
exactly one intersection, which is transverse and lies in M\{p1,...,pm}.

Moreover, for any given energy bound C > 0, there exist at most finitely many nodal curves
of the second type.

Theorem says essentially that the closure

_2 R
Memb(‘]fﬁ;plv e 7pm) < MO,m(Joo)
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of Mgmb(Joo; D1, .., Pm) in the Gromov compactification is much nicer than one could a priori
expect—while a sequence of embedded holomorphic curves may in general converge to a nodal
curve with many non-embedded (e.g. multiply covered) components, this does not happen

in ﬂimb(!]om Ply---,Pm)- In order to prove the theorem, we will have to use the adjunction
formula in concert with the genericity assumption to rule out all possible nodal limits that
are less well behaved.

Given the compactness theorem, Proposition [£.4] can now be extended as follows:

PROPOSITION 4.7. Given Jy € J™8(w;p1,...,pm) as in Theorem [{.0, suppose u,v €

ﬂzmb(Jw;pl, ...y Pm) are two inequivalent (possibly nodal) curves representing the same ho-
mology class. Then u and v intersect each other only at the constraint points p1,...,Pm, and
those intersections are transverse.

PRrROOF. The case where neither v nor v has nodes has already been dealt with in Propo-
sition 4.4l using positivity of intersections. Essentially the same argument works if u is a
nodal curve and v is smooth, or if both curves are nodal but neither of the components of
u is a reparametrization of a component of v. To finish, we claim that if v and v are both
nodal curves with components (u!,u?) and (v!,v?) respectively and u! has the same image
as v', then the two nodal curves are equivalent. Indeed, suppose u! = v'. Then both of
these curves pass through a certain subset of the constraint points pi, ..., pm, and the points
that they miss must be hit by both u? and v?, so it follows that for each i = 1,2, v’ and v
hit exactly the same sets of constraint points. In particular, if m = mj + mso where u’ hits
m; constraint points for i = 1,2, then unless u? and v? are equivalent curves, positivity of
intersections implies

[w?] - [v*] = ms.
But by Theorem E8] [u'] - [u'] = m; — 1, while [u'] -

u! = v! implies

[u?] = [v'] - [v?] = 1, so the assumption

= [u'] - [u'] + [w?] - [u'] + ['] - [0°] + [u
>(my—1)+1+1+mg=m+1,

[\
—
—
<

[\
[ —

a contradiction. O

4.2. Index counting in dimension four

We will give complete proofs of Theorems and over the next three sections, be-
ginning with the unconstrained cases (m = 0) and then treating the general case in §4.4]
One fundamental piece of intuition behind both results is the notion that, generically, nodal
degenerations are a “codimension two phenomenon,” hence they should not happen at all in
a (-dimensional space, and should happen at most finitely many times in a 2-dimensional
space. The same intuition underlies the construction of the Gromov-Witten invariants (see
g7.2)), though it has some technical complications in general, as the “codimension two” claim
is not strictly true unless one can achieve transversality for all curves, including the multiple
covers. As explained in [MS12], this problem can be circumvented in any symplectic manifold
that satisfies a technical condition known as semipositivity, as multiply covered curves can
then be confined to subsets whose dimension is sufficiently small. As luck would have it, all
symplectic manifolds of dimension four and six are semipositive, but in dimension four, one
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can also proceed in a somewhat simpler manner by deriving index relations between nodal or
multiply covered curves and their simple components. We will derive such relations in this
section as preparation for proving the compactness theorems.

Suppose M is a 2n-dimensional almost complex manifold with a C*-convergent sequence
of almost complex structures J, — Jy, and we have a sequence uy € My(A; Jy,) with

UL — Uep € Mg(A; Jo),
where the stable nodal curve uy, := [(S, 7, 4o, &, A)] has connected components

{uly := [(Si, j, uly, B)] € Mg, (Aj; JOO)}z':l,...,V‘

Here, ZZV=1 A; = A, and some of the smooth curves u’, may be constant; the latter is the
case if and only if A;=0. Fori=1,...,V, let N; denote the number of nodal points on the
component ul,, i.e. Ny = |S; n Al so stability (see Definition 2.34]) implies

(4.3) X(Si) — N; <0 whenever A; =0.

Recall that nodal points always come in pairs, so one can define the integer E := %Zyzl N;.
Then uq, determines a graph with V' > 1 vertices corresponding to the connected components
ul ... ,uo‘é and E > 0 edges corresponding to the nodes. We can deduce a relation between
the numbers ¢1,...,g9y and g by observing that if ¥ denotes a surface diffeomorphic to the
domains of the curves uy, then 3 can be constructed by gluing together the components S;,

each with N; disks removed, hence

\%4 \%
(4.4) X(E) = > x(S) — Z —2E.
=1 =1

Let us define the index of a limiting nodal curve such that it matches the indices of the curves
in the sequence, i.e.

ind(uy) = ind(ug) = (n — 3)x(X) + 2¢1(A).
Since ind(ul,) = (n — 3)x(Z;) + 2¢1(4;), combining (@4) with the relation Y, 4; = A then

gives

ind(uy)

||M<

md (uly) — (n = 3)N;].

Observe that whenever u’, is a constant component, we have ind(u’,) — (n — 3)N; = (n —
3) [x(Si) — N;], where the term in brackets is negative due to the stability condition (£3]). In
particular, in dimension four, we plug in n = 2 and find the appealing relation

|4
ind(uq) :Z 1nduOO +N]

where each term in the sum corresponding to a constant component must be strictly positive.
Notice that unless uy has no nodes at all, there is always a contribution of N; > 1 from at
least one nonconstant component, and strictly more than this unless there are also constant
components, which also contribute positively in the sum. This proves:
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PROPOSITION 4.8. Suppose (M, J) is an almost complex 4-manifold and ue, is a noncon-
stant nodal J-holomorphic curve in M with connected components ul,, ... u¥, each compo-

nent u’, having N; nodal points. Then

ind(ugp) = Z [ind(ul) + N;]

{i | ul, # const}

with equality if and only if there are no constant components. In particular, we have

ind(ue) =2 + Z ind(u,)

{i | ul, # const}
unless us has mo nodes. O

One can see why such a relation might be useful when ind(uy) is small: if transversality
can be achieved for all the components u’,, then ind(ul,) = 0 will imply ind(uy) = 2 if uep
has nodes. So this rules out nodal degenerations entirely if ind(ug) = 0, and it places severe
constraints on the possible nodal curves if ind(ug) = 2.

Of course one cannot generally assume that transversality holds for all the nonconstant
components u’,: some of these might in principle be multiply covered and have negative
index, even if J is generic. Recall however that every curve covers an underlying simple curve,
which certainly will have nonnegative index for generic J, so one can still derive constraints
on ind(ul,) by understanding the index relations between a curve and its multiple covers.

Suppose again that (M, J) is a 2n-dimensional almost complex manifold, u : (X,j) —
(M, J) is a closed J-holomorphic curve with [u] = A € Hy(M), and ¢ : (£,7) — (,7) is a
holomorphic map of degree k > 1; recall that ¢ is necessarily a biholomorphic diffeomorphism
if k =1, and it is a branched cover if £ > 1, with a branch point wherever dp = 0. This gives
rise to another J-holomorphic curve

Ui=uop:(5,5) — (M,J),

with [a] =: A = kA € Hy(M). To relate ind (%) and ind(u), we will need the following relation
between x(X) and x(X):

PROPOSITION 4.9 (Riemann-Hurwitz formula). Suppose ¢ : (3,7) — (Z,j) is a noncon-
stant holomorphic map of closed Riemann surfaces, with k := deg(yp) = 1. Let Z(dy) € Z
denote the sum of the orders of the critical points of ¢, defined as the orders of the zeroes of

dpel (Hom(c (Ti, (p*TE)). Then
—X(Z) + kx(2) = Z(dp) = 0.

PROOF. The integer Z(dyp) is an algebraic count of the zeroes of a nontrivial holomorphic
section of a holomorphic line bundle, namely

~ ~\ ¥
Homg (Tz,<p*Tz> - (TE) ® *TY,
hence it computes the first Chern number of this bundle:

Z(dg) = ¢ ((Ti)* ® <p*T2> = —c (Ti> + 01 (9*T%) = —x() + deg(¢) - 1 (T'%)

= —X(%) + kx(%).



4.2. INDEX COUNTING IN DIMENSION FOUR 85

The observation that Z(dy) is nonnegative follows immediately from the fact that nontrivial
holomorphic C-valued functions on domains in C can only have isolated and positive zeroes.
d

EXERCISE 4.10. Use the Riemann-Hurwitz formula to give a new proof of Proposition 2.7]
that multiply covered J-holomorphic spheres are always covers of other spheres, never curves
with higher genus.

~ ~

Writing ind(@) = (n —3)x(X) 4+ 2¢1(A4) and ind(u) = (n — 3)x(X) + 2¢1(A), then plugging
in A = kA and Proposition .9, we find

ind(2) = kind(u) — (n — 3)Z(dyp).
This is most useful when dim M = 4, as then n = 2 implies:

PROPOSITION 4.11. Suppose u is a closed nonconstant J-holomorphic curve in an almost
complex manifold of dimension four, & = uwop is a k-fold branched cover of u for some k > 1,
and Z(dy) is the algebraic count of branch points. Then

ind(7) = kind(u) + Z(dp).
In particular, ind(@) = kind(u), with equality if and only if the cover has no branch points. O

We now combine the above results to prove a lemma that will play a key role in the
unconstrained (i.e. m = 0) cases of Theorems and The crucial assumption we need
is that all somewhere injective J-holomorphic curves have nonnegative index—this holds for
generic choices of J, and by Remark 2.20] it even holds for all J in a generic 1-parameter
family.

LEMMA 4.12. Suppose (M, J) is an almost complex 4-manifold admitting no somewhere
injective J-holomorphic curves with negative index, and uy, € Mq(A;J) is a nonconstant
stable nodal J-holomorphic sphere. If ind(uy) = 0, then uqy is a smooth (i.e. non-nodal) and
simple curve. If ind(us) = 2, then it is one of the following:

e A smooth simple curve;

e A smooth branched double cover of a simple J-holomorphic sphere with index 0;

e A nodal curve with exactly two components connected by a single node, where both
components are simple J-holomorphic spheres with index 0.

PRrROOF. By Proposition [L11] we may assume that all (not only simple) J-holomorphic
curves in M have nonnegative index. It then follows immediately from Proposition 4.8 that
if ind(ue ) = 0 then ue has no nodes, i.e. it is a smooth .J-holomorphic sphere uq, : S — M.
If usy = v o ¢ for some simple curve v : ¥ — M and branched k-fold cover ¢ : §? — X, then
Proposition [L11] implies that ¢ has no branch points, Z(dy) = 0. But by Proposition 2.7 or
Exercise .10, ¥ must also be a sphere, and the Riemann-Hurwitz formula (Proposition [£.9])
then gives

Z(dp) = —x(5%) + kx(5?) = 2k — 2,
hence 0 = Z(dyp) = 2k — 2 implies k = 1, meaning u is a simple curve.

Suppose now that ind(us) = 2 and uq, has no nodes and is a k-fold cover vop of a simple
curve v. By Proposition2.7or Exercise £.10 v must also be a sphere, so the Riemann-Hurwitz
formula gives Z(dy) = 2k — 2, and Proposition L.IT] then gives

2 = ind(ue) = kind(v) + 2(k — 1) = 2(k — 1)
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since ind(v) = 0. This implies that either & = 2 and ind(v) = 0, or uy, is simple.

Finally, suppose ind(us) = 2 and us has nodes; denote its connected components by
ul.,...,u¥. These components must all be spheres since uy has arithmetic genus 0. By
Exercise [£13] below, at least two of the nodal points must lie on nonconstant components,
so Proposition [£§] then implies that all components are nonconstant and have index 0, and
there can be at most (and therefore exactly) two of them, each with exactly one nodal point,
forming a single nodal pair. By the same argument used above for the case ind(uq) = 0, the

index 0 components cannot be multiple covers. O

EXERCISE 4.13. Suppose u := [(S, j,u, ©, A)] € Mg, (A;J) is a nonconstant stable nodal
J-holomorphic curve with arithmetic genus 0 and m marked points, such that no ghost bubble
(i.e. constant component) in u has more than one of the marked points.

(a) Show that if u has a ghost bubble, then it also has at least two nonconstant connected
components.
(b) Show that if u has a marked point ¢ € © lying on a constant component, then it also
has at least two distinct nodal points z, 2’ € A that lie on nonconstant components
and satisfy u(z) = u(2") = u(Q).
Hint: the stability condition is crucial here. Think about the graph with vertices correspond-
ing to connected components of S and edges corresponding to nodes. Since the arithmetic
genus is 0, this graph must be a tree, i.e. it cannot have any nontrivial loops.

EXERCISE 4.14. Find an alternative proof of Lemma by relating the first Chern
numbers of the nodal curve and its connected components. Note: You will probably find the
alternative argument simpler, but it is very specific to the situation at hand, while the index
counting arguments we’ve discussed in this section are more widely applicable, e.g. we will
apply them to the constrained case in §4.4), and to the definition of Gromov-Witten invariants
in 7.2

REMARK 4.15. Though we have not used any intersection theory in this section, we have
nonetheless made use of the assumption n = 2 several times. In higher dimensions, such
index relations typically do not work out so favorably, though with a bit more effort one can
still carry out similar arguments in the semipositive case, see [MS12].

4.3. Proof of the compactness theorems when m = 0

Consider J;, — Jy as in the statements of Theorems and [£.6] and assume the sequence
u belongs to MO, (Ji) or M2, (J) and satisfies a uniform energy bound. By Gromov
compactness, we may without loss of generality replace u; by a subsequence that converges
to a stable nodal Jy-holomorphic sphere uqy, € Mo(Jy). After taking a further subsequence,

we may also assume
(4.5) [use] = [ug] € Ho(M)  for all k.

The preparations of the previous section make the proof of Theorem almost imme-
diate: Lemma implies namely that if ind(ue) = ind(ux) = 0, then uy is a simple
Joo-holomorphic sphere. In light of (£3]), the adjunction formula (Theorem [Z51]) now implies
that since uy, is embedded, uq, is as well, and

[uw] - [uw] = [ur] - [ux] = -1,

80 Ugy € MO, (Jo) as claimed.
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For Theorem [L.6] we instead assume uy, € M2, (Ji), so [ug] - [ux] = 0 and ind(uy) = 2.

Lemma [4.12] now allows the following possibilities:
(1) ug is a smooth simple Jy,-holomorphic sphere;
(2) ug is a branched double cover of a simple J,-holomorphic sphere v with ind(v) = 0;
(3) ug is a nodal curve with a single node connecting two components u!, u?, both of
which are simple Jy-holomorphic spheres with index 0.

In the first case, applying the adjunction formula as in the previous paragraph shows that
Ugo € MZmb(Jgo). We claim now that the second case can never happen. If it does, then since
v is simple, it satisfies the adjunction formula

[o] - [o] = 25(0) + e1([o]) — 2 = 26(v) — 1,

where we've plugged in ¢1([v]) = 1 since ind(v) = —x(S5?) + 2¢1([v]) = 0. Its homological
self-intersection number is therefore odd. But since [uq] = 2[v], we then have

0 = [ug] - [ur] = [uc] - [uco] = 4[v] - [v] = [v]-[v] =0,

implying that zero is an odd number.

To understand the third case, we still must distinguish two possibilities: either u! and
u? are the same curve up to parametrization, or they are distinct curves that intersect each
other at most finitely many times. In the first case, we can call them both v and repeat the
homological adjunction calculation above with [us] = 2[v], leading to the same contradiction.
Thus «' and «? must be distinct curves, and since they necessarily intersect each other at a
node, positivity of intersections (Theorem 2.49)) implies

[u']- (] > 1.

They also each satisfy the adjunction formula since they are simple curves, so using [uy] =
[u'] + [u?], we find

0 = [ue] - [ueo] = [u'] - [u'] + [w?] - [w?] + 2[u'] - [u?]
=20(ut) + 1 ([u']) — 2 4+ 26(u?) + 1 ([u?]) — 2 + 2[u'] - [u?]
= 26(u') + 26(u?) + 2([u'] - [u?] - 1),

where we've plugged in c;([u’]) = 1 since ind(u’) = —x(S?) + 2¢1([u]) = 0 for i = 1,2.
Each term on the right hand side is nonnegative, therefore they are all 0, so we have §(u') =
§(u?) = 0 implying that both components are embedded, and [u!] - [u?] = 1, meaning that
their obvious intersection is the only one, and is transverse. Finally, applying the adjunction
formula again to u’ for i = 1,2 gives

[u'] - [u'] = 26(u’) + c1([u']) —2 = —1,
thus u' € MY, (J5), and the compactness statement for MY , (J,,) then implies that there

emb
are finitely many such curves satisfying the given energy bound. This completes the proof of

Theorem in the m = 0 case.

4.4. Proof of the compactness theorems with constraints

We will prove both theorems for m > 0 using essentially the same arguments as in the
previous two sections. Where the general argument seems more complicated, it is mostly a
matter of extra bookkeeping: the point is to keep track of those terms that must always be
nonnegative and show in the end that they must all be zero.
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FIGURE 4.1. An example illustrating the map M, ,,(J) — M,(J), which
deletes all marked points and then stabilizes the result by collapsing non-stable
ghost bubbles. In this scenario with g = 3 and m = 12, we have a nodal curve
with eight constant components (shown shaded in the picture), six of which
must be collapsed in order to define a stable curve without marked points.

As in the statements of the theorems, we assume pi,...,p, € M are pairwise dis-
tinct points and the limiting almost complex structure J,, = limy J; belongs to the subset
T8 (weo; 1y - - - s Pm ), which will prevent the existence of somewhere injective Jo,-holomorphic
curves lying in constrained moduli spaces of negative virtual dimension, with any subset of
{p1,...,pm} taken as constraints. Given a sequence uy of curves in Mgmb(Jk;pl, ey Pm) OT
Mgmb(Jk; P1,.-.,Pm) that satisfy a uniform energy bound, we can apply Gromov compactness
to replace uy by a subsequence of curves representing a fixed homology class [uy] € Ho(M)
and converging to a stable nodal curve uq, € Mo,m(Joo).

We will first use the index relations of §.2]to deduce as much as possible about u. Recall
from §2.T.4] that whenever pi,...,p, are distinct points in an almost complex 4-manifold
(M, J), the index of a constrained J-holomorphic curve u € My p,(J;p1, ..., pm) is related to
the virtual dimension of the constrained moduli space by

vir-dim Mg o, ([u]; J;p1, - . -, pm) = ind(u) — 2m.

In the situation at hand, it will be convenient to consider the nodal curve U, € WO(JOO)
defined by deleting the marked points from ue € Mo m(Jx) and then stabilizing, i.e. we
operate on uy with the natural map

Mo.m(Jo) = Mo(Jo0).

This map is defined by deleting all marked points and then “collapsing” any ghost bubbles
(i.e. constant spherical components) that become unstable as a result, so Uy has all the
same nonconstant components as u, but retains only those constant components for which
the stability condition is satisfied (see Figure LT]). Notice that ue, and Uy have the same
arithmetic genus and represent the same homology class, so ind(uy) = ind ().
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Suppose 1y has connected components ul,, ... ,u%, and N; denotes the number of nodal

points on ul, for i = 1,...,V. In light of the marked point constraints on us, each of the
points p1,...,pm, is in the image of some (not necessarily unique) nonconstant component
of Uy; note that marked points of uy can appear on constant components, but whenever
this happens, there is also a nonconstant component that maps a nodal point to the same
constraint point. We can therefore choose integers m; > 0 with ZY:1 m; = m and m; =
0 whenever u!, is constant, such that each nonconstant component u?, lifts to a curve in
Mo.m; (Jo) that maps its m; marked points to distinct points in {p1,...,py}. In this case, ul,
can be regarded as belonging to a moduli space of Jy-holomorphic spheres with m; constrained
marked points, which has virtual dimension ind(u’,) — 2m;. By Proposition B8] these virtual
dimensions are related to vir-dim Mo, ([tw]; Joo; P1s - - - s Pm) = ind(uyp) — 2m € {0,2} by

(4.6) ind(ue) — 2m > Z [ind(uy) — 2m; + N;],

{i | ul, # const}
with equality if and only if U has no constant components. If uéq is a nonconstant component,
then u!, = v' o ¢; for some simple Jy-holomorphic sphere v* and holomorphic map ¢; :
S?2 — S2 of degree k; > 1, and since the constraint points are all distinct, ¢; maps the
m; chosen marked points of u, to distinct points in the domain of v'. We can therefore
also regard v* as a curve with m; constrained marked points, so the genericity assumption
Joo € T8 (W P1,y - - - » D) implies

ind(v?) — 2m; = 0.
By Proposition 1Tl and the Riemann-Hurwitz formula (Proposition [£9]), it follows that

ind(ul,) — 2m; = k; ind(v*) + Z(dp;) — 2m;
(4.7) = k; [ind(v") — 2m;] + 2(k; — 1) + 2m;(k; — 1)
=k; [ind(vi) —2m;| + 2(m; + 1)(k; — 1).

Combining (4.0) and ([@7), we now have
(4.8) ind(ue) — 2m > Z (k; [ind(v") — 2m;] + 2(my + 1)(k; — 1) + N;)

{i | ul, # const}

where the summands on the right hand side are sums of three nonnegative terms, and equality
is achieved if and only if %, has no constant components. If u; € Mgmb(Jk; Ply---,Pm), then
ind(us) —2m = 0 and we conclude that @y has no nodes and is a simple curve. This does not
immediately imply the same for uq,, which may in principle be a nodal curve with only one
nonconstant component and additional ghost bubbles that become unstable when marked
points are removed. Observe however that since all the constraint points are distinct, no
ghost bubble can have more than one marked point. It then follows from Exercise [£.13] that
Uy does not have any ghost bubbles, so we’ve proved:

LEMMA 4.16. If uy, € MO, (Jiip1,---,Pm), then uy is a smooth simple Jo-holomorphic
sphere. O
Since curves uj, € M2, (Ji;p1,...,pm) are embedded, the adjunction formula implies

that the simple curve uy of Lemma is also embedded, and in this case
[uce] - [ue] = [ur] - [ux] =m —1,

80 Ugy € MO 1 (Jooip1, - - -, Pm) and the proof of Theorem is complete.
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When uy € M2, (Jo;p1, - - -, pm), the left hand side of J) is 2. If Uy, has nodes, then
Exercise {.13] implies >, N; > 2, thus equality in (4.8]) is achieved, there are no constant
components, there are exactly two nonconstant components u!, and u2, connected by a single
pair of nodal points, and they satisfy

(4.9) k1 =ke =1, ind(ul,) — 2my = ind(uZ) — 2msy = 0.

Putting back the original marked points, u, may in principle have additional ghost bubbles,
but if this happens, then since each ghost bubble can have at most one marked point, Exer-
cise 13 implies that ul, and u2, each map their nodal points to one of the constraint points
P1,...,Pm. At least one of these constraints was not accounted for when we used genericity
to deduce ind(u’,) — 2m; > 0; putting in the extra constraint, we find a component u’, that
actually satisfies

ind(u’,) — 2(m; +1) = 0.

This turns (L8] into a strict inequality and thus gives a contradiction. It follows that us, also
has exactly two components ul, and u2, both nonconstant and simple. The m marked points
are distributed among the two components at points separate from the node, so we can say
ul, and u% have m) and m) constrained marked points respectively, where m/} + m} = m.
Since both are simple and J € J™8(we; 1, - - -, Pm), We have ind(u’,) — 2m} > 0 for i = 1,2,
which implies in light of (@3] that m; — m/ and mg — m}, are both nonnegative. But since
my + mg = m} + mby = m, this implies m; = m} and mg = m),.

Suppose next that 4, has no nodes. Applying Exercise 13| again with the fact that
no ghost bubble of u, can have more than one marked point, this implies that uy, is also
a smooth curve with no nodes. If uy, = v o ¢ for a simple curve v and a holomorphic map
¢ : 5% — 82 of degree k = 1, then (48] now reduces to

2 = ind(ug) — 2m = k[ind(v) — 2m] + 2(m + 1)(k — 1),
so either k =1, or £ = 2 and m = 0. We’ve proved:

LEMMA 4.17. If ug € Mzmb(Jk;pl, .oy Pm), then uy is one of the following:

(1) A smooth simple curve;

(2) A smooth branched double cover of a simple J-holomorphic sphere with index 0 (aris-
ing only in the case m = 0);

(8) A nodal curve with exactly two components connected by a single node, where the two
components u' and u? are simple J-holomorphic spheres with mi and mo marked
points respectively, such that ind(u’) = 2m; fori =1,2.

0

The second possibility was ruled out already in our proof for the m = 0 case, see 43| If
the first possibility occurs, then the adjunction formula implies as usual that uy, is embedded,
so we conclude 1y, € Mgmb(Joo;pl, ce s Dm)-

In the third case, we can first rule out the possibility u! = u2. Indeed, since both curves
satisfy ind(u’) = 2m;, our genericity condition implies that neither can pass through any of the
constraint points py, . .., pn, anywhere other than at its m; marked points. Since the constraint
points are all distinct, this permits u' = u? only if m; = my = 0, in which case it was already
ruled out in §231 Now assuming u! # u2, note that since ind(u’) = —x(S?) + 2¢1 ([u?]) = 2m;,
we have ¢;([u']) = m;+1 for i = 1,2. Let us compute [usp] - [us] —m, applying the adjunction
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formula to each of u! and u?:
0= [ue] - [uw] =m = ([u']- [u'] = m1) + ([u®] - [u®] = m2) + 2[u'] - [u?]

= 20(u') + (ex([u']) = ma) = 2+ 26(u?) + (e ([u?]) = ma) =2+ 2[u'] - [u?]
= 26(u’) + 26(u?) + 2([u1] u?] - 1).

We conclude 6(u') = 6(u?) = 0 and, since u! and u? have at least one intersection due
to the node, [u!] - [u?] = 1, implying that both are embedded and they have exactly one
intersection, which is transverse. The node is necessarily disjoint from the marked points on
both curves, so since both are embedded and disjoint everywhere else, the intersection point
lies in M\{p1,...,Pm}-

Finally, we observe that in the nodal curve uy, the smooth components u’ for i = 1,2
each belong to spaces of the form Mgmb(Jgo; Djrs- - pjmi) since the adjunction formula now
gives A A A ‘

[u'] - [u'] = 26(u') + 1 ([w']) —2 = m; — 1.
They also satisfy the energy bound

f(ul)*wgo < f[ ]woo < limsupfu};wk. < C,
U

thus Theorem implies that the space of all such curves that can appear in the limit of uy
is compact. By Proposition £3] it is also discrete, and thus finite. This completes the proof
of Theorem






CHAPTER 5

Exceptional Spheres

5.1. Deforming pseudoholomorphic (—1)-curves

In this chapter, we complete the proofs of Theorems[Bland [CJregarding exceptional spheres
and the symplectic blowdown. The following is the main technical result behind both of these.
We shall follow the convention of saying that any given result is true for “generic” J in some
particular space of almost complex structures if it is true for all J outside some meager subset

of that space (cf. §2.1.3)).

THEOREM 5.1. For any closed symplectic 4-manifold (M,w) and generic J € J;(M,w),
every exceptional sphere E — (M,w) is isotopic through symplectically embedded spheres to
the image of a unique J-holomorphic sphere.

Moreover, suppose {Ws}se[o,l] 18 a smooth 1-parameter family of symplectic structures
on M and J € J-(M,wo). Then for generic families {Js}se[0,1] € Tr(M,{ws}) with Jo = J,
every embedded Jy-holomorphic sphere ug whose image is an exceptional sphere in (M, wy)
extends to a smooth family {us} of embedded Js-holomorphic spheres for s € [0,1].

PRrROOF. The uniqueness part of this statement is an immediate consequence of positivity
of intersections: if J € J;(M,w) and u; and uy are two distinct J-holomorphic curves both
homologous to an exceptional sphere E — (M,w) then we get the contradiction:

0< [ul] . [’U,Q] = [E] . [E] = —1.

Note that a curve homologous to E also cannot be a multiple cover, since any homology class
satisfying A - A = —1 must be primitive.

Now, fix a generic J € J,(M,w) and suppose E < (M,w) is an exceptional sphere. We
can then choose (by Proposition 22]) a tame almost complex structure Jy € J-(M,w) that
preserves the tangent spaces of F/, which means F is the image of an embedded Jy-holomorphic
sphere

Up - SQ — M.
One cannot expect Jy chosen in this way to be generic in any sense (see Remark below),
but it turns out that ug is Fredholm regular anyway. Indeed, since [E]-[E] = —1, the normal
bundle of E has first Chern number —1 and thus

c1([uo]) = er([E]) = x(E) -1 =1,
so the index of ug is
ind(uo) = -2+ 201([U0]) = 0.

Since this is strictly greater than 2g —2 = —2 and wg is an immersed curve in a 4-dimensional
manifold, ug satisfies the criteria for automatic transversality (Theorem [2.44] or 2.40]).

Now extend Jy to a smooth 1-parameter family {Js}seo,1] with J1 = J. The uniqueness
argument above implies that for each s € [0,1], there is at most one curve in My ([E]; Js).

93
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Moreover, the adjunction formula implies that such a curve u € My ([E]; Js) must be embed-
ded: indeed, it is somewhere injective since E is a primitive class, and since [E] - [E] = —1
and c1([E]) = 1, we have

—1=[u] - [u] = 26(u) + c1([u]) — x(5%) = 26(u) — 1,
hence d(u) = 0. Finally, u must also be Fredholm regular since it is immersed and ind(u) =

—2 + 2¢1([u]) = 0 > 2¢g — 2, so Theorem [2.44] (or [2.46]) applies. It follows (by Theorem 2.15])
that if we define the parametric moduli space

Mo([E]; {Js}) := {(s,u) | s €[0,1], ue Mo([E]; Js)},
then the projection
(5'1) Mo([E], {Js}) - [0’ 1] : (S,U) — 38

is a submersion.

We now need to show that Mo([E];{Js}) is compact: if that is true, then it follows
that (B.)) is a diffeomorphism and thus that there exists a (unique) curve u; € Mo([E]; J1),
which is isotopic to uy through a family of embedded curves us € My([E]; Js). To achieve
compactness, we first make a generic perturbation of the family {Js}sjo,1) for s € (0,1),
i.e. keeping Jy and Jp fixed. Then for all s € (0,1), we may assume there exist no somewhere
injective Jg-holomorphic curves v with ind(v) < —1, and since the index is always even
(cf. Remark [2.20)), this implies in fact that all such curves satisfy ind(v) > 0. The same is also
true for s = 1 since we assumed J; generic to start with. Now in the notation of Chapter [,
we have J; € J"8(ws) for every s € (0,1], so Theorem applies and we conclude that
Mo([E],{Js}) is compact.

The proof of the second statement is the same: given a family of symplectic forms
{ws}seo,1) and J € J-(M,wp) with a Jo-holomorphic exceptional sphere ug, for a generic
family {Js} € J-(M,{ws}) with Jy = J, the same argument implies that the moduli space
Mo([uo]; {Js}) is smooth and diffeomorphic to [0, 1] via the projection (s,u) — s, and every
curve in this space is embedded. O

REMARK 5.2. The following technical point is sometimes misunderstood: given a sym-
plectically embedded surface S  (M,w), one cannot generally assume that a tame almost
complex structure preserving T'S can be chosen to be “generic” in the usual sense. One can
easily see this from the example (M,w) = (5? x 5,4, 01 @ 02) where 3 is a surface with genus
g = 0 and 01 and o9 are area forms. If J is any almost complex structure for which one of
the surfaces {point} x X, is the image of an embedded J-holomorphic curve, then this curve
has trivial normal bundle, so its first Chern number is x(¥3,) and thus its index is

—x(Zg) +2x(2g) =2 —29.
This is fine if g = 0, and in this case the curve in question satisfies the criteria for “automatic”
transversality (Theorem [ZZ4]). But if g > 2, then the index is negative, which means that the
curve could not exist if J were generic—indeed, it will disappear if J is perturbed generically.

The above remark demonstrates that the use of automatic transversality in our proof of
Theorem [B.1] above was crucial: it allowed us to find a generic almost complex structure for
which any given exceptional sphere can be regarded as a holomorphic curve, though this is
not possible for arbitrary symplectically embedded surfaces. Since it will be useful in several
other proofs, let us state a more general lemma on this subject. Notice that all the “generic”
subsets of J-(M,w) we’ve considered, even those which depend on a choice of constraint points
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P1,---,Pm, are invariant under all symplectomorphisms that fix the constraint points. This
follows from the observation that if ¢ : (M,w) — (M,w) is such a symplectomorphism and
J € J;(M), then composition with ¢ induces an obvious one-to-one correspondence between
spaces of J-holomorphic curves and ¢* J-holomorphic curves satisfying the constraints.

LEMMA 5.3. Asssume (M,w) is a symplectic 4-manifold, p1,...,pm € M are pairwise
distinct points for m = 0, and Sy,...,Sr < (M,w) is a collection of pairwise disjoint sym-
plectically embedded spheres, each sphere S; containing m; = 0 of the points p1,...,Dm, such
that

[SZ']'[SZ']ZWLZ‘—L fori=1... k.
Suppose J' is a dense subset of J;(M,w) that is invariant under symplectomorphisms that
fix p1,...,pm, i.e. for any such symplectomorphism ¢ : (M,w) — (M,w), J € J' if and only
if p*J € J'. Then there exists a J € J' with J(T'S;) =TS; for everyi=1,.... k.

PRrROOF. To simplify the notation, we consider only the case where k = 1, so S < (M, w)
is a single symplectically embedded sphere passing through the points pi,...,p, but not
through p, 11, ..., Pm, wherem’ = 0 and [S]-[S] = m'—1. We can then choose Jy € J, (M, w)
such that S is the image of an embedded Jy-holomorphic sphere ug € Mg/ (Jo: 1, - - -, Prr)-
The normal bundle of this curve has first Chern number equal to [S] - [S], thus

c1([uo]) = x(8%) + [S]-[S] = 1+,
and we have

ind(ug) = —x(S?) + 2¢1 ([ug]) = 2m’.
Then wug satisfies the hypotheses for automatic transversality (Theorem 2.46]) and is thus
Fredholm regular for the constrained problem. It follows that for any J € J,(M,w) in some
C®-small neighborhood of Jy, there exists a curve u € Mg/ (J;p1,...,ppy) that is cor-
respondingly C®-close to ug. Extend Jy to a smooth path of almost complex structures
{Js}sefo,1] that are C®-close to Jo in this sense, with J := J; € J'; the latter can be arranged
since J' < J;(M,w) is dense. This extends ug to a smooth family of constrained pseudo-
holomorphic spheres {us € Mo (Js;P1, - - Pm)}sef0,1], Which we may assume without loss
of generality are all disjoint from p,,741, ..., Pm. The images S of the curves u, are therefore
a smooth family of symplectically embedded spheres that pass through pq,...,p, s but miss
D/ +15 - - - s Pm, SO there exists a smooth family of symplectomorphisms ¢s : (M,w) — (M,w)
fixing p1, ..., pm with ¢g = Id and ¢4(S) = Ss. Now ¢iJ € J' is an almost complex structure
with the desired properties.

The case of multiple disjoint spheres can be handled in the same way: the key point is
that Jy can be chosen to make all of them simultaneously holomorphic and (automatically)
Fredholm regular. n

5.2. Proofs of Theorems [Bl and
We now restate and prove Theorem [Bl

THEOREM 5.4. Suppose M is a closed connected 4-manifold with a smooth 1-parameter
family of symplectic structures {w8}56[0,1]7 and E1,...,E, © M is a collection of pairwise dis-
joint exceptional spheres in (M,wq). Then there are smooth 1-parameter families of embedded
spheres EY, ..., Ej < M for s e [0,1] such that

e E)=FE; fori=1,...,k;
o For every s € [0,1], Ef n ES =& fori# j;
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o For every se [0,1] and i =1,....k, E? is symplectically embedded in (M,ws).
In particular, (M,wq) is minimal if and only if (M,w1) is minimal.

PROOF. Since the spheres Ei,...,E, < (M,wp) are all symplectically embedded and
pairwise disjoint, we can choose Jy € J,(M,wp) such that each is the image of an embedded
Jo-holomorphic sphere

uiEMQ([EZ‘];J()), i:1,...,k}.
Now extend Jy to a smooth l-parameter family {Js} € Jr(M,{ws}) which is generic for
s € (0,1]. By Theorem [5.], the curves u; now extend to smooth families uf € Mo([E;]; Js)
for s € [0,1], and since [E;] - [E;] = 0 for i # j, positivity of intersections guarantees that
the images of u; and uj for i # j are disjoint for all s € [0,1]. The desired families of
symplectically embedded spheres can therefore be defined as the images of the curves u;. [

Finally, Theorem [(] claimed the following.

THEOREM 5.5. Suppose (M,w) is a closed symplectic 4-manifold and Ey,...,E, ¢ M
is a mazximal collection of pairwise disjoint exceptional spheres. Then the manifold (My,wp)
obtained by blowing down (M,w) at all of these spheres is minimal.

PROOF. By assumption, (M,w) is the symplectic blowup of (M, wy) along some collection

of pairwise disjoint symplectic embeddings
k

H(B;l{i+57wst) - (M(),(,do),

i=1
where R; > 0 is the weight of the blowup producing the sphere E; (cf. Definition B.7). Now
for every 7 € (0,1], define (M7,w") as the symplectic blowup of (Mp,wp) along the same
collection of Darboux balls but restricted to shrunken domains of radius 7 - (R; + €) and with
weights 7R;. By Theorem B8] these blowups are all symplectically deformation equivalent
to (M,w), and they all contain Ej,..., E} as exceptional spheres, with symplectic areas that
vary with 7.

If (My,wp) is not minimal, then it contains an exceptional sphere E. Since being sym-
plectically embedded is an open condition, we can assume after a small perturbation that
FE does not intersect the centers of any of the Darboux balls above. Then F is also disjoint
from the balls of radius 7 - (R; + ¢€) for any 7 > 0 sufficiently small, and it thus survives
the blowup with weights 7R; to define an exceptional sphere in (M7,w”) that is disjoint
from E1,..., E,. Now by Theorem [5.4], the pairwise disjoint collection of exceptional spheres
Ei,...,E,E c (M",w") is isotopic to a similar collection EY,...,E|,E' < (M,w). Us-
ing Lemma [5.3] choose a generic J € J,(M,w) for which Ey,..., Ey are all J-holomorphic.
Then by Theorem B, E’ is symplectically isotopic to a unique J-holomorphic exceptional
sphere, and positivity of intersections implies that this sphere is disjoint from each of the
J-holomorphic spheres E; since [E'] - [E;] = [E] - [E;] = 0. This contradicts the assumption
that Fq,..., E} is a maximal collection. ]



CHAPTER 6

Rational and Ruled Surfaces

In this chapter we shall prove Theorems[A] [D] [El and [Eland sketch the proof of Theorem [Gl
The easiest path is to start with the last two and then prove the others as corollaries.

6.1. Proofs of Theorems [F] and
Theorem [[] stated the following.

THEOREM 6.1. Suppose (M,w) is a closed and connected symplectic 4-manifold that con-
tains a symplectically embedded 2-sphere S < (M,w) with

m:= [S]-[S] = 0.

Then for any choice of pairwise distinct points p1,...,pm € S, (M,w) admits a symplectic
Lefschetz pencil with base points p1,...,pm (or a symplectic Lefschetz fibration if m = 0),
i which S is a smooth fiber and no singular fiber contains more than one critical point.
Moreover, the set of singular fibers of this pencil (or fibration) is empty if and only if m € {0, 1}
and (M\S,w) is minimal.

PROOF. Given S c (M,w) as stated in the theorem, choose any set of pairwise distinct
points
Ply...,Pm € S.
Lemma [53] then provides an almost complex structure J € J.(M,w) such that S is the
image of an embedded J-holomorphic sphere ug and J also satisfies the genericity criterion
of Theorem for the chosen points p1,...,pm.- Now ug can naturally be regarded as an
element of the space of embedded constrained curves

up € M2, (J5p1,- .o Pm)

that we studied in Chapter [l
Let Mg(J) denote the connected component of M2 _, (J;p1,...,pm) containing ug. Since
the curves in this space are all homologous, they all have the same energy

E(u) = fu*w — ([w].[S].

Thus by Theorem .6, Mg(J) is compact except for finitely many nodal curves, each of
which consists of two embedded curves intersecting once transversely, and Proposition (4.7
guarantees that these nodal curves are disjoint from the curves in Mg(J) and from each

other except for their forced intersections at the points p1,...,pm. Let
Ec M\{p1,...,pm}
denote the set of points separate from p1,...,p, that are in the image of one of these nodal

curves. This is a union of finitely many embedded connected surfaces. Now let

M() C M\({pl,... 7pm} U E)
97
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denote the set of all points separate from p1, ..., p,, and = that are in the image of any curve in
Mg(J). This is an open subset of M\ ({p1,...,pm} U Z) due to the implicit function theorem
(Proposition 2.53]). It is also closed by the compactness result for Mg(J), i.e. Theorem
indeed, if p € M\ ({p1,...,pm} U E) is in the closure of My, then there exists a sequence
up € Mg(J) whose images contain points in M\ ({p1,...,pm} U E) converging to p, and
this sequence cannot have any subsequence converging to a nodal curve in =, thus it has a
subsequence converging to a curve in Mg(J), implying p € My. But since E is a subset of
codimension 2, the space M\ ({p1,...,pm} U E) is connected, and we conclude

MQ = M\({pl,...,pm} UE)

Now let Mg(J) denote the closure of Mg(J) in the Gromov compactification: it is
obtained from Mg(J) by adding the finite set of nodal curves whose images form the subset =.
The above argument shows that every point in M\{p1,...,pn} is either in = or in the image
of a unique curve in Mg(J). Since E has finitely many connected components, each of which
is the union of two embedded J-holomorphic curves intersecting transversely and positively
at a single node, the result is a foliation of M with a finite set of singular points consisting
of the constraint points pi,...,p, and the nodes in =. Note that while Mg(J) is naturally
a smooth oriented manifold, Mg(.J) at this stage is only a compact topological space, with
no natural smooth structure, but we can now use the foliation to assign one to it. Indeed,
for a given nodal curve ug € Mg(J), one can choose a 2-disk D = M\{p1,...,pm} whose
center intersects ug transversely at one of its smooth points, and then use D to parametrize
a neighborhood of ug in Mg(J) via the intersections of nearby curves with D. This makes
Ms(J) into a closed oriented surface, and there is also a smooth map

7 M\{p1,. . pm} — Ms(J)

taking each point p to the unique (possibly nodal) curve in Mg(J) with p in its image.
Since all curves in Mg(.J) are tangent to J-complex subspaces and their intersections at the
constraint points are transverse, each constraint point admits a neighborhood in which 7 can
be identified with the standard local model ([B.I1)) for the base point of a Lefschetz pencil.
Appendix[Alshows similarly that each node has a neighborhood identifiable with the standard
local model (B.8)) for a Lefschetz critical point, hence 7 is the desired Lefschetz pencil if m > 0,
or Lefschetz fibration if m = 0. Note that if m > 0, we can conclude that Mg(J) = CP!,
and an explicit diffeomorphism is defined by choosing an isomorphism of (T, M, J) to (C?,7)
and associating to any curve u € Mg(.J) its tangent space at py, which is a complex line in
(T, M, J) and thus defines a point in CP'.

We now consider under what circumstances this Lefschetz pencil might have no singular
fibers. If m > 2, Proposition B.3Tlimplies that there must be singular fibers. If m = 0, then the
singular fibers provided by nodal curves in Mg(.J) consist of pairs of embedded .J-holomorphic
spheres disjoint from S that each have self-intersection —1. When m = 1, singular fibers have
one component with self-intersection —1 and another that has self-intersection 0 and satisfies
a marked point constraint. In either case, no singular fibers can exist if (M\S,w) is minimal.
Conversely, if there is an exceptional sphere F < (M\S,w), then Theorem [B.]] implies that
E is homologous to an embedded J-holomorphic sphere ug : S — M. Since [E] - [S] = 0,
positivity of intersections then implies that ug either is disjoint from all of the curves in
M ;(S) or has identical image to one of them. The latter is impossible since [E] - [E] = —1
and [S] - [S] = 0, thus there must be a singular fiber that contains F. O
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EXERCISE 6.2. Show that if m > 0, the map Mg(J) — CP! defined above by associating
to each curve its tangent space at p; really is a diffeomorphism.

EXERCISE 6.3. The proof above shows not only that a Lefschetz pencil exists, but also
that its fibers are all J-holomorphic for a particular choice of almost complex structure J €
Jr(M,w). We can now prove Theorem [G] as follows:

(a) Given any smooth 1-parameter family of symplectic forms {ws}e[o,1] With wo = w,
choose a generic homotopy {Js}se[o,l] of w-tame almost complex structures with
Jo = J, and show that the moduli spaces of Jy-holomorphic curves produced in the
proof of Theorem extend to smooth families of moduli spaces of Js-holomorphic
curves which are diffeomorphic for all s € [0,1]. Hint: we used the same type
of argument in the proof of Theorem [5l The genericity of {Js} is needed for
the compactness results in Chapter [4, but you will also need to apply automatic
transversality to ensure that the deformation is unobstructed for all s € [0, 1].

(b) Use positivity of intersections to show that for any J € J.(M,w) and any m +
1 distinct points in the above setting, there is at most one J-holomorphic curve
homologous to the fiber and passing through all m + 1 of the given points.

As was mentioned in the introduction, Theorem [Glhas an especially useful corollary for the
case (M,w) = (CP?, wpg), but one must first remove the word “generic” from the statement:

LEMMA 6.4. For (M,w) = (CP? wrs) with [S] - [S] = 1, Theorem [@ holds without any
genericity assumptions.

PRrROOF. The relevant moduli spaces of embedded J-holomorphic spheres satisfy automatic
transversality, so their smoothness does not depend on genericity. In Exercise above,
genericity is only needed in order to apply the compactness results of Chapter [, which require
excluding holomorphic spheres in moduli spaces of negative virtual dimension that could
potentially appear in nodal curves. For the situation at hand, we have a single fixed marked
point constraint p € CP? and must in particular restrict to almost complex structures J €
J,(CP?, wpg) with the property that any moduli space of the form Mg (A;J) or Mg 1(4;J;p)
for A € Ho(CP?) has nonnegative virtual dimension if it contains a somewhere injective curve.
We claim that that is true for all J € J,(CP? wpg). This results from the fact that Ho(CP?)
is especially simple: any A € Hy(CP?) is of the form A = d[CP!] for some d € Z, and any
nonconstant curve u € Mg, (A) must then satisfy

0 < [uturs = (lurs), 4 = d{lwrs], [P
which is true if and only if d > 0. Since the generator [CP!] satisfies [CP'] - [CP!] = 1 and is
represented by an embedded sphere, we deduce also
ca1([CP']) = x(8%) +1 =3,
thus whenever A = d[CP!] with d > 0, we have
vir-dim Mg (A4; J) = —x(S?) + 2¢1(d[CP']) = —2 + 6d > 4,

and
vir-dim Mo 1 (4; J;p) = —x(S?) + 2¢1 (d[CP']) =2 = —2 4 6d — 2 > 2.

With this understood, compactness holds for all J € J,(CP? wrg) and the rest of the proof
of Theorem [Gl goes through as before. O
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Since the choice of base point p € S ¢ CP? in Theorem is arbitrary, application of
Theorem |Gl to ((C]P’z, wrs) now implies the following useful result of Gromov:

COROLLARY 6.5. For any tame almost complex structure J on (CP? wgs) and any two
distinct points p1,ps € CP?, there is a unique J-holomorphic sphere homologous to [(CIP’I] €
Hy(CP?) passing through py and py, and it is embedded. O

6.2. Proofs of Theorems [A] [D] and [El
We next prove Theorem [Al

THEOREM 6.6. Suppose (M,w) is a closed and connected symplectic 4-manifold containing
a symplectically embedded 2-sphere S < M with

[S] - [S] = .

Then (M,w) is either (CP?, cwys) for some constant ¢ > 0 or a blown-up symplectic ruled
surface.

PROOF. The first step is to show that under the assumptions of the theorem, (M, w) also
contains a symplectically embedded 2-sphere S’ « M with

[S]-[9'] € {0,1}.

We argue by contradiction: let m denote the smallest integer that occurs as the self-intersection
number of a symplectically embedded sphere S < (M,w), and assume m > 2. Theorem [F]
then gives a symplectic Lefschetz pencil

7 M\{p1,...,pm} — CP!

which has S as a fiber. By Proposition 3311 this pencil must have at least one singular fiber.
The singular fibers provided by Theorem [[] each have exactly two irreducible components,
and by Lemma [B:29] each of these components is a symplectically embedded sphere E < M
with
[E]-[E] = -1+,

where b is the number of base points in . Since the total number of base points is positive, this
means there exists an irreducible component of a singular fiber satisfying E-F € {0,...,m—1},
which contradicts the initial assumption.

Let us now proceed assuming without loss of generality that S < (M, w) satisfies [S]-[S] =
m € {0,1}. If m = 0, then Theorem [[] gives a symplectic Lefschetz fibration

T M —>X

over some smooth, oriented closed surface X, diffeomorphic to a certain compactified moduli
space of embedded holomorphic spheres homologous to S. The singular fibers consist of
pairs of exceptional spheres intersecting transversely, so blowing down one component in
each singular fiber produces a smooth symplectic fibration by spheres, i.e. the blowdown is a
symplectic ruled surface.

If m = 1, then Theorem [[] instead produces a symplectic Lefschetz pencil

™ : M\{p} — CP',
in which each singular fiber has one irreducible component that is an exceptional sphere.

Blowing down each of these to get rid of all the singular fibers, the resulting symplectic
manifold (M’,w’) is diffeomorphic to CP? by Proposition[3:270 Moreover, since w’ is symplectic
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on the fibers of the pencil, Theorem B33l implies that after identifying M’ with CP?, w’ can be
deformed to the standard symplectic structure wrg through a 1-parameter family of symplectic
forms. Now since HgR((C]P’Q) has only a single generator, one can also rescale wrg and all the
symplectic forms in this deformation to make them cohomologous, and then Moser’s stability
theorem implies that w’ and cwpg are isotopic for a suitable constant ¢ > 0. U

An important ingredient in proving Theorem [El is the following easy extension of Propo-
sition

EXERCISE 6.7. Suppose (M,w) is a symplectic 4-manifold and Sy, So € M are two sym-
plectically embedded surfaces that intersect each other transversely and positively. Then
there exists an w-tame almost complex structure J preserving both 7'S; and T'S5s.

We now prove Theorem [EL

THEOREM 6.8. Suppose (M,w) is a closed, connected and minimal symplectic 4-manifold
containing a pair of symplectically embedded spheres S1, Sy < (M,w) that satisfy [S1]-[S1] =
[S2] - [S2] = 0 and have exactly one intersection with each other, which is transverse and
positive. Then (M,w) admits a symplectomorphism to (S? x S%, 01 ® 02) identifying Sy with
{S%} x {0} and Sy with {0} x S%, where 01,09 are any two area forms on S such that

f Ul-zf w fori=1,2.
S2 Si

ProoOF. By Exercise 6.7, we can choose Jy € J.(M,w) such that S; and Sy are both
images of embedded Jyp-holomorphic spheres u; and wug respectively. It is not obvious whether
such an almost complex structure can be chosen to be generic, but as usual we can get around
this using automatic transversality: since u; for ¢ = 1,2 both have trivial normal bundles, they
both have ¢;([u;]) = 2 and thus ind([u;]) = =2 + 2¢1([wi]) = 2 > 29 — 2, so after perturbing
Jo to a generic J € Jr(M,w) there exist embedded J-holomorphic spheres v} and u} close
to u; and ug respectively. Repeating the argument of Theorem [F] for the case m = 0, these
two curves generate two compact families Mg, (J) and Mg, (J) of embedded J-holomorphic
spheres homologous to [S1] and [S3] respectively. The compactness of these spaces follows
from the assumption that (M,w) is minimal, as any nodal curve would necessarily contain a
J-holomorphic exceptional sphere. Thus the Lefschetz pencil of Theorem [E] becomes in this
case a pair of smooth fibrations

T M — Mg, (J), mo 1 M — Mg, (J).

By positivity of intersections, [S1] - [S2] = 1 implies that every fiber of 7 intersects every
fiber of Ty exactly once transversely: in particular, every point in the image of ] intersects
a unique curve in Mg, (.J), so this defines a diffeomorphism of Mg, (J) to S2, and there is a
similar diffeomorphism of Mg, (J) to S?. Under these identifications, the pair of fibrations
(m1,m2) defines a diffeomorphism

(7T1,7T2) M — 52 X 52,
in which the fibers of m; are identified with S? x {x} and those of my are identified with
{} x S2.
One minor point is that in our construction of the above fibrations, the original surfaces

S1 and Sy are not fibers, as they got perturbed when we replaced the original Jy with the
generic .JJ. Now that we know M =~ S? x S? however, we can redo the argument without
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worrying about genericity: indeed, we claim that for the original (non-generic) Jy € J,(M,w),
every somewhere injective Jo-holomorphic sphere v : S2 — M satisfies ind(v) > 0. To see
this, observe that under the identification of M with S? x S? obtained above, [S;] and [S2]
are generators of Ho(M), so for any nonconstant curve v € Mg(Jy) we can write

[U] = ]{5[51] + m[SQ]

for some k,m € Z. If v is a reparametrization or multiple cover of wj, then [v] - [Si] =
E[S1] - [S1] = 0, and if v is anything else, then positivity of intersections implies [v] - [S1] =
[v] - [u1] = 0. Applying the same argument with ug, we have [v] - [S2] = 0 as well, and since
[S1] - [S2] = 1, we conclude that k and m are both nonnegative, and they cannot both be 0
since v is not constant. Now since ¢1([S1]) = ¢1([S2]) = 2, we have

ind(v) = =2 + 2¢1 (k[S1] + m[S2]) = —2 + 4k + 4m > 0.

This implies that .Jy satisfies the conditions needed in Theorem to prove compactness of
Mg, (Jo) and Mg, (Jo). Since the curves in these spaces all satisfy automatic transversality,
this was the only step where genericity of J was ever needed—we can therefore dispense with
genericity and assume the fibers of m; and 7y are Jy-holomorphic curves, so in particular, the
original surfaces S1 and Se are both fibers.

It remains only to prove that our given symplectic structure w is symplectomorphic to a
split structure oy @ oo. Using the identification above, we can now write M = S? x S? and
assume the Jy-holomorphic fibers of 71 and my are simply S? x {x} and {x} x S2. Here Jj is
an almost complex structure on S, and our given w can be regarded as a symplectic form on
52 x S? that tames Jy. Choose area forms o1, 09 on S? such that

f g1 = f w, f g9 = f w.
52 S2x{x} 52 {#}x 52

Then w and o @ 09 are two symplectic forms on S? x S? representing the same cohomology
class in H3p (5% x S?). The Jo-holomorphic fibers S? x {x} and {x} x S? are also symplectic
submanifolds and are symplectically orthogonal to each other with respect to o1 @ o9. From
this, it is easy to show that o1 @ o9 also tames Jy. Now for s € [0, 1], we define

ws := s(01 D og) + (1 — s)w,

which is a smooth 1-parameter family of cohomologous closed 2-forms, and they are all sym-
plectic and tame Jy since Jy is tamed by both o1 @ o9 and w. Moser’s stability theorem (see
[MS17]) then implies that w and o1 @ o9 are isotopic. O

And finally, we prove Theorem

THEOREM 6.9. Suppose (M,w) is a closed, connected and minimal symplectic 4-manifold
that contains a symplectically embedded 2-sphere S < (M,w) with [S]-[S] = 0. One then has
the following possibilities:

(1) If[S]-[S] = 0, then (M,w) admits a symplectomorphism to a symplectic ruled surface
such that S is identified with o fiber.

(2) If [S] - [S] = 1, then (M,w) admits a symplectomorphism to (CP?, cwgs) for some
constant ¢ > 0, such that S is identified with the sphere at infinity CP* < CP2.

(3) If [S] - [S] > 1, then (M,w) is symplectomorphic to one of the following:
(a) (CP? cwrg) for some constant ¢ > 0;
(b) (8% x S% 01 ® a2) for some pair of area forms o1,09 on S2.
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PROOF. The cases [S] - [S] = 0 and [S] - [S] = 1 were already shown in the proof of
Theorem [6.6 so we focus on the case m := [S] - [S] > 1. Then Theorem provides a
symplectic Lefschetz pencil

7 M\{p1,...,pm} — CP*
which has S as a smooth fiber, and the set of singular fibers is necessarily non-empty. Each
singular fiber has exactly two irreducible components S and S_, and since (M, w) is minimal,
neither of these is an exceptional sphere, and neither can contain all m of the base points. It
follows that S, and S_ are both symplectically embedded spheres with

[Si] [Si] € {O,...,m—Q}.

If either of these has self-intersection 1, then we conclude from Theorem that (M,w) =~
((CIP’z,chs). If not, then either they both have self-intersection 0 or one of them has self-
intersection greater than 1 but less than m — 1. We can thus repeat this argument until one
of the following happens:
(1) We find a symplectically embedded sphere S’ ¢ (M,w) with [S’] - [S’] = 1 and thus
conclude (M,w) = (CP?, cwrs).
(2) We find two symplectically embedded spheres S;,S_ < (M,w) that intersect each
other once transversely and positively and both have self-intersection 0. (See Fig-
ure for a picture of this scenario.) In this case, Theorem implies that (M, w)
is symplectomorphic to S% x S? with a split symplectic form.

0






CHAPTER 7

Uniruled Symplectic 4-Manifolds

The theorems discussed so far show that there is clearly something special about the
class of symplectic 4-manifolds that contain symplectically embedded spheres of nonnegative
self-intersection. In this chapter, we will see that this class can also be characterized in terms
of enumerative symplectic invariants that count J-holomorphic curves, that is, the Gromov-
Witten invariants.

7.1. Further characterizations of rational or ruled surfaces

We shall introduce a simple version of the Gromov-Witten invariants in §7.2] below. It
leads naturally to the notion of uniruled symplectic manifolds: in essence, a symplectic mani-
fold is symplectically uniruled if it has some nonzero Gromov-Witten invariant that guarantees
the existence of a nontrivial J-holomorphic sphere through every point for generic tame J.
Theorem [G] shows that the latter property is shared by all symplectic 4-manifolds in our spe-
cial class, and indeed, it will be easy to show that all manifolds in this class are symplectically
uniruled (see Theorem [.33]). It is then natural to wonder what else is. The answer turns out
to be nothing, i.e. in dimension four, the uniruled symplectic manifolds are precisely those
which are rational or blown-up ruled surfaces. The proof of this requires a rather non-obvious
generalization of Theorem [Al as McDuff showed in [McD92], the theorem remains true if
its hypothesis is weakened to allow a symplectic sphere S < M that is immersed but not
necessarily embedded, as long as its self-intersections are positive and its first Chern number
is large enough.

DEFINITION 7.1. Given a symplectic 4-manifold (M,w) and an immersion ¢ : S & M
of a surface S, we say that S is positively symplectically immersed in (M,w) if (*w
is symplectic, all self-intersections of S are transverse and positive, and there are no triple
self-intersections ¢(z1) = t(z2) = t(z3) for pairwise distinct points z1, 29, 23 € S.

EXERCISE 7.2. Show that an immersion ¢ : S & M with only transverse self-intersections
and no triple self-intersections is positively symplectically immersed in (M,w) if and only if
there exists an w-tame almost complex structure J on M and a complex structure j on S
such that ¢ : (S,75) — (M, J) is a J-holomorphic curve.

THEOREM 7.3. If (M,w) is a closed and connected symplectic 4-manifold, the following
are equivalent:

(1) (M,w) is a symplectic rational surface or blown-up ruled surface.

(2) (M,w) admits a positively symplectically immersed sphere S & M with c1([S]) = 2.

(8) For some J € J.(M,w), there exists a somewhere injective Fredholm regular J-
holomorphic sphere u with ind(u) > 2.

105
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(4) For some A € Hy(M) satisfying —2 + 2¢1(A) = 2 and a dense subset J™® <
Jr(M,w), there exists a somewhere injective Fredholm regular J-holomorphic sphere
u with [u] = A for every J € J™&.

(5) (M,w) is symplectically uniruled.

COROLLARY 7.4. Each of the properties listed in Theorem [7.3 for symplectic 4-manifolds
s invariant under symplectic deformation equivalence and symplectic blowup or blowdown.

PROOF. We have already seen in Theorem [G] that the class of symplectic 4-manifolds
satisfying the first condition is invariant under symplectic deformations; alternatively, we
will see in §7.2] below that this is immediate for the fifth condition, because the Gromov-
Witten invariants are deformation invariant. Using the existence of symplectically embedded
spheres to characterize the first condition, it is also manifestly satisfied for any blowup of
a rational or ruled surface along a Darboux ball that is small enough to avoid intersecting
such a sphere, and all blowups along different or larger Darboux balls are symplectically
deformation equivalent to this one. Lemma below shows in turn that the conditions are
invariant under symplectic blowdown. O

Before completing the last step in the above argument, let us comment on the idea.
Corollary [4] was first claimed in [McD90, Theorem 1.2] and later given a correct proof in
[McD92]; the proof given in [McD90] had an important gap, though both the argument
and its gap are illuminating. One would ideally like to argue as follows: if (M,w) contains
a symplectically embedded sphere S with [S] - [S] = 0 and it also contains an exceptional
sphere E, then one can choose an almost complex structure J making S a J-holomorphic
sphere v : §2 — M and perform the blowdown along E so that the blowdown map 3 : M — M
is pseudoholomorphic, thus producing a j—holomorphic sphere & = Bowu : S? — M in the
blowdown. We’ve seen in Exercise that this operation generally increases the first Chern
number of the normal bundle of our curve, thus we expect to see [u] - [u] = [S]-[S] = 0 so
that the theorems of Chapter [ still apply to the blowdown M. The trouble, however, is that
@ might not be embedded: in fact if [S] - [E] = 2, then @ will definitely pass through the
point 3(F) € M multiple times. This is where the more general conditions in Theorem [7.3]
allowing for non-embedded curves become essential, and it is the reason why Corollary [7.4]
has been delayed until the present chapter rather than being stated among the main results
in Chapter [

LEMMA 7.5. If (M,w) satisfies the fourth condition in Theorem [7.3 and contains a col-
lection of pairwise disjoint exceptional spheres Ey, ..., E,, c (M,w), then its blowdown along
E\1...10E,, satisfies the third condition in Theorem [7.3

PROOF. If there exists a simple and regular J-holomorphic sphere v in M\(E111...11E,,)
with ind(u) = 2 for some J € J.(M,w), then u will still exist after blowing down E1, ..., E,,,
and we are done. Let us therefore assume that all such spheres intersect at least one of
the exceptional spheres E; for ¢ = 1,...,m. Pick symplectomorphisms identifying disjoint
neighborhoods Ug, € M of E; with neighborhoods of the zero-section in the tautological
line bundle @2, each with a standard symplectic form wg for some R > 0 (see §3.2). We
can then choose a tame almost complex structure Jy € J.(M,w) that is generic outside
Ug :=Ug, U ...uUE,, and matches the standard (integrable) complex structure of C2in Up.
By assumption, there exists a sequence Jy € J,(M,w) with J, — Jy and a sequence uy



7.1. FURTHER CHARACTERIZATIONS OF RATIONAL OR RULED SURFACES 107

of somewhere injective Ji-holomorphic spheres in a fixed homology class A € Hy(M) with
ind(ug) = —2 + 2¢1(A) = 2. The latter means c;(A) = 2, so by the adjunction formula,

A-A:25(uk)+cl(A) —-220,

implying that A cannot be a multiple of any [E;]. Applying Gromov compactness, a sub-
sequence of wug then converges to a nodal curve in MO(A; Jo) whose components cannot all
be covers of the spheres E;, so in particular, at least one such component covers a simple
Jo-holomorphic sphere u : S? — M that is not contained in Ug, and we can choose this
component such that v has nontrivial intersection with £y u ... u E,,. Since Jy is generic
outside Ug, we are free to assume that u is Fredholm regular with ind(u) > 0, hence

er([u]) > 1.

After possibly perturbing u within its moduli space, we can also assume via Corollaries 2.30]
and [2.32]that u is immersed and transverse to each E;. Note that by positivity of intersections,

Sl - [B] > 1.

i=1
We can now perform the complex blowdown operation on (M, Jy) along Fy1I...11E,, and, by
Theorem B.14] find a compatible symplectic structure & on the blowdown (M/ , J ) such that
(M/ ,) is the symplectic blowdown of (M,w) along Fj1I...11 E,,, and every J-holomorphic
curve in M yields a j—holomorphic curve in M via composition with the blowdown map. In
particular, by Exercise 3.6 u gives rise to an immersed j—holomorphic sphere 4 in M with

aa([i]) = e1(Ng) +2 = er(Ny) + 2+ > [u] - [Ei] = ea([u]) + Y. [u] - [Ei] > 2.
i=1 =1

The latter gives ind(#) = —2 4 2¢;([]) = 2, and since @ is also immersed, it satisfies the
automatic transversality criterion of Corollary [2.43] and is therefore Fredholm regular. U

Two symplectic 4-manifolds are said to be birationally equivalent whenever they are
related to each other by a finite sequence of symplectic blowup and blowdown operations
and symplectic deformations. Corollary [74] thus implies that the class of closed symplectic
4-manifolds that contain symplectic spheres of nonnegative self-intersection is closed under
birational equivalence.

Recall that a symplectic 4-manifold is called a rational surface whenever it is birationally
equivalent to (CP?, wrs). We can now characterize rational surfaces in terms of Lefschetz
pencils as follows.

THEOREM 7.6. A closed and connected symplectic 4-manifold (M,w) is a rational surface
if and only if it admits a symplectic Lefschetz pencil with fibers of genus zero.

PROOF. By Corollary [Z4] everything birationally equivalent to CIP? necessarily contains
a symplectically embedded sphere of nonnegative self-intersection and therefore admits a
symplectic Lefschetz pencil or fibration 7 : M\Myp,se — X with genus zero fibers. Given
this, we need to show that the condition of being birationally equivalent to CP? is equivalent
to ¥ being a sphere. If indeed ¥ =~ CP!, then after blowing up all base points and then
blowing down an irreducible component of every singular fiber, we obtain a symplectic ruled
surface 7 : M’ — S? that is birationally equivalent to (M,w). By the classification of ruled
surfaces (see Remark [LT3]), M’ is symplectically deformation equivalent to either S? x S2
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with a product symplectic structure or (CIP’Q#@z, viewed as the blowup of (CP?, wrg). Both
are birationally equivalent to ((C]P’2, wrs); note that in the case of S% x S2, this follows from
the proof of Proposition 3.45] which describes a sequence of one blowup and two blowdowns
leading from S? x S? to CP2.

Conversely, we claim that if (M,w) admits a symplectic Lefschetz fibration 7 : M — 3
with ¥ a surface of positive genus, then (M, w) is not a rational surface. Assume the contrary,
that there is a sequence of deformations, blowup and blowdown operations leading from
(M,w) to (CP? wrs). Each deformation and blowup operation clearly preserves the property
of admitting a symplectic Lefschetz fibration over ¥, as in particular the blowups can all
be performed along small balls centered at regular points, thus adding critical points to
the Lefschetz fibration, and the blown-up Lefschetz fibration survives arbitrary symplectic
deformations due to Theorem [Gl For blowdowns, we observe that for a generic choice of almost
complex structure J such that all fibers of 7 : M — ¥ are J-holomorphic and all exceptional
spheres have unique J-holomorphic representatives, each J-holomorphic exceptional sphere
must be contained in a fiber. Indeed, any embedded J-holomorphic sphere u : 2 — M that
does not have this property must intersect every fiber positively, so that the map wou : S — ¥
has positive degree, which is impossible since ¥ has a contractible universal cover and thus
m2(X) = 0. It follows that all blowdown operations on (M,w) can be realized by blowing
down irreducible components of singular fibers, producing a new Lefschetz fibration on the
blowdown that still has base 3. After following a finite sequence of such operations, we would
therefore obtain a symplectic Lefschetz fibration 7 : CP? — ¥ with genus zero fibers, and
it is easy to show that CP? does not admit any such structure, e.g. the fiber would need to

represent a nontrivial homology class with self-intersection zero, and there is no such class
in Ho(CP?). O

EXERCISE 7.7. Show that up to symplectic deformation equivalence, CP? #@2 is the only
symplectic ruled surface that is not minimal.

EXERCISE 7.8. Show that two blown-up symplectic ruled surfaces are birationally equiva-
lent if and only if they admit symplectic Lefschetz fibrations with genus zero fibers over bases
of the same genus. Hint: see Example[3.46]

Another easy consequence of Theorem [.3] is that the minimal blowdown of any closed
symplectic 4-manifold is essentially unique unless it is rational or ruled. We saw in Proposi-
tion [3.45] and Example [3.46] that the caveat for the rational or ruled case is necessary.

COROLLARY 7.9. Suppose (M1, w1) and (Ma,ws) are two minimal symplectic 4-manifolds
with symplectomorphic blowups

(M, %) := (My,&) = (M, &),

such that (M,&) is not a rational surface or blown-up ruled surface. Then (My,wi) and
(M, w9) are symplectomorphic.

PRrROOF. The hypotheses mean that (]\7 ,W) contains two maximal collections of pairwise
disjoint exceptional spheres Ef,...,El < M and E} ... E} c M such that blowing (]\7, W)
down along E{ 11... U E} or E?11...11 E? gives (Mj,w;) or (Ma,ws) respectively. Recall
from Theorem [3.IT] that the symplectomorphism type of a blowdown is determined by the
symplectic isotopy class of the union of exceptional spheres being blown down. By Theo-
rem [B.I] we can choose a generic tame almost complex structure J on (]\7 ,w) and assume
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after suitable symplectic isotopies that all of the exceptional spheres E]Z c M are images of

embedded j—holomorphic curves. Positivity of intersections then implies
[Ei]-[E5]=0

for all 4, j, except in cases where E} = E]2 Moreover, by Corollary 2.32] we can assume after

a further generic perturbation of J that EZ1 and EJ2 are always transverse unless they are
identical.

Now if (Mi,w1) and (Ma,ws) are not symplectomorphic, it means B 11... 1 E} # E? 11
i Eg, so after reordering Fj,... ,E,};, we can assume B # E]2 for all j = 1,...,¢. This
implies [E1] - [EJQ] > 0 for some j, as otherwise E{ would need to be disjoint from every
EJQ-, contradicting the assumption that the latter is a maximal collection. So without loss
of generality, assume [E}] - [E?] > 0. There are now at least two distinct ways to see that

(]\7 ,w) satisfies one of the conditions in Theorem [[3t we shall describe one way explicitly
and outline the other in Exercise [.10] below. N

The first approach is to blow down Ei. More precisely, we start by modifying J near
E{ to match the particular integrable model needed in Theorem B.14} note that after this
modification, J is still sufficiently generic for the purposes of Theorem [E.1] because every J-
holomorphic curve other than E} and its multiple covers (which necessarily have positive index
since c1([E}]) = 1) passes through regions outside a neighborhood of E{, in which arbitrary
small perturbations of J are allowed (cf. Remark ZI7). We can then use Theorem B.I4]

to construct a symplectic blowdown (M,w) of (]\7 ,@) along E} that carries a compatible
almost complex structure J for which there is a natural pseudoholomorphic blowdown map
B :(M,J) — (M,J). Since E} and E? are transverse, Exercise then implies that the
image of EZ under 3 becomes an immersed J-holomorphic sphere u : $? — M with ¢ ([u]) =
c1([E?]) + [E?] - [Ef] = 1 +[E?] - [E}] = 2, so ind(u) = —2 + 2¢1([u]) = 2 and u is Fredholm
regular by Corollary 2:45] thus establishing the third condition in Theorem [(.3for (M,w). O

EXERCISE 7.10. For an alternative version of the last step in the above proof, suppose
S1,S52 © (M, w) is a pair of symplectically embedded surfaces that intersect each other trans-
versely and positively in a nonempty set. Show that given p € 51 n.Ss, there exists a positively
symplectically immersed surface S & M that can be formed by deleting small disks from .57
and Sy near p and then gluing in an annulus to attach them to each other. In particular, if
S1 and Ss are both spheres, this produces a positively symplectically immersed sphere S with
c1([S]) = e1([S1]) +e1([S2]). Hint: choose local coordinates near p in which Sy U Sa looks like
the standard local model of a singular fiber of a Lefschetz fibration, holomorphic with respect
to an integrable almost complex structure tamed by w. Then perturb the singular fiber to
a regular fiber; note that since the symplectic condition is open, one need not do anything
fancy to connect the perturbed singularity with S U Se outside a neighborhood of p.

To begin the proof of Theorem [7.3] observe that the implication (4) = (3) is obvious, and
(1) = (4) is an immediate consequence of Theorem [Gl The next easiest step is (2) < (3),
which follows from the results in §2.1.4l and §2.T.5]on moduli spaces with constrained marked
points, plus the automatic transversality criterion of §2.2.Tt

LEMMA 7.11. The second and third conditions in the statement of Theorem[7.3 are equiv-
alent.
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PRrROOF. If S ¢ (M,w) is a positively symplectically immersed sphere with ¢1([S]) = 2,
then using Exercise [[.2], one can choose J € J(M,w) such that S is the image of an immersed
and somewhere injective J-holomorphic curve u : %2 — M with ind(u) = —x(5?) +2¢1 ([u]) =
2. This curve satisfies the automatic transversality criterion of Corollary 245 so it is Fredholm
regular. Conversely, if a Fredholm regular .J-holomorphic sphere u : 2 — M with ind(u) >
2 exists, then by Corollaries [2.26] and 232] we can assume after possibly a generic
perturbation of J and a small perturbation of v within the moduli space of holomorphic curves
that u is immersed, with only transverse self-intersections and no triple self-intersections. The
image of u is then a positively immersed symplectic sphere with ¢;([u]) = 2 since ind(u) >
2. O

The rest of the proof of Theorem [3] will take a bit more work. We shall prove (1) =
(5) = (2) in the next section, on Gromov-Witten invariants and the uniruled condition. The
hard part will then be dealt with in §7.3] which covers the main result of [McD92]|, giving a
proof of (2) = (1) and an independent proof of (2) = (4) (without passing through (1)).

7.2. Gromov-Witten invariants

7.2.1. The invariants in general. We shall begin this section with a heuristic dis-
cussion of the Gromov-Witten invariants and uniruled symplectic manifolds in general, and
then give a rigorous definition of a slightly simplified version of the invariants for symplectic
4-manifolds, proving the implications (1) = (5) = (2) in Theorem [T.3] along the way.

In their simplest form, the Gromov-Witten invariants associate to any closed symplectic
2n-manifold (M,w), given integers g,m = 0 and a homology class A € Ho(M), a symplecti-
cally deformation-invariant homomorphism

(7.1) GWIM) 1 (M; Q)%™ — Q,

defined in principle by counting J-holomorphic curves that satisfy constraints at their marked
(Mw)

points. Let us regard GWg,m,A

as a multilinear map and write
awiM) f H*(M;
gyva(al,...,am)eQ or  ai,...,am € HY(M;Q)

instead of GW;]ﬁ’ﬁ(al ®...® ). Heuristically, the number GW;{\g{f‘X(al, o) €EQis

intended to be the answer to the following question:

For generic J € J;(M,w), given smooth submanifolds &; < M Poincaré dual to a; €
H*(M) fori=1,...,m, how many curves [(3,j,u,((1,-..,¢m))] € Mgm(A;J) exist subject
to the constraints

u(@G)ea; fori=1,...,m?

Recalling the evaluation map

ev = (evy,...,evp) : Mym(4;J) — M™,
the set of curves satisfying the constraints described above is precisely ev=!(a; x ... @m).
Thus if we adopt the convenient (though usually fictitious) assumption that Mg, (A;J) is
a smooth, closed and oriented manifold of dimension equal to d := vir-dim Mg ,,,(A; J), and
denote its fundamental class by

[Mom (A5 I € Ha(Mg,m(4; 1)),
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we obtain a homology class [ev] := evy[Mg ., (4; J)]'" € Hy(M™) and can define the desired
count of constrained curves as a homological intersection number

(7.2) GWM) (@, .. ) = [ev] - (PD(as) x ... x PD(ayn)),

where PD denotes the Poincaré duality isomorphism. Implicit in this expression is that the
intersection number and hence the Gromov-Witten invariant is zero unless the two homology
cycles are of complementary dimension, which means

vir-dim Mg, (A; J) Z deg(a).

The fact that the intersection number generally turns out to be in Q rather than Z, even
if the a; are all assumed to be integral classes, is related to the fact that ngm(A; J) is
not actually a manifold in general—even if transversality can be established for multiply
covered curves, the moduli space will then have orbifold singularities whenever those curves
have nontrivial automorphisms, so intersections must be counted with rational weights. It is
common to rewrite (2] as an integral, interpreted as the evaluation of a product of pulled
back cohomology classes on the fundamental class [Mg ., (4; J)]'",

M
GW;m’f‘X(al, e Q) = f eviag U...uevy an.
[Mg,m(A; )]V

For a given m > 0, homomorphisms of the form (7)) are called m-point Gromov-Witten
invariants. They reduce to rational numbers in the case m = 0, i.e. the 0-point invariant

GW g]\(/)[j;) € Q is defined when vir-dim M,(A;J) = 0 and interpreted as a count of (isolated)

curves in Mgy(4;J).

Most of the time, the failure of transversality for multiple covers prevents M, ,,,(A; J) from
being anything nearly as nice as an orbifold, so one must resort to more abstract perturbations
of the nonlinear Cauchy-Riemann equation in order to either define a “virtual” fundamental
class [Mg (A; J)]V'" or otherwise give a rigorous interpretation of the intersection number
in (Z2)). In the following, we will address this issue only in dimension four and in the case
vir-dim Mg (J; A) > 0, for which a relatively straightforward solution is available. For some
recent approaches to the general case, see for instance [HWZal|[CMO07,Gerl,Par16].

If 29+m > 3, then one can define a more general version of the Gromov-Witten invariants
by imposing an additional constraint on the complex structures of the domains of the curves.
Let Mg,m denote the compactified moduli space of stable nodal Riemann surfaces of genus g
with m marked points, i.e. it is the same as ﬂg,m(A; J) if M is taken to be a one point space.
Elements of M, ,, are thus equivalence classes of tuples (S, 4, (C1,...,(mn), A), where stability
(cf. Definition 2:34]) means that every connected component of S after removing A and all
marked points has negative Euler characteristic, which is impossible unless 2g + m > 3. In
general, Mg,m is a smooth orbifold of real dimension

dim M, ,,, = 6g — 6 + 2m,
and it is a manifold if g = 0. We then consider the natural forgetful map
D Mym(A;J) = Mgm,

sending each element of Mg,m(A; J) represented by a stable nodal J-holomorphic curve
(S, 4,u,(C1,---,Cm), A) to the equivalence class of its domain (S, j, (C1,...,Gn), A) in M .
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(See Remark [T.12] below on the subtleties involved in this definition.) This gives rise to a
homomorphism

GWMS) L B (M; Q)%™ @ Ho(Mym; Q) — Q,

whose action on a1 ® ... ® o, ® B we shall denote by

AWM e ) €Q for an,.am € HX(M;Q), § € Hy(Mym: Q),

such that if the a; are Poincaré dual to submanifolds &; < M and f is represented by a
submanifold_ﬁ_ < Mg m, then GW;{\g{f‘X(al, <v vy Qs B) is & count ofilements in (ev, @)~ (ay x
. X @ % (). Given a well-defined virtual fundamental class for M, ,,,(A4; J), this can again

be interpreted as a homological intersection number

(7.3) GWM Y an,..., am; B) = [(ev,®)] - (PD(n) % ... x PD(ay,) x )

or an integral

GW;{\Q‘X(QL ey Qs B) = J Seviaip u...uevy an U ®*PD(f),
[Mg,m (A5 )]V
and dimensional considerations now dictate that GW;{Z{Q(%, ..., Qyy; B) vanishes unless
(7.4) vir-dim Mg (4; 7) = ) deg(oy) + dim Mg, — deg(B).

i=1

A natural special case is is to define 3 as the fundamental class [Mg ] € Hog—6+2m(Mgm),
represented by 8 = My m, which amounts to not imposing any constraint at all on the
forgetful map, hence
GW;{\;[;?X(al, s Oy (Mg m]) = GW(gﬂfn“g( ey Q).

Alternatively, choosing 8 = [pt] € Ho(My,), i.e. the homology class of a point, means fixing
a domain (X, 7, (¢1,...,(n)) and counting J-holomorphic maps u : (X, j) — (M, J) with both
the complex structure j and the marked points ((1,...,(y,) fixed in place. The homological
invariance of intersection numbers implies that the resulting count of curves will not depend
on which fixed domain is chosen, but notice that by (Z4), the indices of the curves being
counted are now larger than in the case 8 = [Mg,].

REMARK 7.12. The description of the forgetful map above ignores one important detail:
Definition 2.34] allows (S, j,u, (C1,-..,(m),A) to have spherical components on which u is
nonconstant but there are fewer than three marked or nodal points, in which case the domain
(S,7,(C1y -+, Cm), A) is not stable and thus does not represent an element of ﬂg,m- However,
every nodal Riemann surface with 2g + m > 3 has a well-defined stabilization, obtained
by collapsing the unwanted spherical components, i.e. they are eliminated from S along with
their nodal points, and any orphaned marked point on such a component is then placed in
the position of the corresponding orphaned nodal point on the adjacent component. Thus for
a general stable nodal curve u € Mg, (4;J), ®(u) € My, is defined as the stabilization of
the domain of w.
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7.2.2. The uniruled condition. In complex algebraic geometry, a proper variety is
called uniruled if it contains rational curves through every point, see e.g. [Deb01]. The
following definition plays this role in the symplectic category.

DEFINITION 7.13. Let [pt] € Ho(M) denote the homology class of a point. We say that
(M,w) is symplectically uniruled if there exist A € Hy(M), an integer m > 3 and classes
az,...,am € H*(M;Q), B € Hi(Mom; Q) such that

GW{) (PD[pt], az. ..., am: B) # 0.

PROPOSITION 7.14. If (M,w) is symplectically uniruled, then for every J € J-(M,w) and
every p € M, there exists a nonconstant J-holomorphic sphere passing through p.

At the moment, we are only in a position to justify this result heuristically since we
have not given a rigorous definition for the intersection number (Z3]), but the idea is simple

(M’w)(PD[pt], ag,...,0m; ) # 0 and that each of the homol-

0,m,
ogy classes PD(«;) € Hy(M) and 3 € H,(My,y,) can be represented by smooth submanifolds
@; = M and B © Mj,,; note that by a theorem of Thom [Tho54], the latter is true for all
integral homology classes after multiplication by a natural number, so there is no loss of gen-
erality. Now for generic and arbitrarily small perturbations of the nonlinear Cauchy-Riemann
equation] defined by J € Jr(M,w), we can assume (ev, ®) is transverse to the submanifold
{p} x @2 x ... XA x B < M™x Mg m, and the nontriviality of GWé%ﬁ(PD[pt], a9, ...,y B)
implies the existence of at least one solution u € (ev, ®)~'({p}xag x...x @y, x 3). In particular,
given a sequence of such generic perturbations converging to the standard Cauchy-Riemann
equation for J, there exists a corresponding sequence of solutions ug, which are all homolo-
gous to A and thus have bounded energy, so one can use a version of Gromov compactness to
extract a subsequence that converges to an element ug, in Mo, (4; J) satisfying evy (uq) = p.
This limit may be a nodal curve, but it has at least one nonconstant smooth component that
is a smooth J-holomorphic sphere passing through p.

The next lemma, in conjunction with Proposition[.14], furnishes the implication (5) = (2)

in Theorem [T3l

enough. Let us assume that GW

LEMMA 7.15. Suppose (M,w) is a closed symplectic manifold of dimension 2n > 4 with
a point p € M such that for every J € J.(M,w), there exists a nonconstant J-holomorphic
sphere through p. Then for generic J € J-(M,w), there also exists an immersed J-holomorphic
sphere u : (S2,i) % (M, J) that satisfies c1([u]) = 2 and has no triple self-intersections or
tangential self-intersections.

PROOF. Since every holomorphic sphere covers one that is somewhere injective, we can
add the latter to the hypotheses of the lemma without loss of generality. Then if u : (S?,7) —
(M, J) is somewhere injective and passes through p, we can add a marked point and regard it
as an element of the moduli space ./\/(al(A; J;p) of somewhere injective curves in ev=!(p)

lWe are being intentionally vague here about the meaning of the words “perturbations of the nonlinear
Cauchy-Riemann equation”. This can mean various things depending on the context and the precise definition
of the intersection number (Z3) that one adopts, e.g. in the approaches of [MS12|[CMO07], the usual equation
dju = 0 is generalized to allow generic dependence of J on points in the domain of u, while in [RT97,[Ger],
one instead introduces a generic nonzero term (inhomogeneous perturbation) on the right hand side of the
equation. A more abstract functional-analytic approach is taken in [HWZal.
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Mo1(A; ), for A := [u] € Hy(M). This constrained moduli space has virtual dimension
vir-dim Mg 1 (4; J;p) = ind(u) +2 —2n=2(n —3) + 2¢1(A) + 2 — 2n = 2¢;(A) — 4,

which must be nonnegative for generic J, thus ¢;([u]) = 2. Corollaries 2.26], and
then combine to furnish an immersed curve u' € M{(A; J) close to u that has no triple points
or tangential double points. O

REMARK 7.16. One could include the case 1 < m < 3 in Definition [.13] and allow the
conditions GW(OAiI’:) (PD[pt]) # 0 or GW(()]\;[’:)(PD[pt],a) # 0, but this would not add any
generality. The Teason is that any nontrivial Gromov-Witten invariant with m < 3 can be
related to one with m > 3 using Exercise [ 17 below.

EXERCISE 7.17. Deduce from the heuristic description of the Gromov-Witten invariants
as counts of constrained J-holomorphic curves that for any aq,...,ap, € H*(M,Q) with
O, € H? (Ma @)a

WM (o, .. o) = < L am> W) (ar, ).

In the terminology of Kontsevich-Manin [KIM94], this is a special case of the so-called divisor
aviom. Hint: if o, € H?(M) is Poincaré dual to a smooth submanifold &,, < M that
is transverse to some curve u € My(A;J), then §, am, is the signed count of intersections
between u and ayy,.

7.2.3. Pseudocycles and the four-dimensional case. Let us now give a rigorous
definition of the m-point invariant

GW;{\fr{ﬁ(al, o am)€Q

under the assumptions
dim M = 4,
(7.5) o
vir-dim Mg (4;J) = 2¢1(A) +29—-2>0 or g=0.
The condition on vir-dim Mg (A4; J) for g > 0 implies that GW(gJ‘fr;wfz can be nontrivial only if
m = 1, so we are now excluding 0-point invariants from discussion except in the genus zero

case (see Remark [[31]). We are also excluding all choices of 8 € Hy(M, ) other than the
fundamental class [M,].

In turns out that under the assumptions (7)), we can restrict our attention to the
smooth manifold M;(A; J) of somewhere injective curves, and one version of the definition

of GW;]\:;’“X can then be stated as follows.

THEOREM 7.18. Assume (M,w) is a closed symplectic 4-manifold, A € Ho(M), g = 0 and

m = 1 are integers, and aq, ..., € H*(M) are integral cohomology classes Poincaré dual
to smooth submanifolds aq, ..., 0, < M such that
m
2e1(A) +29—2 = ) (deg(e) — 2)
i=1

and either the latter expression is positive or g = 0. Then for generic J € J.(M,w), the map

ev ‘MZ’,‘,m(A;J) : M5 (A5 J) — M™ has only finitely many intersections with qq X ... X Gy,
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all of them transverse, and the signed count of these intersections
(M,w) L _ _
Gng’A(al,...,am) = eV‘MZ‘;,m(A;J) (@ X ... X Q) EL

depends only on the cohomology classes ayq, . ..,y and the symplectic deformation class of w.

44'77

There is a slight abuse of notation in the above theorem: where usually denotes the
homological intersection product, here it is simply a signed count of intersections which has
no immediate homological interpretation since the manifold M;‘ym(A; J) is noncompact. It
may seem surprising at first that one can define a finite intersection count in this way, but the
reasons why it works are not hard to imagine if you remember the index counting relations in
§4.2l The following lemma forces intersections of ev : ﬂgm(/l; J) > M™ with a1 X ... X
to stay away from Mg, (A; J)\M, (A;J) for dimensional reasons, and thus remain in a
compact subset of My (A; J).

LEMMA 7.19. Given a closed symplectic 4-manifold (M,w), integers g,m = 0 and A €
Hy(M) such that assumptions ([L5]) are satisfied, along with a collection of smooth subman-
ifolds aq,...,am < M, there exists a comeager subset J™¢ < J.(M,w) such that for all
J € J*°8, the image of the map

Mgm(A; I)\M; (A5 T) =5 M™

is contained in a countable union of sets of the form fi(X;) € M™, where the X; are smooth
manifolds with

dim X; < dim M7, (A; J) — 2

and f; : X; > M™ are smooth maps transverse to &y X ... X Q.

PrOOF. By choosing J to lie in a countable intersection of certain comeager subsets of
Jr(M,w), we can assume that the spaces M} ,(B;J) are smooth manifolds of the correct

dimension for every h,k > 0 and that all evaluation maps ev : pe(BsJ) = M k are

transverse to all submanifolds of M* formed via Cartesian products of the submanifolds
Q1. .., 0y < M.
Now recall from §4.4] the natural map

e Mg,m(A; J) — MQ(A; J)

which forgets all the marked points and collapses any resulting unstable ghost bubbles (see
in particular Figure @LI). If uw, € M7, (A;J) is a sequence converging to some uy €
My (A; J)\M; ,,(A; J), then the sequence @y, := m(ug) € Mj(A;J) converges likewise to
Uy := T(ux) € Mgy(A; J), which has the same nonconstant components as ue, but may have
fewer ghost bubbles. We consider three cases.

Case 1: Suppose Uy € M5(A;J). Then uy consists of a single somewhere injective

component ul, of genus g plus a nonempty set of ghost bubbles. Assume u!, has N > 0
nodal points, each of which attaches it to a tree of ghost bubbles. Stability dictates that each
tree of ghost bubbles has at least two of the marked points, so the number of marked points
remaining on ul, is at most m — 2N. The position of ev(uy) in M™ is thus determined by
three pieces of data: (1) the curve ul,, which lives in a smooth moduli space of dimension
ind(ul,) = ind(uw); (2) the positions of at most m — 2N marked points on ul,; (3) the

positions of the N nodal points on ul,, each of which determines the image of every marked
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point on the attached tree of ghost bubbles. All these degrees of freedom add up to something
less than or equal to

ind(ug) + 2(m — 2N) 4+ 2N = ind(uy) + 2(m — N)
< ind(ug) +2m — 2 = dim M7, (4; J) — 2.

Case 2: Suppose tig, € My(A; J)\Mg(A; J), so Uiy is a nodal curve. Call its nonconstant

components i, ..., 1Y and assume each @', is a k;-fold cover of a simple curve o, for some
k; € N. Then the combination of Propositions E.8 and [£1T] implies

v

2 ind (%) < ind(ug) — 2.

i=1

The position of ev(uy) in M™ is now determined by (1) the curves ?’,, which contribute
> ind(?%,) degrees of freedom; (2) the positions of at most m points on the curves 9, which
may be a mixture of marked points and nodal points attached to constant components of
that contain more marked points. These degrees of freedom add up to something bounded

above by
1%

D 1ind(0L,) + 2m < ind(ug) + 2m — 2 = dim M, (45 J) — 2.
i=1
Case 3: Suppose Uy € My(A;J) is of the form Uy, 0 ¢ for a simple curve vy, and a k-fold
branched cover ¢ with k£ > 2. Then Proposition [A.I1] gives kind(Vy) = ind(ue) — Z(dyp). If
ind (o) = ind(ug) = 2¢1(A) + 29 — 2 > 0, then since the Fredholm index is always even, we
conclude
ind(0y) < ind(ug) — 2,

and this is true regardless for ¢ = 0 because 0y then must also have genus zero and the
Riemann-Hurwitz formula then implies Z(dy) = 2k — 2 > 2. Now ev(uq) is determined the
curve U, and the positions of at most m points on this curve, which again may be a mixture of
marked points and nodal points attached to constant components of uq, so the total number
of degrees of freedom is bounded above by

ind(?g) + 2m < ind(ug) +2m — 2 = dim Mg, (4; J) — 2.
U

To prove that the count in Theorem [[.18]is not only finite but also invariant, one can use
the fact that any symplectic deformation {ws} se[0,1] can be accompanied by a generic homo-
topy of tame almost complex structures {.Js} se[0,1], so that the extension of ev to the paramet-
ric moduli space M . (A;{Js}) defines a cobordism from Mg, (A; Jo) to M5 . (A;J1). This
cobordism is generally noncompact, but by a similar dimensional argument as in the above
lemma, it will contain ev=!(@; x ... x &,,) as a compact 1-dimensional cobordism between
the finite intersection sets defined via Jy and .J;. The fact that these intersection sets have
the same signed count is then a basic principle of differential topology in the spirit of [Mil97],
cf. Figure 211 in Chapter 21

One can similarly use a cobordism argument to prove that GW(g{‘féﬁ(al, ..., Q) is inde-
pendent of the choices of submanifolds a; ¢ M representing PD(«;), and since we know from
[Tho54] that every homology class PD(«) € Hy(M) can be written as c[a] for some c € Q
and a closed oriented submanifold & < M, this uniquely determines a Q-multilinear function

GW;]\;[;LQ : H*(M;Q) — Q. However, appealing to Thom’s theorem in this way gives a slightly
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less direct definition than we would like, and it obscures an interesting detail: whenever the
a; € H*(M) are all integral classes, we will see that the numbers GW(g]"f,;ﬁ(al, ey Quy) are
also integers. This is a special property of the invariants in dimension four, and does not hold
for Gromov-Witten invariants more generallyE

To formalize the dimension-counting trick behind Theorem [T.I8] we will show that under
assumptions [0 the intersection number (Z2)) can be given a precise meaning in terms
of pseudocycles, a notion first introduced by McDuff and Salamon in their presentation of
the genus zero Gromov-Witten invariants in the semipositive case [MS94]. Intuitively, a
pseudocycle in M is the next best thing to a homology class of the form [f] := f«[V] €
H. (M) for a closed oriented manifold V' and smooth map f : V — M. The idea is to relax
the assumption about V being compact, but impose weaker conditions so that intersection
numbers are still well defined for dimensional reasons. We introduce the following notation:
for a smooth map f : V' — M defined on a (possibly noncompact) manifold V', its omega-
limit set is

Qp = {lim fxyn) ‘ sequences T, € V with no limit points} c M.

DEFINITION 7.20. A d-dimensional pseudocycle in a smooth manifold M is a smooth
map f : V — M, whose domain V is a smooth oriented d-dimensional manifold without
boundary, such that f(V) M has compact closure and 2y < M is contained in a countable
union of images of smooth maps defined on manifolds of dimension at most d — 2.

A bordism between two d-dimensional pseudocycles f, : V, — M and f_ : V. - M
is a smooth map f : V' — M, where V is a smooth oriented (d + 1)-dimensional manifold
with boundary 0V = —V_ 11V, such that fly, = f+, f(V) € M has compact closure, and
2y = M is contained in a countable union of images of smooth maps defined on manifolds of
dimension at most d — 1.

It is straightforward to show that the existence of bordisms between pseudocycles defines
an equivalence relation, and the resulting bordism classes of d-dimensional pseudocycles define
an abelian group which we will denote by

HJ (M) = {d-dimensional pseudocycles in M} /bordism.

The identity element in this group is represented by the empty pseudocycle (with V = ),
and addition is defined via disjoint unions.

EXERCISE 7.21. Show that for any pseudocycle f : V' — M, the inverse of [f] € HY (M)
is represented by the same map f : —V — M with the orientation of its domain reversed.

EXAMPLE 7.22. Since smooth manifolds of negative dimension are empty by definition, the
definition of a zero-dimensional pseudocycle f : V' — M requires V to be a compact oriented
0-manifold, i.e. a finite set of points with signs. Similarly, bordism between 0-dimensional
pseudocycles fy : V. — M and f_ : V_ — M reduces to the usual notion of bordism between
maps, meaning a smooth map f : V — M where V is a compact oriented 1-manifold with
boundary 0V = —V_1Vy and f|y, = fi. It follows via standard arguments as in [Mil97]
that the signed count of points in domains defines a natural homomorphism

(7.6) Hy (M) — Z,
2For slightly different reasons, the genus 0 invariants GWé{L,{;w)(al, ...y Qm; B) for m = 3 are also integers
whenever a1, ...,am and 8 are all integral classes and (M, w) is semipositive, see [MS12]. The semipositivity

condition is always satisfied when dim M < 6.
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which is an isomorphism if M is connected. More generally, there is a natural isomorphism
between Hy (M) and Ho(M).

EXAMPLE 7.23. Any smooth map f : V — M defined on a closed and oriented manifold
V' is a pseudocycle of dimension dim V. Notice that if fy : Vi — M are two pseudocycles of
this form that are bordant in the classical sense, meaning f+ = f|y, for some smooth map
f:V — M defined on a compact oriented manifold V' with boundary oV = —V_ 11V, then
they induce the same homology class (f4)«[Vi] = (f2)«[V_] € Hx(M).

It turns out that Hy (M) and Hy(M) are naturally isomorphic for every d > 0 (see
[Zin08]), though this is a much stronger result than we will need. More important for our
purposes is Prop. below, which states that every integral homology class can be repre-
sented by a bordism class of pseudocycles in a way that respects the homological intersection
product. We must first define the corresponding intersection pairing on pseudocycles.

DEFINITION 7.24. Two pseudocycles f1 : V3 — M and fo : Vo — M are called strongly
transverse if for each i = 1,2, there exists a smooth map fl-Q : VZQ — M with Qy, fZQ(VZQ),
where VZQ is a countable disjoint union of smooth manifolds of dimension at most dim V; — 2,
such that

fihfo,  fidhfsl, fidfo  and  fEAfEL

Standard perturbation arguments (e.g. using the Sard-Smale theorem) can be used to
show that generic perturbations of any pseudocycle make it strongly transverse to any other
pseudocycle. Notice that whenever f : V — M is a pseudocycle and ¢ : M — M is a
diffeomorphism, g o f : V. — M is also a pseudocycle, and moreover, the bordism class of
w o f depends only on the diffeotopy class of .

LEMMA 7.25 (cf. [MS12| Lemma 6.5.5]). Given a pair of pseudocycles fi : Vi — M and
fo: Vo = M, fix an open subset U < M with compact closure such that U contains the closure
of fi(Vi)n fa(Va), and let Diff (M, M\U) denote the group of smooth diffeomorphisms that are
the identity outside of U, with its natural C®-topology. Then there exists a comeager subset
Diff**¢ < Diff (M, M\U) such that for all ¢ € Diff™, po f1 : Vi — M is strongly transverse
to fo: Vo — M. O

DEFINITION 7.26. Given a strongly transverse pair of pseudocycles f; : V; — M of di-
mensions d; = 0 for ¢ = 1,2 in an n-dimensional manifold M, we define their intersection
product

fi-fa
as the map f : V' — M, where the domain is the (d; + d2 — n)-dimenisonal manifold V' =
(fl,fg)_l(A) c Vi x V; for the diagonal Ac M x M, and f(:Cl,.’EQ) = fl(:cl) = fz(CCQ).

EXERCISE 7.27. Verify that the intersection product f; - fo of two strongly transverse
pseudocycles is also a pseudocycle, and that the bordism class of f; - fo depends only on the
bordism classes of f; and fo.

The exercise implies that the intersection product on pseudocycles descends to a homo-
morphism

Hy (M) ® Hiy(M) = H ay—aimar (M) : [[1] @ [fo] = [f1] - [fa],
which is well defined independently of any transversality assumptions in light of Lemma
In the important special case di + do = dim M, if M is connected, the natural isomorphism
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Hy' (M) = Z turns this into an integer-valued intersection number

[f1] - [f2] € Z,

which can be computed as the signed count of intersections between any strongly transverse
representatives f1 : V4 — M and fy : Vo — M; here the dimensional conditions on 27, and
(1, ensure that these counts are finite and bordism-invariant.

PROPOSITION 7.28. For every integer d = 0, there exists a natural homomorphism
(7.7) W : Hy(M) — HY (M)

with the following properties:

(1) If f 'V — M is a pseudocycle defined on a closed oriented manifold V', then

V(f:[V]) = [f].
(2) For any A,B € H,(M), ¥(A) - ¥(B) =¥(A- B).

Notice that by the first condition, ¥ is the natural isomorphism Ho(M) — Hy (M) in
dimension zero, so for classes of complementary dimension, the second condition implies an
equality of integer-valued intersection numbers

A-B=U(A) - U(B)eZ

Proor or Prop. [[.28 Given A € Hy(M), the idea is roughly to represent A by a map
from a simplicial complex to M, then remove the codimension 2 skeleton to turn the simplicial
complex into a smooth (but generally noncompact) manifold. We shall work with smooth
singular homology, i.e. the chain complex defining H, (M) is generated by smooth maps from
simplices into M. The equivalence between this and the usual continuous singular homology
on smooth manifolds is a standard result, see e.g. [Lee03, Theorem 16.6].

Pick a cycle Zf\; 1 ¢ifi in the smooth singular chain complex representing A € Hy(M);

here ¢; € Z and each f; is a smooth map A? i, M defined on the standard d-simplex A¢.
We can assume without loss of generality that ¢; = +1 for all i. Now for each i, define V;
to be the (noncompact if d > 2) oriented manifold with boundary consisting of the union
of the interior of A% with the interiors of its (d — 1)-dimensional boundary faces, with the
orientation assigned according to the coefficient ¢; = +1. Denote the disjoint union of the
continuous maps f; : V; — M by

N
] ]vi- M.
i=1

Each boundary component of each V; is now naturally identified with the interior of A?~1!
but inherits an orientation dependent on ¢;. The fact that ), ¢;f; is a cycle then implies a
cancelation property: since each singular simplex in ), ¢;0f; must be canceled by another
one, there exists a (not necessarily unique) orientation-reversing diffeomorphism

N N
i=1 1=1

mapping each connected boundary component of ]_[f\; 1 Vi to a different one, such that fop =
f. Indeed, ¢ can be defined on each component of dV; by choosing a canceling boundary
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component of some 0V} and using the natural identification of both with the interior of AL
We obtain from this a topological space

N
V.= Vi/ (x ~ p(x)),
[ /< o))

which becomes a smooth d-dimensional manifold if we choose suitable collars near the com-
ponents of each 0V, before gluing, and we have a well-defined continuous map f :V — M
which is smooth except at the glued boundary faces. Using standard approximation results
such as [Hir94, Theorem 2.6], one can now perturb f to a smooth map f': V — M that
is arbitrarily close to f in the strong C°-topology; in particular, we can find such a pertur-
bation so that for some metric on M, every sequence xj € V without limit points satisfies
dist(f'(xg), f(zg)) — 0. It follows that limit points f’(x,) for such sequences are the same
as for f(x,) and thus are contained in the image of some f; (a smooth map) restricted to a
k-dimensional face of A? with k < d — 2. This proves that f’:V — M is a pseudocycle.
One can use almost the same trick to show that homologous cycles give rise to bordant

+

pseudocycles. Suppose ), c;—r . are two d-dimensional cycles giving rise to pseudocycles

ff : VE — M as constructed above, and 2. ¢ifi is a (d + 1)-dimensional chain whose

boundary is >, ¢ f;7 — >}, ¢; f. Then repeating the procedure above produces a smooth
(d 4 1)-manifold V' and a smooth map f : V — M such that f(V) € M has compact closure,
(1 is contained in the images of smooth maps defined on simplices of dimension at most d—1,

oV =—-vV-nuvt

and fly. = fi|‘~/i, where VE = V* are the open subsets obtained by removing all the
(d — 1)-dimensional boundary faces of simplices, i.e. each is a disjoint union of the interiors of
the d-dimensional simplices in ), c;—r fii. The following trick to replace the missing pieces of
V* in 0V was suggested by McDuff and implemented in [Zin08]: attach collars of the form
[~1,0) x V™ and (0,1] x V™ to oV, glued in the obvious way along V~ and VT respectively.
The enlarged object can be given a smooth manifold structure, with f extended over the
collars and then approximated by a smooth map such that it now defines a bordism between
the pseudocycles f* and f~. Note that this construction also explains why, up to bordism,
the pseudocycle constructed in the previous paragraph does not depend on the choice of the
diffeomorphism in (Z.§]).

Having defined a map ¥ : Hy(M) — HY (M), it is clearly a homomorphism since addition
on both sides can be viewed as a disjoint union construction. Next suppose A = f,[V] where
f 'V — M is smooth and V is a closed oriented d-manifold. Picking a triangulation of
V' gives it the structure of a simplicial complex, and choosing an ordering of its vertices
then determines a singular cycle ), ¢;g; that represents the fundamental class [V] € Hy(V),
where each ¢; is +1 and each g¢; is a diffeomorphism from the standard simplex A? to one
of the simplices in the complex on V. The class fi[V] is now represented by > ¢;(f o g;),
and applying our previous construction to this singular cycle produces a manifold V that is
naturally identified with the complement of the (d — 2)-skeleton in V', with a pseudocycle of
the form f = fly: V — M. One can again use McDuff’s collar trick to construct a bordism

between the pseudocycles f and .]? ; the domain of this bordism is the union of two collars

[~1,0] x V and (0,1] x V, glued together in the obvious way. This proves ¥(f.[V]) = [f].
With the first property established, observe finally that the relation ¥(A)-¥(B) = U(A-B)

becomes a standard fact from smooth intersection theory (see e.g. [Bre93| §VI.11]) whenever
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A and B are both represented by smooth maps from closed manifolds. But by Thom’s theorem
[Tho54], every homology class has an integer multiple that has this property, so the formula
follows in general via bilinearity. U

With this topological language in place, Lemma [[.19 and the subsequent discussion of
cobordisms defined via parametric moduli spaces can be rephrased as follows.

THEOREM 7.29. For generic J € J:(M,w) in any closed symplectic 4-manifold (M,w),
the map

ev m
MG (A5 T) — M

is a pseudocycle for every g,m = 0 and A € Hy(M) such that either vir-dim My(A; J) > 0
or g = 0. Moreover, for any smooth family of symplectic forms {Ws}se[o,l] with wy = w and
generic Jy € J-(M,wy) for which

MG (A3 T1) =5 M™
1s also a pseudocycle, the two pseudocycles belong to the same bordism class. O

DEFINITION 7.30. For any closed symplectic 4-manifold (M,w) with integers g,m = 0
and A € Ho(M) satisfying either 2¢;(A) +2g —2 > 0 or g = 0, the m-point Gromov-Witten
invariant

M7
GWM s ()™ 7,
is defined by
GWM Y (o, am) = [ev] - W(PD(a1) x ... x PD(am,)) € Z
whenever 2c1(A) +2g — 2 = Y1, (deg(a;) — 2), and is otherwise 0. Here [ev] € HY (M™)
denotes the bordism class of the pseudocycle in Theorem [7.29] and ¥ : H,(M™) — HY (M™)
is the homomorphism from Prop.

It follows immediately from Theorem [7.29] and the existence of the intersection product on
HY(M™) that GW;{\T{;‘X (a1, ..., Q) is independent of the choice of generic J € J,(M,w) and
is invariant under symplectic deformations, and moreover, Proposition [Z.28 implies that it can
be computed in precisely the way indicated by Theorem [.I8 whenever the classes a1, ..., an,

are all Poincaré dual to smooth submanifolds. This completes the proof of Theorem [T.18]

REMARK 7.31. It turns out that the pseudocycle condition is also satisfied in the case
vir-dim My (J; A) = 0 with g > 0, meaning that M7 (.J; A) is a finite set of isolated regular
curves. This does not follow from any of the standard technical results we have discussed, as
one must exclude the possibility that an infinite sequence of isolated simple curves in Mg (J; A)
converges to a multiple cover. Our index relations show that if this happens, the cover must
be unbranched, and one can then appeal to a much more recent result of [GW17,[Wene)]
stating that unbranched covers of closed J-holomorphic curves are also Fredholm regular for
generic J, and thus isolated in the case vir-dim M(J; A) = 0. In spite of this, Theorem [Z.I§]
remains false in this case, as counting only the simple curves M;‘(J ; A) will give a number
that is not independent of the choice of J or invariant under deformations. To produce an
actual invariant, the multiple covers must also be counted, and the resulting counts are then
in Q instead of Z.
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7.2.4. Rational/ruled implies uniruled. As a warmup, the following computation is
now an immediate consequence of Theorem Bl with the sign (+1 rather than —1) provided
by Proposition .47t

THEOREM 7.32. For any exceptional sphere E in a closed symplectic 4-manifold (M,w),

(Mw) _
GWQO’[E] =1.

We next prove that (1) = (5) in Theorem [7.3]

THEOREM 7.33. Suppose (M,w) is the total space of a symplectic Lefschetz pencil or
fibration m : M\Myase — X whose fibers are embedded spheres. Then if [F'| € Ho(M) is the
homology class of the fiber,

GW(%{UJ:)L[F] (PD[pt],.... PD[pt]) =1,

where m = 0 is the number of points in Myase. In particular, (M,w) is symplectically uniruled.

PROOF. Let p1,...,py denote the points in M ,ee, and pick another point pg € M\ Mpase-
By Theorem [G] for generic J we can assume after a symplectic isotopy that the fibers of
7 are all J-holomorphic, and they are the only J-holomorphic curves that pass through all
base points and are homologous to [F']. Exactly one of these curves also passes through py,
so it follows that there is exactly one curve u homologous to [F] with m + 1 marked points
satisfying ev(u) = (po,...,pm). By Proposition 247, that curve is counted with positive
sign. O

7.3. Positively immersed symplectic spheres

We now turn to the implication (2) = (1) in Theorem [.3l This follows from the main
result in [McD92], which can be restated as follows.

THEOREM 7.34 (McDuff [McD92]). Suppose (M,w) is a closed symplectic 4-manifold
admitting a positively symplectically immersed sphere S & (M,w) with ¢1([S]) = 2. Then it
also contains a symplectically embedded sphere with nonnegative self-intersection number.

REMARK 7.35. If one interprets Theorem [Alto mean that nonnegative symplectically em-
bedded spheres are relatively rare in symplectic 4-manifolds, then we learn from Theorem [7.34]
that their non-embedded cousins with ¢ ([S]) = 2 are even rarer: it is easy to show in fact
that the non-embedded case of this theorem can only occur if (M, w) is a symplectic rational
surface. To see this, note that S can be parametrized by an immersed J-holomorphic sphere
ug : S% 9 M for suitable J € J,(M,w), and it is automatically transverse by Corollary 2.45]
so we are free to assume J is generic. Then if the theorem is true, Theorem [G] provides a
Lefschetz pencil/fibration 7 : M\ Mpase — X whose fibers are all embedded J-holomorphic
spheres. The curve ug cannot be an irreducible component of any of these fibers since it is
not embedded, and it is also not a multiple cover, thus it has strictly positive intersection
with every fiber, implying that the map 7 o ug : S> — ¥ has positive degree. This is only
possible if ¥ 2 S2, so by Theorem [Z.8], (M, w) is a rational surface.

If you have doubts as to whether the non-embedded case of Theorem [:34] can actually
occur at all, see Example below.
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7.3.1. A brief word from Seiberg-Witten theory. A few historical remarks are in
order before we delve into the details on Theorem [.34. While McDuft’s proof in [McD92]
was based only on Gromov’s pseudoholomorphic curve theory and standard techniques from
algebraic topology, the theorem was superseded a few years later by developments from gauge
theory. The following result is closely related to Liu’s Theorem [[.2T]stated in the introduction,
and is yet another consequence of Taubes’s “SW=Gr” theorem relating the Seiberg-Witten
invariants of symplectic 4-manifolds to certain counts of embedded J-holomorphic curves
[Tau95!Tau96aTau9ehb).

THEOREM 7.36. Suppose (M,w) is a closed symplectic 4-manifold containing a symplec-
tically embedded closed surface ¥ < M with ¢1([X]) = 1 such that ¥ is not an exceptional
sphere. Then (M,w) also contains a symplectically embedded sphere with nonnegative self-
intersection number.

To derive Theorem [(.34] from this statement, one only need observe that a positively
immersed symplectic sphere can always have its positive double points “resolved” as in Ex-
ercise [[.10], producing a symplectically embedded surface which might have higher genus but
will always have the same first Chern number.

We will outline a proof below that is based on [MS96], Corollary 1.5], taking a few
results from Taubes-Seiberg-Witten theory (notably Theorem [[22]] in the introduction) as
black boxes. We will also need the following elementary lemma, which is popular in the study
of oriented 4-manifolds with b = 1.

PRrOPOSITION 7.37 (“Light Cone Lemma”). Let Q( , ) denote the indefinite inner prod-
uct on R™ for which the standard basis (e1,...,e,) is orthonormal with Q(e1,e1) = 1 and
Q(ej,ej) = =1 for j =2,...,n. Then the set

P = {veR"\{0} | Q(v,v) = 0}

has two connected components, and any v,w € P in the same connected component satisfy
Q(v,w) = 0, with equality if and only if both vectors belong to the boundary of P and are
colinear.

PROOF. An element v = (v;,v_) € R x R*"! belongs to P if and only if |[v_| < |vy], so
the two connected components are distinguished by the sign of v4. Now if w = (wy,w_) € P
satisfies vy wy > 0, the Cauchy-Schwarz inequality gives

Qv,w) =vywy —<{vo,w_) = vjwy — [v_||w_| = vywy — vy ||wg| = 0.

Equality is achieved if and only if (v_,w_) = |v_||lw_| and |vy| — |v_| = |wy| — |[w_]| = 0;
the former implies that v_ and w_ are colinear, and the latter then fixes v, and w, so that
v and w are also colinear and belong to the boundary of P. O

SKETCH OF A PROOF OF THEOREM [7.36l We can assume without loss of generality that
¥ is connected. Since it is symplectically embedded, we can choose J € J;(M,w) so that it
is the image of a J-holomorphic curve u, whose index is then

ind(u) = —x(2) + 2c1([u]) =29 — 2 + 2¢1([u]) > 29 — 2,

where ¢ is the genus of X. This establishes the criterion of Theorem [2.44] for automatic
transversality, hence u is Fredholm regular and will survive sufficiently small perturbations
of J, so that we are free to assume J is generic.
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If (M,w) is not minimal, choose a maximal collection of pairwise disjoint exceptional
spheres Fi,...,FEr < M; note that by assumption, 3 is not one of them. We can assume
they are all J-holomorphic by Theorem [5.1] and by Corollary 2.32] we are also free to assume
that they are all transverse to ¥. Then blowing down (M,w) along FEj 1I... 11 E} using
Theorem [B.14] produces a symplectic manifold (M/ ,0) with tame almost complex structure
J and a pseudoholomorphic blowdown map 5 : (M,J) — (M/ , J ), so that @ := S ou is an
immersed J-holomorphic curve with ¢ (Ny) > ¢1(N,) by Exercise This makes the image
of % a positively symplectically immersed surface 3 in (M, &) with ¢ ([S]) = e1([2]) > 1.
One can now use Exercise [T.10] to resolve the double points of this immersion, producing a
symplectically embedded surface Y < (]\\/_7 ,), possibly with larger genus than the original,

~

but satisfying c1([¥']) = c1([Z]) = 1.

The previous paragraph reduces the theorem to the case where (M, w) is minimal, so as-
sume this from now on. Observe also that since X is not an exceptional sphere, the adjunction
formula gives

(7.9) (3] - [E] = aa([Z]) = x(2) = 0

We claim next that by (M) = 1. Note that by (M) > 1 automatically since (M,w) is
symplectic, so arguing by contradiction, assume bj (M) > 1. Then using the notation of
[MS17, §13.3], the following fundamental results of Taubes apply:

o SW(M, o0, ppa)) = Gr(M,w, A) for all A e Hy(M);

o SW(M,o0,,lwx-a) =+SW(M,o0,,T,,) for all a € H*(M).
Here K := —ci(M,w) is the canonical class of (M,w), SW(M,0,T") € Z denotes the Seiberg-
Witten invariant associated to a homological orientation o and a spin® structure I, o, and
I',, are the canonical homological orientation and spin® structure respectively associated to
the formal homotopy class of w, and I, 4 is the latter’s tensor product with a Hermitian line
bundle having first Chern class a. Likewise, Gr(M,w, A) € Z is the Gromov invariant defined
in [Tau96a), which counts a special class of constrained J-holomorphic curves for generic
J € Jr(M,w) in the homology class A. The two properties above imply that for the canonical
class K,

+ Gr(M,w,PD(K)) = + SW(M, 0, Ty i) = SW(M, 0,,T,) = GW(M,w,0) = 1,

where the last equality is essentially a definition since GW (M, w,0) is a count of the “empty
holomorphic curve,” of which there is exactly one. Knowing Gr(M,w,PD(K)) # 0, we deduce
the existence for generic J € J,(M,w) of a possibly disconnected J-holomorphic curve v
homologous to PD(K). Since X is also J-holomorphic, every connected component of v is
either a cover of ¥ or intersects it at most finitely many times, always positively, implying in

light of (Z.9)) that
0 < [v] - [2] = PD(K) - [X] = (=e1(M, w), [E]) = —e1 ([2]),
This contradicts the assumption ¢ ([X]) > 0.

)
Having established that b (M) = 1, let us abbreviate « - 8 := (o U B3, [M]) for a,f3 €
H?(M;R) and assume

K-K>0 and K-[w]=>0,

since the desired result otherwise follows from Theorem [[L2Il The first condition means
that either K or —K belongs to the “positive light cone” in H?(M;R), i.e. the connected
component of {a € H2(M;R) | a-a > 0} containing [w]. It follows then from Prop. .37 that



7.3. POSITIVELY IMMERSED SYMPLECTIC SPHERES 125

K - [w] cannot be 0, as [w] is not on the boundary of the light cone since [w] - [w] > 0. Thus
K - [w] > 0, implying that K is in the positive light cone. But (Z9) and {y w > 0 imply that
PD[X] is also in the positive light cone, so the assumption K - PD[X] = —¢1([X]) < 0 now
contradicts Proposition [.371 O

Results of this kind provide good motivation to study the Seiberg-Witten theory of sym-
plectic 4-manifolds, and we refer the reader to [MS17, §13.3] and [MS96] for a nice overview
of what else can be proved with such techniques. In particular, these methods have been
greatly successful in extending standard theorems about complex surfaces into the symplectic
category. From the author’s admittedly subjective point of view, however, holomorphic curve
theory has the advantage of often leading to more transparent geometric arguments than are
typically possible via gauge theory, and moreover, the theory remains well defined (though
weaker) in higher dimensions, where gauge-theoretic techniques are completely unavailable.

7.3.2. Outline of the proof. We will leave Theorem [7.36l out of the following discussion
and present a variation on McDuff’s original proof of Theorem [[34] which is completely
independent of Seiberg-Witten theory. The proof below contains a few simplifications in
comparison with the original, most of which are also due to McDuff but have not appeared
in the literature before. Here is a summary of the argument.

The beginning of the proof will seem familiar: we shall choose an almost complex structure
turning the given immersed sphere S into a J-holomorphic curve, which will be regular due to
automatic transversality. The condition ¢1 ([S]) = 2 makes the index of this curve at least 2, so
we can then impose enough pointwise constraints to view .S as an element in a 2-dimensional
moduli space Mg(J) consisting of somewhere injective curves homologous to S with m > 0
marked points mapped to fixed positions p1,...,pm € M. It will be straightforward to show
that the natural compactification Mg(.J) of Mg(J) is obtained by adding a finite collection
of nodal curves that each have two simple components of (constrained) index 0.

At this point the argument diverges from the previous chapters, as we can no longer assume
that any of the component curves in Mg(.J) are embedded or that neighboring curves in this
moduli space are disjoint, so they do not give rise to a nice geometric decomposition of M.
The key instead is to show that the set of nodal curves in Mg(.JJ) must be nonempty, and one
of the components of these nodal curves must be an embedded curve with nonnegative self-
intersection, see Figure[Z.Il The features that guarantee this result are essentially topological:
first, by adding an extra marked point to the curves in Mg(J), we obtain a 4-dimensional
moduli space Ug(J) with two natural maps

Tm Us(J) > Mg(J) and  evyyr :Us(J) — M,

where the first is defined by forgetting the extra marked point and the second by evaluating
it. We will see that Ug(J) can be given the structure of a smooth, closed and oriented 4-
manifold, and its topology is of a very specific type: the map 7, is a Lefschetz fibration,
which makes Ug(.J) topologically a blown-up ruled surface.

The second crucial topological observation is that while the curves in ¢ g(.J) can no longer
be assumed to foliate M in any reasonable sense, generically almost all of them are immersed
and thus subject to automatic transversality arguments, which we will be able to use to show
that

deg(evi4+1) = 1.
This and a standard generic homotopy argument establish the implication (2) = (4) in
Theorem [7.3], allowing us to reduce to the minimal case via Lemmas and [CT1l Now if
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FIGURE 7.1. Schematic picture of a 2-dimensional family of immersed holo-
morphic spheres with one constrained marked point, each with one transverse
self-intersection. The family can degenerate to a nodal curve whose smooth
components are a pair of embedded spheres, one of which passes through the
constraint point and has self-intersection number 0.

(M,w) is minimal but the theorem does not hold, we know that none of the nodal curves in
Ms(J) contain an embedded component. Under this assumption, we will use our knowledge
of the topology of blown-up ruled surfaces to draw topological conclusions about (M,w) that
are impossible for any symplectic 4-manifold, e.g. that it violates the Hirzebruch signature
theorem.

Note that on rational surfaces, it is easy to construct (e.g. via gluing) non-embedded
holomorphic spheres with positive index. The following concrete example illustrates one way
that such non-embedded spheres can be arranged into a 2-dimensional moduli space that
reveals embedded spheres in its compactification.

EXAMPLE 7.38. Suppose M is $?x S? with a product symplectic structure and its standard
complex structure J = i @i. Consider the real 2-dimensional family of holomorphic spheres
ug : 5% — 52 x 82 defined by

uq(2) = <(’Z —D(z—a) z-1(z+aq)

(z+a)(z—1) (z—a)(z—1)

) . aeC\{0,1,-1,i,—i}.

It is easy to check that all of these curves are simple, as for instance z = 1 is an injective
point for all of them. Denoting the generators of Hy(S? x S?) by [S1] = [S? x {const}] and
[S2] = [{const} x S?], we have [uy] = 2[S1] + 2[S2] and thus [ug] - [ua] = c1([uq]) = 8 for
all a, so by the adjunction formula, d(u,) = 1, implying that none of the u, are embedded.
If we add the six marked points (; =0, (o =1, (3 = 0, {4 =1, (5 = a and (5 = —a, we find
that u, satisfies the constraints

Ua(Cl) = (i’i)’ ua(CQ) = (O’O)’
Ua(CB) = (1’ 1)’ ua(<4) = (O0,00),
uq(Gs) = (0,0), ua(Cs) = (0,0)
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and the moduli space of spheres homologous to 2[S;]+ 2[.S2] with six marked points satisfying
these constraints has virtual dimension 2. In the limit as

a— 0,
u, degenerates into a nodal curve with two embedded components ug and u, both satisfying
+ +
[ug] - [ug] = 2.

The former is the limit of the maps u, : S — 5% x S2 in C2 (S%\{0}),

loc

z—1 z—1
o - (555).

which is just a reparametrization of the diagonal curve z — (z,z). The other component is

obtained by reparametrizing u, and taking the limit in C{° (C) of u4(az), giving the curve

ug (2) = <Z(Zz;11) Z(ZZ—ill)> '

The original six marked points are split evenly between these two components: uar gets the
points that stay outside a fixed neighborhood of 0, namely (; = 1, (3 = o0 and (4 = 4, while
the reparametrization realizes the other three points on uy as (1 = 0, (5 = 1 and (¢ = —1.
Since both curves satisfy ¢1([ug]) = c1([S1]+[S2]) = 4, they each have unconstrained index 6
and the three constraint points bring their indices down to 0. Observe finally that in spite
of the lack of genericity in our choice of J relative to the constraint points, Theorem
implies that both components of the nodal curve are regular for the constrained problem, so
we would necessarily see a small perturbation of the same degeneration (though we could not
write it down so explicitly) if J were a generic perturbation of i @ i.

EXERCISE 7.39. Show that in the above example, a similar nodal degeneration to the
case a — 0 occurs when a — c0. Show however that the degenerations for the cases a —
{1,—1,4,—4} all involve nodal curves that could not exist if J were generic relative to the
given constraint points.

7.3.3. The universal J-holomorphic curve. We will make use of the following general
construction. For any almost complex manifold (M, J), integers g,m > 0 and a homology
class A€ Ho(M), let

Ugm(A;J) = Mgmi1(A; J)

and consider the natural map

Tt Ugm(A; ) = Mg m(A; J)

defined by forgetting the “extra” marked point (i.e. the last of the m + 1) and stabilizing the
nodal curve that remains. Here, “stabilizing” means in practice the following: if the extra
marked point lies on a ghost bubble with only three marked or nodal points, then removing it
produces a curve that is not stable, but there is a uniquely determined element of Mg,m(A; J)
obtained from this by collapsing the non-stable ghost bubble—if another marked point loses
its domain component in this process, it can naturally be placed on a neighboring component
in place of the orphaned nodal point (see Figure [[2]). We denote the evaluation map for the
extra marked point by

eVimt1 : Ugm(A;J) — M.
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FIGURE 7.2. An example illustrating the map U, (J) — My, 4(J) that
forgets the extra marked point and collapses the resulting non-stable domain
component. (Ghost components are the shaded ones in the picture.)

Though 7, : Ugm(A; J) — Mg m(4;J) is not generally a fibration, it will be convenient
to think of it in this way, and to regard each of its “fibers” as a parametrization of the
underlying holomorphic curve. To make this precise, let us associate to any nodal curve
[(S, 4,1, (Ciy- oy Gm)y A)] € My m(A; J) the singular Riemann surface

S = S/~ where z~ 2’ for each node {z,2'} € A,

and observe that u : S — M descends to a well-defined continuous map S — M. The auto-
morphism group of u, i.e. the set of all equivalences of (S, j,u, ((1,...,(m),A) to itself, also
acts naturally on S via homeomorphisms ¢ : S-S satisfying w o ¢ = u, as every automor-
phism is required to map nodal pairs to nodal pairs. Note that the stability condition implies
that these automorphism groups are always finite. The result is a well-defined continuous
map u : S/ Aut(u) — M.

__ PropoSITION 7.40. For each tuple (S,j,u,(C1,--.,Gn),A) representing an element of
Mg m(A;J) with automorphism group Aut(u), there is a natural homeomorphism between
the preimage of this element under m,, and the quotient S/ Aut(u) such that evy, 41 | wl(u)

7Y (u) — M is identified with the map u: S/ Aut(u) — M.

PROOF. The correspondence is mostly straightforward if u is a smooth simple curve, as
then any point in S\{C1,...,(n} can be chosen as the extra marked point to define an el-
ement of 7, 1(u), and no two of these elements are equivalent since there are no nontrivial
automorphisms of S preserving both the map u and all the marked points (i,...,(y,. The
only slightly tricky detail is to identify which elements of 7.} (u) correspond to the marked
points (1,...,(m, but the answer is simple: for each ¢ = 1,...,m, the nodal curve consisting
of u: S — M plus a ghost bubble with two marked points attached to S at (; gives an element
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FIGURE 7.3. An element of m,!'(m) in which the extra marked point is
positioned “in the same place” with one of the original m marked points.

¥

FIGURE 7.4. An element of 7,,}(m) where u is a nodal curve and the extra
marked point is positioned “at a node”.

of m,}(u) corresponding to ¢;, see Figure [[3l If u is not simple and has nontrivial automor-
phisms, then two distinct choices of location for the extra marked point define equivalent
elements of U, ,,(A; J) if and only if they represent the same element of S/ Aut(u).

When u is a nodal curve, we only need to supplement the above discussion by explaining
which element of 7! (u) corresponds to each nodal pair {z,2'} € A, and the answer is again
straightforward: insert a ghost bubble between z and 2/, then place the extra marked point
on the ghost bubble (Figure [(.4]). O

__ The analogue of 7, as a map on the compactified moduli space of Riemann surfaces
My mi1 — Mg is sometimes referred to in the Gromov-Witten literature as the “universal
curve,” and we shall call the above version the universal J-holomorphic curve.

7.3.4. The moduli space as a blown-up ruled surface. For the remainder of this
chapter, (M,w) is a closed and connected symplectic 4-manifold, and S & M is a positively
symplectically immersed sphere with

m:=ci([S]) —2=0.

By Exercise [[2] we can choose J € J.(M,w) such that S is realized by an immersed J-
holomorphic sphere ug : S — M. Pick a set of pairwise distinct points

pP1,---yPm <& uS(SQ)
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which are all injective points for ug, meaning there are unique points ¢y, ...,(mn € S 2 such that
us(¢) = p; for i = 1,...,m. Now, in the compactified moduli space Mg ,,([S]; J;p1,-- - Dm)
of J-holomorphic spheres with m marked points constrained at p1, ..., pm, let

MS(J) < Mo,m([SLJapl’ .. 7pm)

denote the connected component containing the curve ug with marked points (3, ..., (;,. This
space has virtual dimension

vir-dim Mo . ([S]; J;p1, - - -, Pm) = ind(ug) — 2m = —2 + 2¢1([S]) — 2m = 2,
and we will denote the set of smooth (non-nodal) curves in Mg(.J) by
Ms(J) = Ms(J).
We will also consider the corresponding component of the universal J-holomorphic curve,
Us(J) := 7! (Ms(])) < Uom([S]; ),
giving rise to a map
T+ Us(J) — Ms(J)

whose fibers (according to Prop. [Z.40]) are homeomorphic to the nodal domains of elements in
M (J) modulo automorphisms, with the maps from these domains to M then corresponding
to the evaluation map at the extra marked point,

eVl i Us(J) — M.

Note that our definition does not assume the uncompactified space Mg(J) to be con-
nected, though we will see in a moment that this is true for generic J. Observe that since
ind(ug) = 2m + 2, Theorem implies that ug is Fredholm regular for the problem with
fixed point constraints, therefore it will survive any sufficiently small perturbation making
J generic, at the cost of starting with a small perturbation of S. We will have more to say
about genericity conditions below (see Lemma [Z.50]), but for now, let us impose the following
conditions:

ASSUMPTIONS 7.41 (genericity).

(1) All somewhere injective curves satisfying marked point constraints defined via subsets

of {p1,...,pm} are regular for the constrained problem.
(2) All somewhere injective curves that have constrained index 0 with respect to marked
point constraints defined via subsets of {p1,...,pm} are immersed, and any pair of

distinct curves of this type are transverse to each other, with intersection points
disjoint (in the image) from the self-intersection points of either one.

The first condition was also imposed in Chapter @] and it implies that
vir-dim Mg - (A; J;piy s - -5 Diy) =0

holds for every A € Ho(M), r = 0 and subset {p;,,...,pi.} < {p1,...,pm} for which the space
Mo (A; Ty piys ..., pi,) contains a somewhere injective curve. Corollary [223] provides a finite
intersection of comeager subsets of J,(M,w) for which this condition holds. Theorem
and Corollaries and provide a further finite intersection of comeager subsets for
which the second condition holds.
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LEMMA 7.42. Given the genericity assumptions [7.41], for any constant Ey > 0, the set
of all curves belonging to all moduli spaces of the form ME')"T(A; JiDiyy -y pi,) forr =0,
arbitrary subsets {piy,-..,0i.} < {P1,--.,Pm}, and classes A € Ho(M) satisfying

(w],A) < Ey and —2+2c;(A) —2r =0,
is finite.

PrOOF. The proof is almost word-for-word the same as that of Lemma the point
is to use Gromov compactness and the index relations of §4.2] to show that any sequence of
such curves has a subsequence convergent to a simple curve with no nodes. This set is then
a compact 0-dimensional manifold, hence finite. O

LEMMA 7.43. Under the genericity assumptions[741, Mg(J) is an oriented 2-dimensional
topological manifold containing an at most finite set of isolated nodal curves. Moreover, all
curves in Mg(J) are simple, and each nodal curve in Mg(J)\Mg(J) has exactly two smooth
components, which are distinct simple curves having index 0 with respect to their respective
marked point constraints, connected by a node whose image is not any of the points p1,...,Pm-

PROOF. Most of the argument is a repeat of the proof of Theorem [£.6]in Chapter [, using
index relations. As with the previous lemma, the arguments in Lemma 17| imply that any
sequence uy, € Mg(J) has a subsequence converging to a limit uy € Mg(J) which is one of
the following:

(1) A smooth simple curve;
(2) A smooth branched double cover of a simple J-holomorphic sphere with index 0
(arising only in the case m = 0);
(3) A nodal curve with exactly two components connected by a single node, where the
two components u! and u? are simple J-holomorphic spheres with m; and mo marked
points respectively, such that ind(u’) = 2m; for i = 1,2.
We need to rule out the second case: our argument for this in the proof of Theorem
assumed embeddedness, so we need a slightly different argument here, though the idea will be
similar. Suppose uy = v o : 8 — M, where v : S — M is a simple J-holomorphic curve
and ¢ : S — S? is a holomorphic branched double cover. Since m must be zero in this case,
we have ¢;([ue]) = 2 and ¢1([v]) = 1, implying ind(v) = 0, and our genericity assumptions
therefore imply that v is immersed. We can then write

O YR (NS
v({)=v(¢’)

where the sum ranges over the finite set of pairs (¢,¢’) € S% x S? outside of the diagonal
for which v(¢) = v(¢’), and (¢, (") € N denotes the local intersection index for each of these
isolated intersections. Suppose (¢, (') is one of these pairs such that ¢ and ¢’ are both regular
values of ¢. Then each choice of lift z € ¢=!(¢) and 2’ € ¢~ 1(¢’) gives rise to an isolated
self-intersection of u with the same local intersection index i(z,2’) = i(¢,(’), and there are
exactly four choices of such pairs of lifts. By positivity of intersections, these isolated self-
intersections survive as uq is perturbed to a simple curve uy for k sufficiently large, hence
the double point v((, (") contributes 4i(¢, (") to d(ux). Exercise [[44] below implies that this
calculation remains valid even if ¢ or (' is a critical value of o, so by positivity of intersections,
we conclude

(7.10) 5(up) = 45(v)



132 7. UNIRULED SYMPLECTIC 4-MANIFOLDS

for all k sufficiently large. Now let us compare this to what can be deduced from the adjunction
formula: since ¢1([v]) = 1 and ¢;([ug]) = 2, we have

[o] - [o] = 26(v) =1, [u] - [uk] = 20(ug),
so using the fact that [ug] = [ue] = 2[v],
20(ug) = 4(26(v) — 1) = 80(v) — 4,

implying 0(ug) = 40(v) — 2, which contradicts (7.10]).

In the third case, we also need to show that the components u! and u? of our nodal
curve are distinct. Indeed, if u! = u? =: v but m > 0, then v appears with two distinct
configurations of marked point constraints and has constrained index 0 for both, meaning !
and u? each have the same positive number of marked points, but v also must pass through all
of the constraint points and thus violates are genericity assumption. This is a contradiction
unless m = 0. In the latter case we can adapt the intersection-theoretic argument of the
previous paragraph: [ug| = 2[v] and the adjunction formula again imply 0(ug) = 46(v) — 2,
but v also has index zero and is thus immersed, with each of its double points lifting to four
isolated double points of uy, which survive the perturbation of the nodal curve ugy to a smooth
simple curve ug, thus implying the contradiction 6(uy) = 4d(v) for large k.

Since u! and u? are distinct curves that both pass through exactly as many of the con-
straint points pi,...,p, as their indices will allow, there can be no constraint point that is
hit by both of them. This implies that the image of the node is not a constraint point.

Finally, the description of Mg(.J) as an oriented topological manifold comes from the
combination of two results: away from nodal curves, the usual implicit function theorem (The-
orem [2.27]) furnishes Mg(J) with the structure of a smooth oriented 2-dimensional manifold,
while neighborhoods of each of the finitely many nodal curves in Mg(J) are homeomorphic
to 2-disks by the gluing theorem (Corollary 2.39). Note that the latter requires our second
genericity condition, ensuring that the two smooth components in each nodal curve intersect
each other transversely at the node. O

EXERCISE 7.44. Suppose v1,vs : D? — C? are smooth maps with an isolated intersection
v1(0) = v2(0) that has local intersection index I, and uy,us : D?* — C? are the branched covers
u1(z) = v1(2¥F) and ug(2) = vo(2*). Show that the resulting isolated intersection u;(0) = uz(0)
has local intersection index k¢I.

One consequence of Lemma [T.43] is that every curve in Mg(J) has trivial automorphism
group, so we can now extract from Prop. [[.40] a much simpler description of the projection
map 7, : Us(J) — Mg(J). Almost all of its fibers are smooth spheres, except for finitely
many which are unions of two spheres intersecting at one point. This should remind you of a
Lefschetz fibration, and in fact:

LEMMA 7.45. The spaces Us(J) and Ms(J) can each be given smooth structures, making
them closed manifolds of dimenison 4 and 2 respectively, such that mp, : Us(J) — Mg(J) is
a Lefschetz fibration with fibers of genus zero and one critical point in each singular fiber.

PROOF. Our main task is to show that each element of Ug(J) representing a node under
the corresondence in Prop. [[.40] has a neighborhood homeomorphic to a neighborhood of
0 in C? such that, for a suitable choice of complex coordinate on a neighborhood of the
underlying nodal curve in Mg(J), m, is identified with the map (21, 29) = 2?2 + 23. Recall
from Exercise B.2T] that after a change of complex coordinates, we can equally well consider
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the model (21, 22) := z122. As we saw in Example B.23] one can parametrize the fibers near
0 in this model as a family of holomorphic annuli that degenerate to a nodal holomorphic
curve consisting of two transversely intersecting disks. We shall now use the gluing map from
§2.1.7 to obtain a similar local description of 7, : Us(J) — Mg(J).

Assume vy € Mg(J) is a nodal curve with smooth components vy : (X7, 57) — (M, .J)
and vy : (¥7,57) — (M, J) connected by nodal points z* € $F with

vy (27) = vy (27) =t po € M\{p1,....pm},

so we have an identification of 7! (vy) with the singular surface ¥ := (S* 1157)/~ in which
2zt ~ 2. Denote the node in ¥ by Z, and regard it as an element of Ug(J). As explained in the
proof of Corollary 239, the gluing map that describes a neighborhood of vy in Mg, ([S]; J)

specializes to the space of curves constrained by p1,...,pm, as a smooth map
U : [Ry, ) x St < Mg(J)

for some Ry > 0, such that ¥(R,0) — vy in the Gromov topology for every 6 € S! as
R — o. We can be a bit more precise about this by recalling how the gluing map is
constructed: first, we fix coordinates identifying punctured neighborhoods of 2~ € ¥~ and
z* € ¥ biholomorphically with [0, 00) xSt and (—o0, 0] x S* respectively, and for each (R, ) €
[Ro, ) x St we construct a new Riemann surface ¥(r,9) by cutting the ends (R, ) x S Land

(=00, —R) x St off of ¥~ and X7, then gluing the resulting truncated surfaces together via
the map {R} x S — {—R} x S : (R,t) — (—R,t+6). The Riemann surface Xp g) serves as
the domain of the glued curve

U(R,G) = \I/(R,H) € ./\/ls(J)

and is thus a model for the fiber 7 .}(¥(R,0)). For our present purposes, it will suffice to
understand what is happening on the “neck”

Zrg = ([0,R] x SY) Ur~(~rir0) ([FR.0] x S1) & S(rg).

By the construction of the gluing map, the restriction of v(g g) to Z(g g) converges as R — o0

tov_ : [0,00) x St — M and v, : (—] x S' — M on the two halves of the increasingly long
annulus Zg gy, and to flesh out the implications of this more precisely, let us identify Zp )

with [~ R, R] x S! via the biholomorphic map

(s+R,t—0) if

:[-R,R] x 8* = Zigp : (s5,1) —
Y(ro) [ ] % (R0) : (5,1) {(S—R,t) ¢

Then writing 0(g gy := V(rg) © Y(r) : [~ R, R] x S' — M, we have
I%im O(rg)(s + R, t) = vg (s,1) for (s,t) € (—0,0] x S*,
—00

lim ¥gg)(s — R,t) = vy (s,t —0) for (s,t) € [0,00) x ST,
R—o0 ’

with convergence in CpY, on the half-cylinder in both cases. Moreover, given any sequence
(R, 0%) € [Ro,0) x St with Ry — o0 and a sequence (s, t1,) € [~ Ry, Ri] x S* with s, + Ry —
o and Rj — sp — 00, we have

V(Ry,01) (Sks tk) — Do-
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We have intentionally set up these parametrizations to look very similar to the degeneration
of the annuli u,, : [-R, R] x S' — C? exhibited in Example B.23] where w = 7e2™ and

1
(7.11) R = e cosh™(e2/2r)

for some small € > 0. And indeed, we can now define a homeomorphism ® from a neighbor-
hood of ¥ in Us(J) to a neighborhood of 0 in C? as follows. For each (R,#) € [Ry, ) x S*
and (s,t) € [-R, R] x S', denote by (R,0,s,t) the element of ;! (v(gg)) that has the extra
marked point placed at w(Rﬂ)(s,t) € Z(Rr) < X(r)- We then define ® outside the singular
fiber by
D(R,0,5,t) = uy(s,t) e C?,

with w = re*™ and r defined in terms of R via (ZI1I]). The matching degeneration behavior
of the families ¥y gy and u,, implies that ® has a continuous extension defined on the singular
fiber as follows: ® maps the element in 7! (vg) with extra marked point at (s,t) € (—o0, 0] x
S < % to uf (e27(+ ) e C2, while the element with extra marked point at (s,t) € [0,00) x
S < %7 is mapped to ugy (e"27*™). Defining a complex coordinate chart on Mg(J)
near vg by p(v(gg)) = re2™ and ¢(vy) = 0, we now have o o 7, 0 ®71(21,29) = 2122 by
construction. U

27160

COROLLARY 7.46. The space Us(J) is homeomorphic to X#k@z, where k = 0 is the
number of nodal curves in Mg(J) and X is a symplectic ruled surface fibering over the closed

surface Mg(J). O

Next, we observe that the above description of the compact moduli space Mg(.J) is quite
stable under generic deformations of J. Indeed, suppose {Js}se[o,l] is a generic 1-parameter
family of tame almost complex structures with Jy = J, and consider the parametric moduli
space

MS({JS}) = MO,m([S]; {Js}§p1a s apm)a
defined as the connected component of Mo ([ST; {Js}; 1, - - -, Pm) that contains the set {0} x
Ms(J). For each t € (0,1], denote

Ms () = {ue Mom([S); ) | (t,u) € Ms({J: 1)},
and add an extra marked point to define
Us({Js}) = {(s,u) | s€[0,1] and mp,(u) € Ms(Js)},
along with the obvious continuous maps
T Us({Ts}) = Ms({Js}),
Vg1 : Us({Js}) — M.
LEMMA 7.47. For generic homotopies {Js € Jr(M,w)}sejo,1] where Jo = J and Jy satis-
fies genericity assumptions [7Z1, Ms({Js}) is a compact oriented 3-dimensional topological
manifold with boundary, defining an oriented cobordism from Mg(J) to Mg(J1). Moreover,

Ms(J1) also has the structure described in Lemma 743, and it contains the same number of
nodal curves as Mg(J).

PROOF. We again use the fact that indices of closed holomorphic curves (with or without
fixed point constraints) are always even, so adding one parameter for J to depend on does not
create any danger of the appearance of index —1 curves. In fact, it does not make possible
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any of the eventualities that were ruled out via genericity in the proof of Lemma[7.43] as these
all involved conditions that have codimension at least 2. In particular, the same argument
rules out all nodal curves in Mg({.J;}) that are more complicated than those occurring in
Mg(J), and their smooth components (with constrained index 0) can still be assumed to be
immersed. This last detail implies that all such curves satisfy the hypotheses for automatic
transversality in Theorem .46, so they are Fredholm regular even at parameter values where
Js is not generic. The nodal curves therefore form a finite collection of 1-parameter families
that vary smoothly with s € [0,1] and survive the entire homotopy from s = 0 to s = 1.
For the same reason, the gluing theorem also remains valid near the nodal curves even when
Js is not generic, and thus gives a reasonable description of neighborhoods of such curves in
Ms({Js}) as topological 3-manifolds. Outside the nodal curves, the arguments of Lemma [7.43]
rule out multiple covers so that the usual implicit function theorem as in Theorem gives
Ms({Js}) a smooth structure. O

Another important consequence of automatic transversality as used in the above proof is
that the argument of Lemma [7.45] still works for describing the local structure of the space
Us({Js}) near nodes, even in cases where J; is not generic. Hence:

COROLLARY 7.48. In the setting of Lemma[T47, the space Us({J.}) is a compact oriented
5-dimensional cobordism between Ug(J) and

Hs(!fl) = 7'(';11 (MS(Jl))

7.3.5. The evaluation map has positive degree. The above results prove that
Vi1 Us(J) —> M

is a continuous map between closed oriented manifolds of the same dimension, so it has a
well-defined mapping degree. Computing this degree requires the following slight modification
of Proposition 2,53t

LEMMA 7.49. Suppose u € Mg(J) is immersed. Then on some neighborhood of the
complement of the marked points in 7, (u), the map evyy1 : Us(J) — M is a local diffeo-
morphism and is orientation preserving.

PROOF. The claim that it is a local diffeomorphism follows from Theorem since u
is immersed and ind(u) = 2m + 2, so automatic transversality holds and remains valid after
adding the extra marked point and imposing on it a fixed point constraint. The conclusion
that it is orientation preserving then follows from Proposition 2471 O

To say more, we need to impose further genericity conditions using the techniques of §2.1.4]
and 215t in particular, we shall assume from now on that all the results of those sections
hold for all choices of submanifolds Z of the form

Z=A{pi,---»pi,)} < M"

for arbitrary subsets {p;,,...,pi,} < {P1,...,Pm}. Since there are finitely many such subsets,
this restricts J to a finite intersection of comeager subsets of J(M,w), which is also comeager.
As with assumptions [[.41] allowing such a perturbation of J implicitly means perturbing the
original immersion S & M as well.
Now denote by
MEN(T) « Ms(J)
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the open subset consisting of curves u € Mg(J) with the following properties:

(1) w is immersed;

(2) u has no tangential self-intersections;

(3) w has no triple self-intersections;
(4) The marked points of u are all injective points;
(5) w has no tangential intersections with any of the finitely many curves in Lemma [.22]

with energy bounded by Ey := {[w], [S]).
We denote
ME(T) = Mg(T)\ME(J).

The next lemma is a straightforward application of the results in §2.1.4] and §2.1.5]

LEMMA 7.50 (genericity).
(1) M24(J) is a discrete subset of Mg(J)H
(2) Any two distinct curves in M224(.J) intersect each other transversely.
ritical points, tangential self-intersections or triple self-intersections of curves in
3) Critical points, t tial self-int t tripl If-int t '
/\/lgad(J) never occur at any of the constraint points p1,...,Dm-
O

LEMMA 7.51. The map eviyy1 : Us(J) — M has deg(evp, 1) = 1, with equality if and
only if S is embedded.

Proor. If S is embedded, then the statement reduces to a consequence of the main
results from Chapter [[ i.e. Mg(J) forms a foliation of M\{p1,...,pm} and deg(ev,,;1) is
therefore 1. Now assume S is not embedded, and pick a curve u € M%OOd(J ). The adjunction
formula implies that v is not embedded, so we can pick two distinct points ¢,(’ € 7,  (u)
that are separate from the marked points of u and satisfy ev,,11(¢) = evi+1(¢") =: go. By
Lemma [.49] ev,,;1 defines orientation-preserving diffeomorphisms from disjoint neighbor-
hoods of ¢ and ¢’ in Ug(.J) onto a neighborhood of qq in M. But by Lemma [Z50, almost
every point in M is not in the image of any curve from Mb(.J), thus we can find a point
q € M with this property in the aforementioned neighborhood of gy. Now Lemma [.49] implies
that every point in ev:nil(q) contributes positively to deg(ev,,+1), and there are at least two
such points, hence deg(ev,,+1) = 2. O

COROLLARY 7.52. The implication (2) = (4) in Theorem [7.3 holds.

PROOF. Given a generic J; € J(M,w), we can choose a generic homotopy {Js}se[o,1] in
Jr(M,w) from J to Ji so that Corollary [T.4]] gives a compact oriented cobordism between
closed oriented 4-manifolds Us(J) and Ug(J1). Extending ev,,,1 in the natural way to this
cobordism, its restriction to Us(.J1) then also has positive degree, implying the existence of
somewhere injective Ji-holomorphic spheres homologous to [S]. O

For the remainder of this chapter, let
N = deg(evy,41).

Notice that if m > 1, then for each ¢ = 1,...,m, the ¢th marked point naturally determines
a smooth section -

3With a little more effort and intersection theory, one can show that M2*?(J) is actually finite for generic J,
but we will not need this.
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of the Lefschetz fibration 7, : Us(J) — Mg(J), such that ev,,, 1 maps 3; to a single point p;.
By Lemmal[7.50] no curve in Mg(J) has a non-immersed point at any of its marked points, and
this is automatically also true for the nodal curves in Mg(J) since their smooth components
are immersed. Thus there exists for each i = 1,...,m a continuous map

oi : Mg(J) — P(T,,M) = CP*

sending each curve u € Mg(J) to the complex tangent space that it spans at the jth marked
point. The next lemma is yet another consequence of automatic transversality.

LEMMA 7.53. The maps o; restrict to M%OOd(J) as orientation-preserving local diffeomor-

phisms.

PROOF. As in the proof of Theorem [Z46] T\, Mg (J) can be naturally identified for each

u € M%OOd(J ) with the kernel of the normal Cauchy-Riemann operator DY defined on a
space of sections of the normal bundle N, of u© which are constrained to vanish at the marked
points. Since ¢1(N,) = m and zeroes of nontrivial sections 7 € ker DY = T, M5(J) count
positively, the zeroes at the marked points are all nondegenerate, and this translates into the
statement that the derivative of each o; at w is nonsingular. To see that it also preserves
orientation, one can check that this is true if DY happens to be complex linear, and then
argue the general case as in Proposition 2.47] by deforming D through a family of Cauchy-
Riemann type operators to its complex-linear part: the point is that all the operators in this
deformation are also surjective and also have the property that nontrivial elements of their
kernels have nondegenerate zeroes at the marked points. O

LEMMA 7.54. For eachi=1,...,m, deg(o;) = N.

PROOF. The discrete subset M2(.J) can accumulate only near the finite set of nodal
curves Mg(J)\Mg(J), thus if we pick any u belonging to M%OOd(J ) for which o;(u) lies
outside both the finite set of values taken by o; on nodal curves and the discrete set of values
taken on MY(.J), then o;(u) has a neighborhood in P(7},, M) consisting of points whose
preimages are all in ./\/l%OOd(J ) and thus (by the previous lemma) contribute positively to
deg(c;). This already proves that deg(o;) > 0. To see that it also matches deg(ev,,+1), one
can repeat the argument of Lemma [Z.51] using a point ¢ near p; in the image of a curve near u:
since p; is an injective point of every curve in M%OOd(J ), we can arrange for ¢ to occur as
a value of curves in Mg(J) only in some arbitrarily small neighborhood of the ith marked
point, and only for curves u’ with o;(u) lying in an arbitrarily small neighborhood of o;(u).
This sets up a bijection between ev;,! | (¢) and the connected components of o; * (i) for some
small neighborhood U < P(T},, M) of o;(u). O

LEMMA 7.55. The sections ¥; < Ug(J) fori =1,...,m are all disjoint from each other
and all satisfy [X;] - [2;] = —N.

PRrROOF. The fact that they are disjoint is obvious. To compute [3;] - [£;], we claim
that the normal bundle of ¥; in M(S) has first Chern number —N. Indeed, this normal
bundle is equivalent to the restriction to 3; of the vertical subbundle of the Lefschetz fibration
Tom : Ug(J) — Mg(J). Since no curve u € M ;(S) has a non-immersed point at any marked
point, the tangent map of ev,, 1 maps the vertical subspace at ¥; N 7! (u) isomorphically to
the subspace o;(u) in T}, M, so the bundle in question is the pullback via o; of the tautological
line bundle over P(T), M) = CP!. The latter has first Chern number —1, so this proves the
claim. ]
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7.3.6. Topology of ruled surfaces and the signature theorem. The remainder of
the proof of Theorem [.34] consists of essentially topological arguments. Given a topological
space X and an integer k = 0, we shall denote by

HE™(X) i= Hy(X)/torsion, b, (X) = H(X)/ torsion

the quotients of the kth homology and cohomology groups of X with integer coefficients by
their respective torsion subgroups. Both are free abelian groups of the same rank, which is
the kth Betti number

br(M) = rank H**(X) = rank HE.(X).

Note that the latter is equivalently the real dimension of Hy(X;R) or H*(X;R). Recall next
that if X is a closed oriented and connected 4-manifold, the intersection product defines a
nonsingular bilinear pairing on Hi**(X) which can be identified via Poincaré duality with
the cup product pairing

(7.12) Hfteo(X) % Hoo(X) = Z: (o, ) = (o v B, [X]).

Nonsingularity means in particular that for every primitive element A € H;ree(X ) or « €
H2_(X), there exists B € HE(X) or 8 € H2_(X) respectively such that A- B = 1 or
(av B,[X]) =1, see e.g. [Hat02, Corollary 3.39]. Switching to field coefficients, we can also
regard these pairings as nondegenerate quadratic forms on either of the real vector spaces
Hy(X;R) or H?*(X;R), and we denote by b (X) and b, (X) the maximal dimensions of
subspaces on which the form is positive- or negative-definite respectively. The nondegeneracy
of this form implies

ba(X) = b (X) + b5 (X),
and the signature of X is defined to be the integer

o(X) = by (X) = by (X).

It will be useful to have a special case of the algebraic classification of nonsingular integral
quadratic forms on hand; for more details, see e.g. [CS99| Chapter 15] or [MHT73| Chapter II].

PROPOSITION 7.56. Suppose Q : Z? x Z? — 7 is a bilinear form that is nonsingular and
indeﬁniteﬂ Then there exists a pair of elements e1,es generating Z* such that

(Gevey @)= amer (3 ) (43
U

Qlez,e1) Qea,e2) 0 -1
EXERCISE 7.57. Given a nondegenerate quadratic form ¢ on R™ and two elements v, w €
R"™ satisfying Q(v,v) > 0 and Q(w,w) > 0, show that @ is positive-semidefinite on the span
of v and w if and only if [Q(v,W)]? < Q(v,V) - Q(wW, w).

EXERCISE 7.58 (cf [Lax07, Chapter 8]). Given a symmetric bilinear form @ : R” x R” —
R, denote by b, and b_ the maximal dimensions of subspaces on which the quadratic form v —
Q(v, V) is positive- or negative-definite respectively, and let by = dim {v € R" | Q(v, ) = 0}.
Show that the maximal dimension of subspaces on which the quadratic form is positive- or
negative-semidefinite is by + by or b_ + by respectively, so in particular it is by whenever the
form is nondegenerate.

4¢Indefinite” means that Q(e.e) is positive for some e € Z? and negative for others. Equivalently, one
could stipulate that for the induced real-valued nondegenerate quadratic form on R?, the maximum dimensions
of subspaces on which this form is positive- or negative-definite are each 1.
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Let us collect some useful general facts about the cohomology rings of closed 4-manifolds.
PROPOSITION 7.59. For any closed connected symplectic manifold (X,w), b3 (X) > 1.

PROOF. The cohomology class of the symplectic form spans a subspace of H?(X;R) on
which the cup product pairing (TI2]) is positive-definite. O

PROPOSITION 7.60. If X is a closed connected oriented 4-manifold with bay(X) = 1, then
a U B is a torsion class for every a € H'(X) and 8 € H*(X) with k € {1,2}.

PROOF. By assumption rank H2_(X) = 1, so fix a generator e € H2_(X), and note
that by the nonsingularity of the cup product pairing, e U e # 0 € Hi_(X). Then for any
a, B3 € H'(X), the equivalence class of o U 3 in H2_(X) is Ae for some \ € Z, and since
avua=0,

0=(aupB)u(aupB) =X\(eue),

implying A = 0, hence a U 8 is torsion.
If instead B € H%(X) but o U B is nontrivial in H3__(X), then using the nonsingularity
of the cup product again, we can find v € H*(X) such that (a« U ) Uy # 0e HE_(X), but

this is impossible since the previous paragraph shows o Uy =0¢€ HZ_ (X). O

PROPOSITION 7.61. Suppose X and Y are closed, connected and oriented n-manifolds for
somen €N, and f: X —Y is a continuous map with deg(f) # 0. Fiz a field K. Then:
(1) f*: H*(Y;K) - H*(X;K) is injective.
(2) fr: Hi(X;K) - Hi(Y;K) is surjective.
(3) If n =4 and deg(f) > 0, then by (X) = by (Y) and by (X) = by (Y).

PROOF. By assumption f.[X] = D[Y] for some integer D # 0. If f*a = 0 e H*(X;K)
for some nonzero o € H*(Y;K), the nonsingularity of the cup product implies that we can
find g € H*(Y;K) with (o U 8,[Y]) = 1, hence

0={ffau f76,[X]) = {fH v B), [X]) = {au B, fu[ X]) = D{a v 5, [Y]) = D,

a contradiction. The surjectivity of f. : H.(X;K) — H,(Y;K) follows immediately by
viewing it as the transpose of f* : H*(Y;K) - H*(X;K) under the natural duality between
homology and cohomology with field coefficients. Finally, if n = 4 and D > 0, choose a
subspace V < H?(Y;R) of dimension b (V) on which the analogue of the quadratic form
(CI2) with real coefficients is positive definite. Then for each nonzero o € V, we have
(v a,[Y]) > 0, and thus by the calculation above,

(f*fau f*o,[X]) = D{a v o, [Y]) > 0,
implying that f*(V) = H?(X;R) is a subspace of dimension b5 (Y) on which the cup product

pairing is positive-definite, hence b3 (X) = by (V). The argument for b, is analogous. O

We now prove some results about the topology of blown-up ruled surfaces, which will
therefore apply to the moduli space Ug(J).

PROPOSITION 7.62. Suppose X is a closed, connected and oriented surface, m: X — X is
a smooth Lefschetz fibration with reqular fiber S? such that each singular fiber has only one
critical point, S < X is a section and F < X is a reqular fiber. Then:
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(1) The projection m: X — ¥ and inclusion ¢ : S — X induce isomorphisms

m(X) Tm(D),  HU(SK) T HY(XK),
m(9) =5 m(X),  H'(X;K) = H'(S;K)

for any field K.

(2) Hy(X) is freely generated by [S], [F], and [E1],...,[EN], where for each singu-
lar fiber labeled by i = 1,..., N, E; denotes the irreducible component that doesn’t
intersect S.

(3) b3 (X) = 1.

(4) If v € H*(X) satisfies {,[F]) = 0 and there are no singular fibers, then v u v = 0.

(5) If v € H*(X) satisfies {v,[F]) # 0, then v U a € H3(X) is not torsion for every
non-torsion element o € H'(X).

PrOOF. We begin by proving the first three statements under the assumption that 7 :
X — Y has no singular fibers, so X is an honest ruled surface. In this case the homotopy exact
sequence of the fibration S? < X — ¥ implies that 7, : m1(X) — m1(X) is an isomorphism,
and under the obvious identification of ¥ with the section S < X, its inverse is the map
s 1 M (S) = m1(X). The same statements then hold for the abelianization of 7, which is Hj,
und dualizing these gives the corresponding statements about H' with field coefficients.

For Hy(X), we observe first that X admits a cell decomposition having exactly two 2-cells,
both of which are cycles in cellular homology. Indeed, pick a cell decomposition of ¥ that
has only one 0-cell, one 2-cell and some 1-cells. Trivializing the sphere bundle over each cell
and decomposing the fibers S? in the standard way into a 2-cell attached to a 0-cell, we can
then decompose the restriction of X over the closure of each k-cell of ¥ into a (k + 2)-cell
attached to a k-cell: the result is a CW-decomposition of X that includes one 2-cell spanning
a section over the 2-cell of 3, and another whose image is the fiber over the 0-cell of X.
This decomposition implies that Ho(X) is generated by at most two elements. Now observe
that [F] - [S] = 1 and [F] - [F] = 0. The former implies that both [F] and [S] are non-
torsion elements of Hy(X), and the two relations together imply that [F] and [S] are linearly
independent in Hi*°(X), thus they generate a free abelian group of rank 2. The intersection
form can now be represented as a matrix of the form

(it (5:60) -6 )

for some k € Z. The eigenvalues of this matrix are % (k +VEk2 + 4), So one is positive and
one negative, implying b3 (X) = by (X) = 1.

If 7: X — ¥ has N > 1 singular fibers, then for each singular fiber we can blow down the
irreducible component that does not intersect S, producing a smooth S2-bundle 7 : X->yx

such that all of the above applies to X ,and X =~ X H#N CP’. The desired statements about
w1 and Hs then follow from the N = 0 case using the Seifert-van Kampen theorem or a
Mayer-Vietoris sequence respectively. In particular, if () denotes the intersection form of X ,
then the intersection form of X is the direct sum of ) with a copy of —1 for each exceptional
sphere coming from a blowup operation. Thus b, (X) = 1 + N while b5 (X) is still 1.
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We now prove the last two statements. Given v € H?(X), we can use the presentation of
H>(X) in statement (2) and write

PD(y) = k[S] + £[F] + Z a;| Ei]

for unique integers k, /4, a1,...,an, SO

v, [F]) =PD(v) - [F] = k.

If k = N = 0, this means PD(v) = ¢[F] for some ¢ € Z and thus (yu~, [X]) = 2[F]-[F] = 0.

If on the other hand k& # 0, suppose @ # 0 € Hflree(X ), in which case « also defines
a nonzero element of H!'(X;Q). By statement (1), we can write o = ma’ for a unique
o' € H'(3;Q), and the nonsingularity of the cup product on ¥ then provides an element
B e HY(3;Q) such that o/ U B # 0 e H?(; Q). Setting 3 := 7% € H*(X;Q), we then have
av f=7* up) and thus

(yuau B [X])={au B,PD()) =<’ u B m (k[S] + ([F] + Zaz‘[Ez‘]»

= k(' v B, [Z]) #0.
This implies v U a # 0 € H3(X;Q), hence the corresponding integral class is not torsion. [

COROLLARY 7.63. Assume X is the total space of a Lefschetz fibration m : X — X, with
reqular fiber S? and only one critical point in every singular fiber, over a closed connected
and oriented suface Y. Suppose additionally that M is a closed, connected and oriented 4-
manifold, and f : X — M is a continuous map of nonzero degree sending the fiber of X to a
non-torsion class in Hy(M). Then either by(M) =0 or by(M) = 2.

PROOF. Let [F] € Hy(X) denote the fiber class and A := f,[F], which is non-torsion by
assumption, hence by(M) > 1. Arguing by contradiction, suppose by (M) > 0 and ba(M) = 1.
Pick v € H?(M) such that (v, A) # 0. Then {f*v, [F]) = (v, A) # 0, so by the fifth statement
in Proposition 762 f*yua # 0 € H3(X;Q) for all nonzero classes o € H'(X; Q). But since
bi(M) > 0, we can pick a nonzero element o € H'(M;Q) and observe that y U a = 0 €
H3(M;Q) by Proposition Using the fact from Proposition [[.61] that f* : H*(M;Q) —
H*(X;Q) is injective, we then have f*a # 0e H(X;Q), yet f*yu f*a = f*(yua)=0¢
H3(X;Q), a contradiction. O

EXAMPLE 7.64. The manifold CP? is neither a blowup nor a ruled surface, as it has no
nontrivial class A € Hyo(CP?) satisfying A- A = 0. But CP? does satisfy the conclusion of
Corollary [7.63] specifically b;(CP?) = 0, and it is not hard to find an example of a ruled
surface X with a map f : X — CP? of nonzero degree. Indeed, blowing up our favorite
Lefschetz pencil on CP? at the base point gives a smooth S2-fibration on X := CIPQ#@Q,
and the blowdown map § : X — CP? has degree one and sends the fiber class of X to the
generator of Hy(CP?).

REMARK 7.65. The existence of the section S in Prop. is a vacuous condition in light
of Exercise [LT4l Note that if 7 : X — X has singular fibers, one can regard X as the blowup
of an S2-bundle X — ¥ and construct a section of X as the preimage of a section of X via
the blowdown map.
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EXERCISE 7.66. Suppose the Lefschetz fibration 7 : X — X in Proposition has
exactly one singular fiber, with irreducible components denoted by Ey and F;. Show that if
Sy, S1 < X are sections that do not contain the critical point, such that Sy intersects Ey and
Si intersects Ey, then [So] - [So] — [S1] - [S1] is odd. This implies that the two ruled surfaces
obtained by blowing down X along Eq or E are not topologically equivalent, cf. Example[3.40.

The following is a digression, but we can now tie up a loose end from the introduction
and prove the easy direction of Corollary [[.22]

PROPOSITION 7.67. If (M,w) is a blown-up symplectic ruled surface, then after a defor-
mation of its symplectic form, it satisfies {c1(M,w) U [w],[M]) > 0.

PROOF. Using the basis of Hy(M) in Proposition [7.62], write
N
C := PD(c1(M,w)) = m[S] + n[F] + > kil Eil,
i=1

so by the relations [S] - [F] = 1 and [F] - [F] = [F] - [Ei] = [S] - [Ei] = 0, we have
ca([F]) =m, ci([Ei]) = —ki, and ¢1([S]) = m[S]-[S]+ n. But since w is compatible with the
Lefschetz fibration, each fiber F' and irreducible component E; is a symplectic submanifold,
and Remark [3:42]implies that we can assume this for S as well after a deformation of w, which
does not change c¢1(M,w). Thus the evaluation of ¢;(M,w) on each of these submanifolds
can be computed by choosing a tame almost complex structure to make them J-holomorphic
and applying the adjunction formula: this gives 0 = [F] - [F] = a1 ([F]) — 2, —1 = [E;] -
[Ei] = ai([Ei]) — 2, and [S] - [S] = a1([S]) — x(5). It follows that m = 2, k; = —1, and
n = ey([S]) — 2181 - [S] = x(S) — [S] - [S], giving

C = 2[S] + (x(S) = [S] - [S]) [F] = X [Eil,

N
i=1

and thus

N
(7.13) (er(M,w) U [w], [M]) = {[w],C) = 2Lw + (x(8) = [8] - [SD (), [F]) = ) fE w.

Now deform w using the Thurston trick (cf. Lemma B.A4T]): denoting the genus zero Lefschetz
fibration on M by m: M — X, this amounts fo choosing an area form ¢ on ¥ and considering
the family of symplectic forms

wg =w+ Kr¥c
for K > 0. Replacing w with wg in (ZI3) makes the term {4 wg arbitrarily large for K » 0

while fixing the other terms, but since wg is a continuous family, ¢; (M, wg) = ¢1(M,w), thus
proving {c1(M,wk) U [wk], [M]) > 0 for K > 0 sufficiently large. O

EXERCISE 7.68. Show that Proposition [[.67]is not true without allowing w to be deformed.
Hint: look for counterexamples of the form S? x ¥ with product symplectic structures.

EXERCISE 7.69. Show that {c;(CP?, wrs) U [wrs], [CP?]) = 3.

EXERCISE 7.70. Show that for any symplectic ruled surface (M, w) with base X, {¢; (M, w)u
c1(M,w)) = 4x(X). This proves the easy direction of Corollary [223]
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EXERCISE 7.71. Show that if (M,w) is any closed connected symplectic 4-manifold and
(M,®) is obtained from it by blowing up along a single Darboux ball, then

(er(M, &) U ey (M, &), [M]) = (e1(M,w) U ey (M,w), [M]) — 1.
This shows that the minimality assumption in Corollary [[L.23] is necessary.

The other main topological ingredient needed for proving Theorem [(.34is the 4-dimensional
case of the Hirzebruch signature theorem. Recall that for any real vector bundle £ — X, the
kth Pontrjagin class is defined for k € N as

pe(E) = (—1)Feou(E® C) € H*(X),

where £ ® C is the complexification of E, i.e. its real tensor product with the trivial complex
line bundle, with complex structure on £ ® C defined by v ® ¢ — v ® ic for v € F and c € C.
When X is a smooth manifold, we denote by pi(X) the kth Pontrjagin class of its tangent
bundle.

EXERCISE 7.72. Let V be a complex n-dimensional vector space with complex structure
J :V — V, denote by VE the underlying real 2n-dimensional vector space, VC = VRE®C the
complexification of the latter, and V the complex vector space whose underlying real space
is VR but with complex structure —.J.

(a) Show that V@V — VC: (v,w) —» (v+w)®1 — J(v — w) ®i is a complex-linear
isomorphism.

(b) Deduce that for any complex vector bundle E, there is a natural complex bundle
isomorphism between EQFE and EC, where E denotes the conjugate bundle (i.e. E
with its complex structure changed by a sign) and EC is the complexification of the
underlying real vector bundle.

THEOREM (Hirzebruch, see [MIS74, §19]). For any closed, connected and oriented 4-
manifold X,

1
o(X) = $(m(X), [X])
COROLLARY 7.73. For any closed and connected almost complex 4-manifold (X, J),
2X(X) +30(X) ={a(TX,J) v (TX, J), [ X]).

PROOF. For any complex vector bundle E of rank 2, the underlying real bundle E¥
satisfies

(7.14) PL(ER) = —¢2(E®) = —c1(E) U 1(E) — e2(E) — o (E)

due to Exercise and the formula ¢(E@F) = ¢(E) uc(F) for the total Chern class. Here E
is the conjugate bundle of F, which is isomorphic to its complex dual bundle E*; an explicit
isomorphism can be written in the form £ — E* : v ~— (v,-) for any choice of Hermitian
bundle metric { , ). By [MS74] Lemma 14.9], we have c;(E) = (—1)*¢;(E) for every k € N,

so (ZI4) simplifies to
P1 (ER) = C1 (E) U C1 (E) — QCQ(E).
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The top Chern class co(E) is the same as the Euler class e(E), so applying this to the bundle
(T'X,J) for an almost complex 4-manifold (X, .J), the Hirzebruch signature theorem now gives

1 2
J(X) = §<61(TX’ ‘]) Y Cl(TXa J)a [X]> - §<6(TX)’ [X]>
1 2
= §<61(TX’ ‘]) Y Cl(TXa J)a [X]> - gX(X)a
which is equivalent to the stated formula. ]

Whenever (X, J) is an almost complex 4-manifold, let us abbreviate
C%(X) = <Cl(TX’ ‘]) Y Cl(TX’ ‘])’ [X]>’

so that Corollary [Z.73] is written in the succinct form 2x(X) + 30(X) = ¢}(X). The power
of this formula is that all three of the numbers x(X), o(X) and ¢?(X) must be integers, and
one can typically deduce further restrictions on ¢(X) due to the nonsingularity of the cup
product pairing. We now prove some topological lemmas about symplectic or almost complex

4-manifolds that will be needed in the proof of Theorem [7.34]

LEMMA 7.74. Suppose (M, J) is a closed and connected almost complex 4-manifold with
bi(M) = 0 and bo(M) = b3 (M) = 1. Then HY(M) has a generator e satisfying e-e = 1
and ci(e) = 3. In particular, every A € Ho(M) satisfies A- A = k? and ¢, (A) = 3k for some
kelZ.

PROOF. Poincaré duality implies b3(M) = b1(M) = 0, so x(M) = 3, and since b, (M) =
bo(M) — bs (M) = 0, o(M) = 1. Corollary [[.73] thus gives ¢2(M) = 9. Given a generator
e € Hi®(M), its Poincaré dual PD(e) generates H2 (M), and the nonsingularity of the
intersection pairing implies

e-e=*1.
Writing ¢1(TM, J) = aPD(e) € HZ_ (M) for a uniquely determined a € Z, we then have
9 = (aPD(e) U aPD(e),[M]) = a*(PD(e) U PD(e), [M]) = a*(e - e) = +a?,
implying a = £3 and e- e = 1. Now
c1(e) =<{a1(TM,J),ey = £3(PD(e),e) = +3(e - e) = £3,
so the desired generator is +e. O

LEMMA 7.75. Suppose (M, J) is a closed and connected almost complex 4-manifold with
bi(M) =0, bo(M) =2 and by (M) = 1. Then one of the following holds:
(1) A- A is even for every A€ Ho(M).
(2) For every A € Hy(M) there exist integers k,f € 7 such that A- A = k* — (> and
C1 (A) =3k — /.

PROOF. Since Hi*®(M) has rank 2 and bj (M) = 1, the intersection form of M fits into the
classification scheme of Prop. [.56], namely there exists a pair of elements eq, es generating
Hire(M) such that the matrix of the intersection form is one of the two matrices in that
proposition. If it is the second, then for any A = ke; + Ley € Hi®®(M), we have

A-A=(key + leg) - (ker + leg) = 2k¢,
which is always even. In the other case,
A- A= (ke + ley) - (key + ley) = k2 — (2.
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Now we use Hirzebruch: since by (M) = bs(M) = 0 and by(M) = 2, we have x(M) = 4 and
o(M) = 0, thus Corollary [.73] gives c3(M) = 8. Using PD(e1) and PD(es) as a basis of
H2_ (M), we can write c1(TM,J) = aPD(e1) + bPD(ey) for unique a,b € Z. Then

free
8 = {(aPD(e1) + bPD(ez)) U (aPD(e1) + bPD(es), [M]) = a® — b* = (a — b)(a + b).

After changing e; and/or ey by a sign, we can assume a,b > 0 without loss of generality, and
then observe that the only pair of nonnegative integers satisfying (a — b)(a +b) = 8 is a = 3
and b = 1. We conclude

c1(TM,J) = 3PD(e1) + PD(es),
implying
c1(A) = (3PD(e1) + PD(ea), key + Les)
=3k(er -e1) + 3l(e1 - e2) + k(ea-e1) + l(eg - e2) = 3k — L.
]

EXERCISE 7.76. Determine which of the two alternatives in the above lemma applies for
each of the manifolds S? x S? and CP2#4CP".

LEMMA 7.77. In the setting of Corollary[7.63, assume the following additional conditions:

e The Lefschetz fibration X — X has no singular fibers;
e The 4-manifold M has a symplectic form w;
e The image A € Hy(M) of the fiber class satisfies c1(A) := {c1(M,w), A) = 2 for an
w-compatible almost complex structure J.
Then A - A is not a positive even number.

PROOF. Let us abbreviate ¢; := ¢1(M,w) € H*(M) and ¢ := {¢c; U ¢1,[M]) € Z. The
assumption of no singular fibers implies by(X) = 2, so by Proposition [T.61], bo(M) is either 1
or 2, and by (M) = 1 since M is symplectic and b3 (X) = 1. If bo(M) = 1, then Corollary [.63]
implies by (M) = 0, but then Lemma[7.74]is contradicted since ¢1(A) = 2 is not divisible by 3.
This proves ba(M) = 2.

We can now deduce that o(M) = 0 and x (M) is even, so after choosing an w-compatible
almost complex structure, the Hirzebruch formula implies that ¢} = 2y (M) is divisible by 4.

Arguing by contradiction, assume A - A = 2d for some d € N. Then since A = f,[F] for the
fiber ' in X, we have

(f*(PD(A) — dey), [F]) = (PD(A) — dey, A = A- A —2d = 0,

which implies via the fourth statement in Prop. that the class f*(PD(A) —dc1) € H?(X)
has square zero. Since f*: H*(M;Q) — H*(X;Q) is injective, it follows that

(PD(A) — dey) U (PD(A) — de;) = 0e HY(M).
Expanding this relation and evaluating on [M] gives
0=A-A—2dc;(A) —d*c = —2d — d*c3,
thus de? = —2 and ¢? cannot be divisible by 4. 4

EXERCISE 7.78. Show that the closed oriented 4-manifolds S* and CP?#CP? do not admit
almost complex structures.
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7.3.7. Conclusion of the proof. Let us summarize the situation so far. We have
constructed a moduli space Mg(J) with the topology of a closed oriented surface, such that
the “universal J-holomorphic curve” obtained by adding an extra marked point to each curve
in this space is a Lefschetz fibration

T = Us(J) = Ms(J)

with genus 0 fibers, hence Ug(J) has the topology of a blown-up ruled surface. Moreover, the
evaluation map for the extra marked point

eyl :Us(J) — M

is a map of positive degree N := deg(evy+1), and if m > 1, we have a collection of disjoint
sections X1, ..., %, < Ug(J) such that [3;]-[3;] = —N and ev,,4+1 maps ¥; to the constraint
point p; for i = 1,...,m. Applying Propositions [(.61] and [.62], we now have:

LEMMA 7.79. b (M) = 1. O
LEMMA 7.80. If m > 1, then by(M) = 0.

PROOF. Choosing any of the sections ¥; < Ug(J), H1(Us(J)) is generated by loops
on 3;, all of which are mapped to a point by ev,, 1. Since ev,,11 acts surjectively on rational
homology, it follows that Hq(M;Q) = 0. d

LeEMMA 7.81. If ¢1([S]) > 3, then the hypotheses of Theorem are also satisfied for
some other sphere S’ with ¢1([S']) € {2,3}.

PROOF. Suppose ¢1([S]) > 3, so m > 1, and suppose first that Mg(.J) does not contain
any nodal curves. Then Ug(J) has the topology of a ruled surface, implying (via Prop. [.62)
that Ha(Ug(J)) is a free group generated by the fiber class [F] and any section, say [21].
Since [¥1] - [¥1] = —N but ¥; and 39 are disjoint, they cannot be homologous, hence
[X2] = [E1] + K[ F] for some nonzero integer k. But then

[Xo] - [X2] = ([Z1] + k[F]) - ([Z1] + E[F]) = [21] - [Z1] + 2k = =N + 2k # —N,

contradicting Lemma

It follows that Mg(J) contains at least one nodal curve; call its smooth components
u~ and u*. Both of these have nonnegative index and thus satisfy c;([u®]) > 1, but since
a([ut]) + a([u™]) = a([S]) = 4, at least one of them (say u™) must also satisfy 2 <
c1([u™]) < e1([S]) — 1. We can then feed the J-holomorphic immersion u* : S% 9> M back
into Theorem [7.34] and repeat this argument finitely many times until we find an immersed
J-holomorphic sphere with ¢; equal to either 2 or 3. ]

The next observation is that in light of what has been proved so far, it will suffice to
establish Theorem [(.34] in the case where (M, w) is minimal. Indeed, if this is done, then for
any (M,w) satisfying the hypotheses of the theorem, we’ve shown already (Corollary [7.52])
that there exists a J-holomorphic sphere with index at least 2 in some fixed homology class for
every J in a dense subset of J;(M,w). Lemmas and [Z.IT] then imply that the blowdown
(]\7 ,) of (M,w) along a maximal collection of disjoint exceptional spheres also satisfies the
hypotheses of the theorem. But as soon as we find a nonnegative symplectically embedded
sphere S in (M/ ,0), we have one in (M, w) as well, because one can perform the blowup along
balls in (]T/I/ ,) disjoint from S and deform the result symplectically to (M, w).

With the preceding understood, we shall assume from now on that (M,w) is minimal.
Our goal is then to prove the following.
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LEMMA 7.82. If (M,w) is minimal, then there exists an embedded J-holomorphic sphere
u: S? — M with ind(u) > 2.

The embedded sphere we seek will be found among the smooth components of nodal
curves in Mg(J), though we may need to change the original immersion S before it can be
found (see Lemma [7.84] below). This will finish the proof, because by the adjunction formula,
any embedded sphere of index at least 2 satisfies [u] - [u] = 0. Note that by minimality, the
adjunction formula also implies that no J-holomorphic sphere of index 0 is embedded.

We will prove the lemma by contradiction, thus from now on we impose the following:

ASSUMPTION 7.83. (M,w) admits no embedded J-holomorphic spheres.

By Lemma [T.8T] we can restrict our attention to the cases m = 0 and m = 1. Let us deal
first with m = 1.

LEMMA 7.84. If m = 1, the almost complex structure J € J;(M,w) and the positive
symplectic immersion S & M can be modified so that the following condition holds without

loss of generality. Denote the finite set of nodal curves in Mg(J) by ui,...,un, each u;
having two smooth components u; where c1([u;]) = 1 and c1([u]]) = 2, with the marked
point situated on u;r Then if n > 0, there exists k € {1,...,n} such that:

(1) [uf] [wf] <[] [uf] foralli=1,...,n;

7
(2) 1< [ug]-[uf] < [uj][uf] foralli=1,... n.
PRrOOF. The statement is vacuous if n = 0, so in this case we leave the immersion S & M
asitis. If n = 1, let p € M denote the constraint point, and consider the following two sets,
which are both finite by Lemma [7.42]

e M is the set of all curves in spaces of the form MG ;(A4; J) with ([w], A) < {[w], [S])
and vir-dim Mg o(4;J) = 0;
e M? is the set of all curves in spaces of the form MG, (A4;J;p) with ([w], 4) <
([w], [S]) and vir-dim Mg 1(A4; J;p) = 0.
Note that both sets are nonempty since each nodal curve in Mg (J) has one smooth component
in M! and the other in M2. The notation has been chosen so that any u € M® has ¢ ([u]) =i
for i+ = 1,2. By assumption none of these curves are embedded, so the adjunction formula
implies that they all satisfy

[u] - [u] = 26(u) + c1([u]) —2 = 26(u) —1 > 0.

We claim then that for any u; € M! and uy € M2, [u1] - [uz] > 0. Note that this intersection
number must be nonnegative by positivity of intersections, since u; and ug are simple curves
with distinct first Chern numbers and therefore have non-identical images. If [u;] and [ug]
are linearly dependent in Ho(M;R), then the claim follows from [u1]-[u1] > 0. If on the other
hand they are linearly independent but [u1]-[uz2] = 0, then [u;] and [u2] span a 2-dimensional
subspace of Hy(M;R) on which the intersection form is positive-definite, implying b5 (M) > 2
and thus contradicting Lemma, [.79]

Now pick uz € M? to minimize [ug] - [ug], and with this choice fixed, pick u; € M!
to minimize [u1] - [uz]. The genericity assumptions [Z.4]] imply that these two curves are
transverse to each other, and they have at least one intersection since [u;] - [u2] > 0. We can
then pick one of the intersection points, let A = [u1] + [uz2], and consider the nodal curve
u € MOJ(A; J;p) whose smooth components are u; and wug, with a single node placed at
the chosen intersection point. By the gluing theorem (Corollary 2:39]), a neighborhood of u
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in ﬂo,l(A; J;p) is then a 2-parameter family of smooth J-holomorphic spheres degenerating
to u, and the combination of Corollaries 2.26] 2.30] and 2.32] implies that an open and dense
subset of these consists of positively symplectically immersed spheres S’ & M that satisfy

ci([S']) = e1(4) = er([ur]) + er([uz]) = 3.

Fixing any one of these and using it to define the moduli space Mg/(J) as before, this
space contains the nodal curve u by construction, which satisfies the desired intersection
relations. 0

The next lemma is one of the main steps in which Assumption [.83] is crucial. Note that
it is easy to think up examples in which embedded curves are allowed and the statement is
false. The reason the lemma works is that the nonembedded curves in this context always
have positive self-intersection number, making it harder to satisfy by (M) = 1 unless many of
them are in the same homology class.

LEMMA 7.85. Given the conclusion of Lemma[7.84, the curves uy ,...,u, are all homol-

n
ogous in Ha(M;R).
PROOF. If not, then there exists i # k such that [S] = [u; ] + [u]] = [u; ] + [u)] but

)

[uf] # [u] € Ho(M;R). Since ¢1([u;]) = e1([w]]), these two classes cannot be linearly

7

dependent. Lemma [7.84] gives
[ ] T ] = Tug ] Q]+ [y ] = [y ) = [ ] [T = (w1 Ty ] = (w1 [ ])
< [uf ] [uf],
and thus
(w1 [ D% < ([ ] - Tuf D? < (w1 [ DT [ D),
so by Exercise [[.57] the intersection form is positive-semidefinite on the 2-dimensional sub-

space of Hy(M;R) spanned by [u; ] and [u;"]. Since the intersection form is nonsingular, this
implies via Exercise [[.58 that b (M) > 2 and thus contradicts Lemma [Z.79 O

Recall now that Hy(Ug(J);R) is generated by the section [21], the fiber class [F] and
the exceptional spheres in singular fibers which form the domains of the curves uy,...,u, .

In light of the above lemma and the fact that (ev,,+1)«[21] = 0, the surjectivity of (ev,,4+1)«
now implies in the m = 1 case that

ba(M) € {1,2}.
Moreover if by(M) = 2, then since (evin41)sx : Hy(Us(J);R) — Hy(M;R) obviously has
nontrivial kernel, we deduce that dim Hy(Ug(J);R) = 3 and therefore that the moduli space

Mg(J) contains at least one nodal curve. The rest of the job will be done by the Hirzebruch
signature theorem.

PROOF OF LEMMA FOR m = 1. Recall from Lemmas [7.79 and [T.80] that by (M) =0
and by (M) = 1. If additionally by(M) = 1, then Lemma [Z.74 provides an integer k € Z such
that

[S]-[S]=k* and ¢ ([S]) = 3k.
We already know ¢ ([.S]) = 3, so this fixes £ = 1 and thus [S] - [S] = 1. But since S is not
embedded, the adjunction formula gives

[S]-[S] =20(S) +c1([S]) —2=26(5) +1>1,
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which is a contradiction.

If instead bg(M) = 2, then we know there exists a nodal curve in Mg(J), one of whose
smooth components u~ is an immersed and somewhere injective but non-embedded index 0
sphere with no marked points, so by the index and adjunction formulas it satisfies

a(flu”])=1 and [u]-[u]=20(u")—1>0.
Notice that [u~] - [u~] is odd, so by Lemma [[.75], there must exist integers k, ¢ such that
a(fu])=3k—¢ and [u7]-[u"]=k?—¢%

But if 3k — ¢ = 1, then k? — ¢? = k? — (3k — 1) = —(8k? — 6k + 1), and the latter is only
positive for 1/4 < k < 1/2, hence not for any k € Z, so this is again a contradiction. O

It remains only to deal with the m = 0 case. Here it is useful to observe that if Mg(.J)
has nodal curves, then the result is already implied by our proof for m > 1:

LEMMA 7.86. If m = 0 and Mgs(J) contains a nodal curve, then the hypotheses of Theo-
rem are also satisfied with c1([S]) = 3.

PROOF. By assumption, the smooth curves u € Mg(J) are not embedded, so by the

adjunction formula,
[u] - [u] = 26(u) + c1([u]) —2 = 25(u) > 0.

Fix u € M%OOd(J ) and a nodal curve in Mg(J) with smooth components u~ and u". The
latter are both simple index 0 curves with no marked points and thus satisfy c;([u*]) = 1,
and since [u] - [u] > 0, at least one of them (say u™) has nontrivial intersection with u. The
definition of M%OOd(J ) guarantees that u and u* intersect transversely (see the paragraph
preceding Lemma [[.50). Then picking an intersection point and forming a nodal curve of
arithmetic genus 0 with smooth components u and u*, the gluing theorem (Theorem 2.38))
yields a 4-dimensional family of smooth J-holomorphic spheres u’ that degenerate to this

nodal curve and satisfy
cr([W]) = er([u]) + er ([u']) = 3.

Combining Corollaries 2.26] [2.30 and 2.32], almost all of the u’ are positive symplectic immer-
sions. 0

PROOF OF LEMMA FOR m = 0. We've just shown that the lemma follows from the
proof of the m = 1 case unless Mg(J) has no nodal curves. This is the case in which
Tm : Us(J) — Mg(J) is a smooth S%-bundle, and ev,,,1 is a map of positive degree which
sends the fiber to the class [S] € Ha(M), satisfying

(S =2 and  [S]-[S] = 26(w)
for u € Mg(J). Assuming there are no embedded J-holomorphic curves, [S] - [S] is then

a positive even number. But Lemma [Z777 shows that no such class [S] can exist, and this
contradiction finishes the proof of Theorem [.34] O






CHAPTER 8

Holomorphic Curves in Symplectic Cobordisms

Contact geometry is often called the “odd-dimensional cousin” of symplectic geometry,
and there are many interesting problems that lie in the intersection of the two subjects. In
this and the next chapter, we will discuss a few such problems that can be attacked with
holomorphic curve methods, some of which take some noticeable inspiration from McDuff’s
results on rational and ruled symplectic 4-manifolds. Unlike previous chapters, our intention
here is not to give a complete exposition, but rather to whet the reader’s appetite and point
to other sources for further reading. The subject of symplectic field theory, which emerges
from this discussion as one of the natural tools to approach problems in contact topology,
remains a subject of active research.

8.1. The conjectures of Arnol’d and Weinstein

While Gromov’s 1985 paper on pseudoholomorphic curves [Gro85] is often credited with
launching the modern field of symplectic topology, many of Gromov’s ideas were not without
precedent. In Chapter [7] we outlined the Gromov-Witten invariants, a theory of enumerative
invariants that arose from Gromov’s work and were later formalized by Ruan [Rua96| and
other authors (see [MS12] for a comprehensive survey). In principle, they are defined on
a symplectic manifold (M,w) by choosing a generic tame almost complex structure J €
Jr(M,w) and counting (with signs) the elements in 0-dimensional components of the moduli
space of J-holomorphic curves M(J) satisfying suitable constraints. The fact that this leads
to an invariant of the symplectic structure w depends crucially on the ellipticity of the Cauchy-
Riemann equation, which gives the moduli space M(J) the following properties:

e For generic J, M(J) is a smooth finite-dimensional manifold;

e M(J) admits a natural compactification M(.J) such that the “boundary strata”
M(J)\M(J) have virtual codimension at least 2;

e Any two generic Jy, J1 € J-(M,w) are connected by a generic homotopy {Js}se[0,1]
of w-tame almost complex structures such that the compactified parametric moduli
space {(s,u) | s € [0,1], u € M(Js)} defines a cobordism between M (Jy) and M(J;).

This means that any topological property of the moduli space M(.J) that is invariant under
cobordisms is independent of the choice of J € J,(M,w), though it may very well depend
on w, at least up to deformation. Seen in this light, the Gromov-Witten invariants are well
defined for much the same reason that the degree of a smooth map between closed manifolds
is well defined. Many of the important results in [Gro85] can be interpreted as computations
of Gromov-Witten invariants, e.g. the non-squeezing theorem is essentially a corollary of such
a computation on split symplectic manifolds of the form S? x M, cf. [Gro85] 0.2.A'].

This idea for constructing invariants by counting solutions to an elliptic equation is older
than the theory of pseudoholomorphic curves: invariants of this type had appeared earlier in
the 1980’s in the work of Donaldson on smooth 4-manifolds (see [DK90]). In Donaldson’s
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work, both the setting and the PDE were different, but the basic outline sketched above
is the same: instead of holomorphic curves in a symplectic manifold, one counts solutions
to the anti-self-dual Yang-Mills equations on a principle bundle over a smooth 4-manifold,
which yields invariants of the underlying smooth structure. The equations behind Donaldson’s
invariants came originally from quantum field theory, and related gauge-theoretic invariants
in differential topology are still actively studied today, e.g. they inspired the later development
of Seiberg-Witten theory (see e.g. [KMOT]).

A parallel strand in the story of holomorphic curves and symplectic invariants involves
the search for periodic orbits of Hamiltonian systems. One of the motivating problems in this
field has been the Arnol'd conjecture, which concerns the minimum number of fixed points
of a Hamiltonian symplectomorphism. Recall that given a symplectic manifold (M, w) and
a smooth family of smooth functions {H; : M — R}, the (time-dependent) Hamiltonian
vector field Xp, is defined byﬁ

W(XH“ ) = —dHt

Its flow defines a 1-parameter family of symplectomorphisms, and a general symplectomor-
phism is called Hamiltonian if it is the time-1 flow of such a vector field. Though it is not
immediately obvious from the definition, the Hamiltonian symplectomorphisms form a normal
subgroup Ham(M,w) in the identity component of the group Symp(M,w) of symplectomor-
phisms, see e.g. [MS17, Exercise 3.1.14]. It is also not hard to show that any ¢ € Ham(M, w)
can be written as the time-1 flow for a family of Hamiltonians H; that is 1-periodic in ¢.
Indeed, if ¢; is the flow of Xp,, then for any smooth function f : R — R with f(0) = 0,

Pt 1= @y is the Hamiltonian flow for H, := f'()H f(t)» S0 that choosing f : [0,1] — [ 1] to

be surjective, nondecreasing and constant near the end points produces a family {Ht}te[
that has the same time-1 flow as H; but admits a smooth 1-periodic extension to ¢ € ]R
cf. [IMS17, Exercise 11.1.11]. In this way, the fixed point problem becomes a periodic orbit
problem: writing

L.—R/z,

we can restrict to time-periodic Hamiltonians H; = H(t,-) with H : S' x M — R and look
for 1-periodic maps z : S — M satisfying 2(t) = Xpg,(2(t)). Such an orbit z is called
nondegenerate if the linearization of the time-1 flow at z(0), the so-called linearized return
map, does not have 1 as an eigenvalue. In this case it is necessarily isolated; in particular, if M
is compact and all 1-periodic orbits are nondegenerate, then there are at most finitely many.
Nondegeneracy is a generic condition, i.e. one can show that any time-dependent Hamiltonian
admits a perturbation for which every 1-periodic orbit is nondegenerate. One version of the
Arnol'd conjecture can then be expressed as follows.

CONJECTURE 8.1 (Arnol'd). Suppose {H; : M — R},cq1 defines a time-dependent Hamil-
tonian system on a symplectic manifold (M,w) such that all contractible 1-periodic orbits are
nondegenerate. Then the number of contractible 1-periodic orbits is bounded below by the sum
of the Betti numbers of M.

IThe literature is far from unanimous about the necessity of the minus sign in the formula w(Xs,,-) =
—dH¢, and there are related interdependent sign issues that arise in defining Hamiltonian action functionals,
the standard symplectic forms on R?" and on cotangent bundles, and various other things that depend on
these. For further discussion of these issues, see [Wenb] and [MS17, Remark 3.1.6].
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EXERCISE 8.2. Using Morse theory, try to show that Conjecture B1]is true for any time-
independent Hamiltonian H : M — R that is Morse and C?-small. The 1-periodic orbits in
this case are all constant, and located at the critical points of H. For hints, see [HZ94., P. 200].

One of the milestones in the study of the Arnol'd conjecture occurred slightly before
pseudoholomorphic curves became a topic of interest: in 1982, Conley and Zehnder [CZ83b]
proved that Conjecture 8] holds when (M,w) is a standard symplectic torus (T?",wy) :=
(R27 /72" wg) for any n € N. Their proof was based on a variational principle for a functional
on the space of contractible loops

* (8L M) = {ze C®(S', M) | z is homotopic to a constant}.

contr

Denote the natural coordinates on R?® = C" by (z1,...,2,), and let {, Y denote the standard
(real) inner product. If H; : T?" — R is 1-periodic in ¢, then since any contractible loop
z: 81 — T?7 can be lifted to a loop in the universal cover R?”, one can identify contractible
1-periodic orbits of the equation z(t) = X, (2(t)) with critical points of the functional

- Apr: C(S R SRz o Ll (%@(t),iz(t)m - Ht(z(t))> dt,

where two orbits are regarded as equivalent if they differ only by a translation in Z?". Using
Fourier series, the argument of Conley and Zehnder treats (81]) as a smooth function on a
Hilbert space and considers its negative gradient flow equation
(8.2) W ) =0,

ds
where u(s) is a function of a real variable s € R with values in a suitable Hilbert space of
loops in R?". Note that the usual local existence/uniqueness theory for ordinary differential
equations works in infinite-dimensional Banach spaces just as in the finite-dimensional case
(see [Lan93, Chapter XIV]), so the flow determined by (8.2) is well defined. Now, if we
imagine for a moment that gradient flow lines u(s) take values in a compact space, then they
will necessarily converge to critical points of Ay as s — +o0. Of course this is not true in
general, as an infinite-dimensional Hilbert space of loops is quite far from being compact, but
it turns out that gradient flow lines still converge asymptotically to critical points whenever
they satisfy a suitable “energy” bound. The space of finite-energy gradient flow lines can thus
be used to deduce existence results for contractible 1-periodic orbits.

EXERCISE 8.3. Writing z; = p; + ig; for j = 1,...,n, the standard Liouville form on
R?" is defined by Ay = %Z?Zl(pj dq; — gjdp;). Show that the first term in (8I]) can be
rewritten as _Ssl z* st and thus (by Stokes’ theorem) equals —SDQ uw*wst for any smooth
map u : D? — R?" with u|sp2 = 2.

Using Exercise B3] one can generalize the action functional (81]) to any symplectic mani-
fold (M,w) which is symplectically aspherical, i.e. satisfies { u*w = 0 for all smooth maps
u:S? — M. Note that this is a homological condition on [w] € H3z(M): it means that

([w], 4) =0

whenever A € Hy(M) is in the image of the Hurewicz homomorphism 7o(M) — Ha(M).
Under this condition, one can choose for any contractible loop z : S* — M an arbitrary
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smooth extension u : D? — M with u|sp2 = z, and define the expression

(8.3) Ay C2(SU M) SR —f v+ | H(0)dt

D2 St
independently of this choice. The critical points of this functional are again solutions to
z = Xp,(2). Having written down the functional, it is however not at all obvious how the
argument of Conley and Zehnder might be extended beyond (T?",ws), as a more general
symplectic manifold (M, w) does not furnish any reasonable Hilbert space setting in which to
make sense of the gradient flow equation (82]).

A beautiful solution to this problem was found in 1988 by Floer [Flo88al, using ideas
about holomorphic curves that Gromov had introduced in the mean time. Floer’s idea was to
take (82)) less literally, and instead of treating it as an ODE on an infinite-dimensional space,
regard it as a PDE satisfied by a map u : R x S — M, where for each s € R, u(s,-) : S' — M
is the loop formerly denoted by u(s), and % is replaced by the partial derivative dsu. If Ay
is to be regarded formally as a functional on an infinite-dimensional manifold of loops, then
writing down the gradient requires first choosing a (formal) Riemannian metric: one natural
way to do this is by choosing a family of w-compatible almost complex structures {J;},cq1,
so that w(-, J;+) defines a metric on M for each ¢t. Then if we pick any loop z € C%,, (S*, M)

and think of the space of sections I'(z*T'M) as the tangent space to C%, (S', M) at z, we

contr
can define a formal Riemannian metric on C% . (S, M) by

€ = | w (e R0 ) d

for £&,n e I'(2*TM). Using this to write down V.Ag, the gradient flow equation (82]) now
becomes the first-order elliptic PDE

ou ou
(8.4) — + Ji(u(s,t)— — Je(u(s,t) Xm, (u(s,t)) =0

0s ot
for a map u : R x S* — M. Except for the time-dependence of J and the extra zeroth-order
term, this is essentially a nonlinear Cauchy-Riemann equation on the standard Riemann
cylinder

(R x S14) := C/iZ,

and just as for ordinary J-holomorphic curves, one can analyze the moduli spaces of solutions
using elliptic regularity theory, Fredholm theory, and a variation on the “bubbling off analysis”
that appears in Gromov’s compactness theorem. Since R x S! is not compact, however, one
must first gain some control over the asymptotic behavior of solutions v : R x S* — M, and
for this, a bound of the form

(8.5) f wfw < oo
Rx St

turns out to be sufficient: any solution to (84]) with finite energy in this sense has the property
that u(s,-) converges to a l-periodic orbit of Xy, as s — to0.

The compactness theory for the Floer equation (84]) resembles Gromov’s theory for .J-
holomorphic curves but has an important additional feature. Aside from the usual “bubbling”
phenomena familiar from Gromov’s theory, a sequence of Floer cylinders may also converge to
a so-called broken cylinder (see Figure R]). This is a finite ordered set of finite-energy Floer
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F1cURE 8.1. A sequence of Floer cylinders can degenerate to a “broken Floer
cylinder,” consisting of multiple Floer cylinders connected to each other along
additional periodic orbits.

cylinders uq,...,uy with the property that for each ¢ = 1,..., N — 1, there are matching
periodic orbits

SEIPOO UZ‘(S, ) = SEr-iI-lOO uiJrl(S) )

The breaking phenomenon gives rise to a fundamental algebraic difference between Floer
theory and Gromov-Witten theory. In the latter, counts of holomorphic curves are invariant
because the “degenerations” are confined to codimension 2 subsets of the compactified moduli
space. We saw various manifestations of this in Chapters[6land [7l where 2-dimensional moduli
spaces of holomorphic spheres ended up filling entire symplectic 4-manifolds in spite of nodal
degenerations, because the latter turned out to be a discrete phenomenon that could happen
only finitely many times. Things are quite different in Floer theory, because the breaking of
Floer cylinders is a codimension one phenomenon: this has the consequence that counts of
Floer cylinders do not generally define invariants, as the counts may be different for distinct
choices of auxiliary data. One can however use a count of Floer cylinders to define a chain
complex such that the resulting homology is invariant, leading to the definition of Floer
homology. Floer’s proof of the Arnol’d conjecture for a wide range of symplectic manifolds
rests on the theorem that Floer homology is well defined and isomorphic to the usual singular
homology of M. For a good survey on Floer homology for Hamiltonian symplectomorphisms,
see [Sal99] or [AD14]. Note that the ideas behind Floer homology are by no means confined
to the realm of holomorphic curves: Floer simultaneously defined a gauge-theoretic version
for smooth 3-manifolds known as instanton homology ([Flo88b], see also [Don02]), and
since then, an abundance of “Floer-type” theories have proliferated in various settings. More
recent prominent examples include Heegaard Floer homology [OS04b] and Seiberg-Witten
Floer homology [KMO07].

It was soon realized that the connection between holomorphic curves and periodic orbits
arising in Floer homology could also be exploited to study a well-known dynamical question
in contact topology. The Weinstein conjecture had emerged in the late 1970’s from studies
of autonomous (i.e. time-independent) Hamiltonian systems restricted to hypersurfaces of
constant energy. Recall that if H : M — R is a time-independent Hamiltonian function on
a symplectic manifold (M, w), then the flow of X preserves every level set of H. Moreover,
any two Hamiltonians with a matching level set ¥ < M induce the same orbits on ¥ up to
parametrization, as the direction of any Hamiltonian vector field restricted to 3 is determined
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by the characteristic line field
62 := ker (w|Tg) = {X e T | w(X,-)|TE = 0} .

The question of whether a given hypersurface admits periodic orbits therefore depends only
on the symplectic geometry of a neighborhood of that hypersurface, not on a choice of Hamil-
tonian. There are easy examples of hypersurfaces in a symplectic manifold that have no
periodic orbits:

EXAMPLE 8.4. Let M denote the quotient of S' x R x T? by the Z-action generated by
the diffeomorphism

P8 xR XT? > 8 xR x T2 (5,4,6,0) — (5,0 + 1,6 + ¢,0)

for some ¢ € R. The symplectic form w := ds A dt + d¢ A df satisfies *w = w and thus
descends to a symplectic form on M. For any fixed s € S1, let ¥y © M denote the projection
to (S! x R x T?)/Z of the hypersurface {s} x R x T2 = S! x R x T?; this is diffeomorphic to
the mapping torus of the diffeomorphism T? — T2 : (¢,6) — (¢ + ¢,0). The vector field o
on St x R x T? also satisfies 140; = ¢; and thus descends to a vector field on M whose flow
preserves X, and it generates the characteristic line field on X;. Periodic orbits of this vector
field on ¥, correspond to periodic points of the diffeomorphism (¢,6) — (¢ + ¢,0) on T2, so
in particular, there are none if ¢ ¢ Q.

In contrast to the above example, Weinstein [Wei78| and Rabinowitz [Rab78] discovered
in 1978 that certain classes of hypersurfaces always admit closed orbits. For example:

THEOREM 8.5 (Rabinowitz [Rab78|). Every star-shaped hypersurface in (R®", wg) admits
a periodic orbit.

The key symplectic feature of the “star-shaped” condition is the following. Using the

coordinates z; = p; +iq; with j =1,...,n on C" = R?", consider the radial vector field
1 ¢ 0 0

(8.6) vl (p,_+q,_>.
2 ]21 J apj J aqj

This satisfies Ly wst = wst, which means that its flow gp’{, is a symplectic dilation, that is,
(¢ ) *wsy = e'wgt. A vector field with this property on a symplectic manifold is in general
called a Liouville vector field. Relatedly, its wg-dual 1-form is the standard Liouville
form

1 n
Ast o= wst (Vo) = 5 > (pj dg; — q; dp;),
j=1
which satisfies d\g; = ws. A closed hypersurface ¥ < R?" is then star-shaped if and only if
V is everywhere positively transverse to ¥ (see Figure 8.2, and this is true if and only if the
1-form « := Ag|7y satisfies

(8.7) a A (da)" >0 onX.

Any 1-form on an oriented (2n—1)-dimensional manifold ¥ satisfying (8.7]) is called a (positive)
contact form, and since it is necessarily nowhere zero, it determines a smooth co-oriented
hyperplane field £ := ker « < T'X. A co-oriented hyperplane field obtained in this way is called
a (positive and co-oriented) contact structure, and this makes the pair (3,¢) a contact
manifold. Isomorphisms between contact manifolds are called contactomorphisms: specifi-
cally, an orientation-preserving diffeomorphism ¢ : ¥ — ¥’ is called a contactomorphism
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=]

‘iﬁ

FIGURE 8.2. A star-shaped hypersurface in R?" generates a l-parameter
family of hypersurfaces with the same Hamiltonian orbits up to parametriza-
tion.

from (X, €) to (X', &) if it satisfies p,& = £ and also preserves co-orientations. Given contact
forms «, o with £ = ker a and & = ker o/, this is equivalent to the condition

o’ = fa
for an arbitrary smooth function f : ¥ — (0,00). The contact form a on ¥ also determines a
distinguished vector field R, via the conditions

da(Rg, ) =0, a(Ry) = 1.

This is called a Reeb vector field, and as the exercise below demonstrates, its orbits (up to
parametrization) are precisely the orbits of any Hamiltonian that has 3 as a regular level set.

EXERCISE 8.6. Assume ¥  R?" is a star-shaped hypersurface, and write o := Ag|7s
with its induced Reeb vector field R, as described above. Let ¢!, denote the flow of the
radial Liouville vector field V' on R?", and for some ¢ > 0, consider the embedding

D (—€,6) x X — R2" (t, z) — (p’{,(z)

(a) Show that ®*)\g = e'a, hence ®*wy = d(ela).

(b) Suppose H : R?"® — R is a smooth function such that H o ®(t,z) = e! for (¢,2) €
(—e,€) x X. Show that under the above identification of a neighborhood of ¥ in
R?" with (—e,¢€) x ¥, the induced Hamiltonian vector field near ¥ takes the form
Xy = R,.

(c) Show that if H : R?® — R is any smooth function that has ¥ as a regular level set
with dH > 0 in the outward direction, then the restriction of Xy to X takes the
form fR, for some smooth function f: % — (0, 0).

Remark: all of the above depends only on the fact that V is transverse to ¥ and satisfies
Lywsy = wet-
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EXERCISE 8.7. Show that if (3,€) is any contact manifold with a contact form «, then
(R x X, d(e'a)) is a symplectic manifold in which the unit vector field ¢y in the R-direction
is a Liouville vector field. Show moreover that for any smooth function f : M — (0,00), the
contact form fo is realized as the restriction of 1,d(e’a) to the embedding

Y >R xX:p— (log f(p),p).

Conclude from this that for any two contact forms o and o’ defining the same contact structure
¢, the manifolds (R x ¥,d(e'a)) and (R x X, d(efa’)) are symplectomorphic. We call these
the symplectization of (%, ).

EXERCISE 8.8. The definition of “symplectization” given in the previous exercise is a bit
clumsy, as one must first choose a contact form « to write it down and then show that the
result depends only on the contact structure £ = ker o up to symplectomorphism. Here is
a more natural construction of the same object, without the need for a choice of contact
form. Given M with a co-oriented contact structure &, let S§ < T*M denote the subset
consisting of nonzero covectors p € T*M such that ker p = £ and p(X) > 0 for every X € TM
positively transverse to £&. Show that if 7% M is given its canonical symplectic structure, then
S& < T*M is a symplectic submanifold, and any choice of contact form « induces a natural
symplectomorphism of S¢ to (R x M, d(ela)).

The notion of a star-shaped hypersurface in (R?"*, wg;) now admits the following natural
generalization to any symplectic manifold (M,w). We say that an oriented hypersurface
Y ¢ (M,w) is (symplectically) convexE or of contact type, if a neighborhood of ¥ in M
admits a Liouville vector field that is positively transverse to . Similarly, if M # (&, we say
that (M,w) has convex (or contact-type) boundary if 0M with its natural boundary
orientation is a contact-type hypersurface, meaning there is a Liouville vector field near
0M that points transversely outwards. If instead there is a Liouville vector field pointing
transversely inwards, we say that (M,w) has concave boundary. In general, a symplectic
manifold with boundary may have some convex and some concave boundary components, and
some that are neither.

EXERCISE 8.9. Assume (M,w) is a symplectic manifold, ¥ < M is an oriented hyper-
surface and V is a vector field defined on a neighborhood of ¥ in M. Consider the w-dual
1-form

A=w(V,-).
Show that Lyw = w if and only if d\ = w. Moreover, assuming d\A = w, show that V is
positively /negatively transverse to ¥ if and only if A A (d\)"~!|rx defines a positive/negative
volume form on ¥, i.e. A restricts to ¥ as a positive/negative contact form.

PROPOSITION 8.10. Suppose (M,w) is a compact 2n-dimensional symplectic manifold with
boundary.

(1) If n = 1, then every boundary component of (M,w) is both convex and concave.
(2) If n > 1, then no boundary component of (M,w) is both convex and concave.

PROOF. Suppose (M,w) is 2-dimensional and ¥ < dM is a boundary component. Then
¥ admits a collar neighborhood N'(X) € M with

(N(Z),w) = ((—€,0] x S, ds A dt)

2Note that a symplectically convex hypersurface in (R®" ws;) need not be geometrically convex in the
usual sense, e.g. every star-shaped hypersurface is symplectically convex.
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for sufficiently small € > 0, with s € (—¢,0] and t € S' = R/Z. We thus have w = d\y = d\_
in NV (X), where
Ay i=(s+1)dt, and A_:=(s—1)dt,

80 Ay |r(anr) = dt is a positive contact form on ¥, implying via Exercise 8.9 that ¥ is convex.
(Note that a 1-form on S! is a positive contact form if and only if it is positive.) Similarly,
)\—’T((?M) = —dt is a negative contact form, implying via Exercise 89 that ¥ is concave.
In particular, the w-dual vector fields to Ay and A_ give Liouville vector fields that point
transversely outward and inward respectively.

The following argument for the case dim M = 2n > 4 was explained to me by Janko
Latschev. Arguing by contradiction, suppose w admits two primitives A, and A_ near ¥ such
that if we write ay 1= Ay |7,

oy A(da)" >0 and a_ A (da )"l <.

By assumption, dA; = dA\_ = w, thus day = da_ and in particular ker da, = kerda_, so
the Reeb vector fields R,, and R,_ on ¥ are colinear. Moreover, they point in opposite
directions: this follows from the orientation difference above, since day = da_ implies that
projection along the Reeb direction defines an orientation-preserving bundle isomorphism
between the two contact hyperplane fields. Now define a closed 1-form on ¥ by

B=ay—a_.

We then have S(R,, ) > 0, thus

(8.8) J B A (doy)" > 0.
by
But 8 A (day )" 1 is an exact form, as
BAday An...nday =—d(B Aoy Adag Ao Aday),
so (B.8) violates Stokes’ theorem. O

As we saw in Exercise B9 a choice of Liouville vector field V' near a contact-type hyper-
surface ¥ ¢ (M, w) induces a primitive \ := w(V,-) of w whose restriction to ¥ is a contact
form, and the induced Reeb vector field generates the orbits of any Hamiltonian having ¥ as
a regular level set. As Exercise B.6lshows, a contact-type hypersurface ¥ c (M,w) always be-
longs to a whole 1-parameter family of contact-type hypersurfaces whose Hamiltonian orbits
are all the same (Figure R2]). This provides a good intuitive reason to believe Theorem
for any contact-type hypersurface ¥ < (M,w), if one can find closed Hamiltonian orbits on
a nearby hypersurface in the 1-parameter family containing 3, then this implies a closed
orbit on ¥ itself. Hence it suffices to prove an “almost existence” result, e.g. that in any
1-parameter family of hypersurfaces, almost all of them (or even just a dense subset of them)
admit closed orbits. There are indeed results of this type on (R??, wg), and they provide one
path to a proof of Theorem [R5} see [HZ94] for details. More generally, it is now not so hard to
believe that every contact-type hypersurface in every symplectic manifold might admit closed
orbits. Since every contact manifold can be realized as a contact-type hypersurface in its own
symplectization (cf. Exercise 8.7, that statement would be equivalent to the following:

CONJECTURE 8.11 (Weinstein). For every closed manifold ¥ with a contact form «, the
Reeb vector field R, admits a periodic orbit.
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The Weinstein conjecture was formulated in the late 1970’s and was proved in dimension
three by Taubes [Tau07] in 2006, using the deep relationship between Seiberg-Witten theory
and holomorphic curves. In higher dimensions, there is no Seiberg-Witten theory and the
Weinstein conjecture remains open, with sporadic results known in special cases, most of which
are higher-dimensional generalizations of holomorphic curve arguments that were already
known in dimension three before the work of Taubes. We will discuss a few of these earlier
3-dimensional results in Chapter

8.2. Symplectic cobordisms and fillings

Observe that if ¥ < (M,w) is a contact-type hypersurface, then the Liouville vector field
V transverse to ¥ is far from unique: indeed, any C'-small function H : M — R yields
another Liouville vector field V' + X that is also transverse to Y. As a consequence, the
contact form induced on X is also not unique, in fact the space of contact forms on X that
arise in this way is very large, but the following exercise shows that it is topologically quite
simple.

EXERCISE 8.12. Show that for any oriented hypersurface ¥ in a symplectic manifold
(M,w), the space of Liouville vector fields positively transverse to ¥ is convex.

By a basic result in contact geometry called Gray’s stability theorem (see e.g. [Gei08] or
[Mas14]), any 1-parameter family of contact forms on a closed manifold yields an isotopy of
their underlying contact structures. Combining this fact with Exercise gives a partial
answer to the question of why we are often interested in studying contact structures rather
than contact forms:

PROPOSITION 8.13. On any closed contact-type hypersurface ¥ < (M,w), the contact
structure induced on Y is uniquely determined up to isotopy by the germ of w near 3. O

In light of this, one can speak of closed convex and concave boundary components of
a symplectic manifold as being contact manifolds in a natural way. Given two (possibly
disconnected) closed contact manifolds (M4, &), we say that a compact symplectic manifold
(W,w) is a (strong) symplectic cobordism from (M_,¢_) to (M+,§+)E if

8W = —Mf I_[M+,

with M_ a concave boundary component carrying the induced contact structure £_ and M
a convex boundary component carrying the induced contact structure ; (see Figure B3]).
We can also abbreviate this by writing

OW,w) = (~M_, &) 11 (M, &),

If M_ = ¢, then we call (W,w) a (strong) symplectic filling of (M,£,), and if M, = &,
we call it a (strong) symplectic cap of (M_,¢_), see Figure 84l We say also that (W,w) is
an exact symplectic cobordism or Liouville cobordism (or an exact/Liouville filling
in the case M_ = () if the Liouville vector field that determines £+ on M, can be arranged
to extend to a global Liouville vector field on (W, w); in this case the w-dual of this Liouville
field gives a global primitive of w which restricts to positive and negative contact forms on M,
and M_ respectively. By Exercise [R.6] one can use flows of Liouville vector fields near My to

3This terminology varies among different authors: some would describe what we are defining here as a
“symplectic cobordism from (M4,&1) to (M—,£-).” This difference of opinion can probably only be resolved
on the battlefield.
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- (—e,0] x M., d(ea))
(W)
) ? T ? ([0,€) x M_, d(ctar_))

FIGURE 8.3. A symplectic cobordism with concave boundary (M_,{_) and
convex boundary (M, &), with symplectic collar neighborhoods defined by
flowing along Liouville vector fields near the boundary.

((—€,0] x M,d(eta))

||
m
O

([0,€) x M,d(eta))

i

FIGURE 8.4. A symplectic filling and symplectic cap respectively of a contact
manifold (M, §) with contact form o.

construct symplectic collar neighborhoods N (M, ), N (M_) € W of M, and M_ respectively
in the form

WN(My),w) = ((_6,0] x M+,d(€t04+)) )
(N(M-),w) = ([0,€) x M_,d(e'a_)),

where a4 denote contact forms on M, defined as restrictions of any primitive A = w(V, )
determined by a Liouville vector field V.

(8.9)

REMARK 8.14. The collar neighborhoods defined near the boundary of a strong sym-
plectic cobordism provide a natural way of attaching cobordisms together: if (Wy1,wp1) is a
strong symplectic cobordism from (M, &) to (M7,£1) and (Wia,wi2) is a strong symplectic
cobordism from (M1,&) to (Ma, &), then after possibly rescaling the symplectic forms and
deforming them near Mj so that the induced contact forms match, one can attach the two
cobordisms to define a strong symplectic cobordism from (M, &) to (Ma,&2). It follows that
there is a transitive relation £ defined on the contactomorphism classes of closed contact
manifolds in any given dimension by writing (M, ) < (M’,£’) whenever there exists a strong
cobordism from (M, &) to (M’,&’). Note that unlike the situation for topological cobordisms,
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this is not an equivalence relation: the existence of a strong symplectic cobordism from (M, §)
to (M’,£") does not imply one in the other direction, since one cannot simply reverse the orien-
tation of a symplectic manifold. For example, it is known that all closed contact 3-manifolds
admit symplectic caps [EHO02], hence (M, &) £ &, but many are not symplectically fillable
(see §9.2) and thus do not satisfy ¢§ < (M, ). The relation < is a pre-order, but not a partial
order, as there are plenty of examples of pairs that admit cobordisms in both directions but
are not contactomorphic, e.g. [EHO02] also proves that this is true for any pair of overtwisted
contact 3-manifolds.

EXAMPLE 8.15. Any star-shaped hypersurface M c (R?", wg;) is the symplectically convex
boundary of a star-shaped domain W < R?" and thus inherits a natural contact structure.
Identifying M with the unit sphere S?"~1 = 0B>" in the obvious way, the fact that all
star-shaped domains can be deformed smoothly to each other implies (via Gray’s stability
theorem) that the resulting contact structure on $2"~! is uniquely determined up to isotopy:
we call this the standard contact structure on S?*~!. If we write the standard Liouville
form in the usual coordinates (p1,qi, - . . ,Pn, ¢n) € R?™ and restrict to the unit sphere, we have

n

&t =kerag,  as = Y (pjdg; — q;dp;)
Jj=1 T92n—1

By this definition, every star-shaped domain in (R?",wg) is an exact symplectic filling of
(8271 &) after identifying the latter with the boundary of the domain via a suitable con-
tactomorphism.

EXAMPLE 8.16. For any closed smooth n-manifold L, the cotangent bundle T*L has
a canonical Liouville form that can be written locally as follows: given local coordinates
(q1,--.,qn) on some neighborhood in L and denoting the induced coordinates on the fibers
of T* L over this neighborhood by (p1,...,py), we have

n
)\can = Z bj de-
j=1

We then define the canonical symplectic form on T*L by wean = dAcan = D y dp; A dgj. The
Liouville vector field wean-dual to Acan can be written in these same coordinates as

Vcan = EPji

i op

so it points radially outward in each fiber and is thus transverse to any closed hypersurface
in T*L whose intersection with every fiber is star-shaped. We shall refer to any domain
bounded by a hypersurface of this type as a star-shaped domain in T7*L. It follows that
such domains are exact symplectic fillings, and since all star-shaped hypersurfaces are isotopic,
the induced contact structure on the boundary is uniquely determined up to isotopy. To write
this down more concretely, one can choose a Riemannian metric on L and consider the unit

disk bundle
DT*L = {peT*L | |p| <1},

which is an exact symplectic filling of the unit cotangent bundle

ST*L = {peT*L | |p| = 1}.
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We define the canonical contact form a.,, on ST*L as the restriction of Ac.n, and set

gcan = ker acan.

One can check that the Reeb flow defined by acan on ST*L is the natural lift of the geodesic
flow determined by the chosen metric.

The following special case will arise in Chapter @ Let L = T? = R?/Z2, and fix the
standard flat metric. Since T*T? is a trivial bundle, we can identify it with T? x R? and define
global “coordinates” (qi,qa,p1,p2) With q1,go € St = R/Z, such that Aean = p1dq1 + p2 dqQE
We then have a natural diffeomorphism

(8.10) T3 = St x T2 - ST*T? c T? x R? : (£, ¢,0) — (6, ¢, cos(2xt), sin(27t)),
and under this identification of ST*T? with T3,
Qcan = cos(27t) d + sin(27t) do.

This is also called the standard contact form on T and is used to define its standard
contact structure,
&t 1= ker o, Qgt 1= Oleay On T2 = ST*T?.

EXAMPLE 8.17. Suppose (W,w) is a strong symplectic filling of (M,{) and L ¢ W is a
Lagrangian submanifold in the interior. By Weinstein’s Lagrangian neighborhood theorem
(see e.g. [MS17, Theorem 3.4.13]), some neighborhood U of L in (W,w) can be identified
symplectically with a neighborhood of the zero-section in (T*L,wean), and we can therefore
arrange U so that ol is a convex hypersurface inheriting a contact structure contactomor-
phic to (ST*L,&can). This makes (IW\U,w) a strong symplectic cobordism from (ST*L, can)
to (M,§). If additionally (W,w) is an exact filling with primitive A, then one says that
L < (W,d)\) is an exact Lagrangian if A7, is exact. When this holds, a standard argument
(see e.g. the proof of Corollary 3.10 in [GZ13]) produces a primitive making (W\U,w) an ex-
act cobordism from (ST*L,&can) to (M, &). Conversely, every strong cobordism (W', w') from
from (ST*L,&can) to (M, &) comes from this construction, as one can stack (W’ ,w’) on top
of (DT*L,wean) as in Remark B14] to produce a filling (W,w) that contains the zero-section
L c T*L as a Lagrangian submanifold, and it will be an exact Lagrangian if and only if
(W', ') is an exact cobordism.

As the reader might infer from the appearance of the word “strong” in the above defini-
tions, one can also speak of weak symplectic cobordisms, fillings and caps. In dimension four,
we say that a compact symplectic manifold (W, w) with oriented boundary 0W = —M_11M
is a weak symplectic cobordism from (M_,¢_) to (M, &) if the {4 are positive contact
structures on My such that w|e, > 0. The special cases with M_ or M, empty are called
weak symplectic fillings or caps respectively. It is easy to check that a strong cobordism
is also a weak cobordism, but the converse is false: for example, the symplectic form at the
boundary of a weak cobordism need not be exact, and relatedly, weak cobordisms cannot al-
ways be stacked in the sense of Remark 814l so they do not give rise to a pre-order on contact
manifolds. Another significant difference is that the isotopy classes of contact structures on
the boundary components of a weak cobordism (WW,w) are not always uniquely determined
by w, e.g. Giroux [Gir94] gave examples of infinitely many contact structures on the 3-torus
that are not contactomorphic but are all weakly filled by the same symplectic manifold (see

4Minor annoyance: the natural orientation of T? x R? is actually the opposite of the one defined by wcan
on T*T?. This is the reason for reversing the order of 6 and ¢ in BI0).
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Exercise[0.21]). These also served as the first known examples of contact manifolds that admit
weak symplectic fillings but not strong ones, and many others are now known. A generaliza-
tion of weak fillings and cobordisms to higher dimensions was introduced in [MNW13] and
can be expressed in terms of pseudoconverity; see Remark

We will have relatively little to say about weak fillings in this book, but we should note one
case in which proving results about strong fillings yields results about weak fillings for free.
The following local deformation lemma is due originally to Eliashberg [Eli91, Proposition 3.1];
see also [0005, Lemma 1.1] and [Eli04, Prop. 4.1], plus [MNW13\ Prop. 6] for the higher-
dimensional version.

PROPOSITION 8.18. Suppose (W,w) is a symplectic 4-manifold with oriented boundary
M = oW such that w|e > 0 for some positive contact structure § < TM and w = d\ near OW
for a 1-form A. Then there exists a smooth family of 1-forms {)\5}86[071] such that \y = A,
As = A outside an arbitrarily small neighborhood of OW for all s, ws 1= dXs is symplectic and
satisfies wg|e > 0 for all s, and \i|rar is a contact form for €.

PrOOF. Choose any contact form « for &, denote its Reeb vector field by R, and define
a 2-form on M by Q = w|rp. The condition w|e > 0 implies &« A © > 0 on M. Identify a
collar neighborhood of 0W in W smoothly with (—¢, 0] x M, with the coordinate on (—e, 0]
denoted by t, such that d; and R, span the symplectic complement of £ at W and satisfy
w(0r, Ry) = 1. Then if € > 0 is sufficiently small, Q + d(ta) defines a symplectic form on
(—€,0] x M that is cohomologous to w and matches it precisely at ¢ = 0. It follows via a
Moser deformation argument that w and € + d(ta) are isotopic on some neighborhood of M,
thus we can now assume after changing the collar neighborhood and shrinking € > 0 that
w = Q + d(ta) on the collar (—¢,0] x M < W near 0W. This implies

darnw=dt nanda>0
on the collar, and after shrinking € > 0 further if necessary, a A € > 0 implies
dt naAw>0.
Now consider a 1-form of the form
A= ft)a+g(t)A

on (—e,0] x M < W, where f,g : (—¢,0] — [0,00) are smooth functions with f(¢t) = 0
and ¢g(t) = 1 near t = —e¢, so that A extends smoothly over the rest of W as A. We have
dAN =dt A (f'(t)a+ g () N) + (f(t) da + g(t) w), thus

dA A dAN =2f(t)[f(t)dt A a A da+ g (t)dt A XA dal
+29@) [F()dt nanw+g () dt AXAw]+2f(#)g(t)da rw+ [g)]* w A w.

The last two terms in this sum are nonnegative (and positive if g > 0), and both of the terms
in brackets that appear next to f/(t) are strictly positive. Starting from f =0 and g =1 so
that A = A, one can now see how to deform the functions f and g smoothly so that dA A dA
remains positive and thus dA remains symplectic: the key is just to make sure that f’ is
always much larger than |¢'|. As long as either f or g is always strictly positive, we also have

dt AandN=ft)dt nanda+gt)dt nanw>D0,

which implies dA|¢ > 0. After a deformation of this type, we can arrange to have g(t) = 0
near t = 0 at the cost of making f a large and steeply increasing function, and A then restricts
to 0W as the contact form f(0)a. O
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COROLLARY 8.19. If (W,w) is a weak filling of (M,£) and w|rar is exact, then w can be
deformed symplectically near the boundary to produce a strong filling of (M,&). Moreover, if
w s also globally an exact 2-form, then the deformation can be arranged to produce an exact

filling of (M, ). O

The corollary is often applied in situations where M is a rational homology 3-sphere,
so that HgR(M ) = 0 guarantees the exactness hypothesis for every weak filling; we will
apply it this way for fillings of S? in 0.1l Note however that the trick used in the proof
of Proposition BI8] making f a steeply increasing function, would not work on a collar of
the form [0,€) x M, hinting at the fact that the analogue of Corollary 819l for symplectic
cobordisms is false: Example[0.I8 exhibits a strong cobordism (W, w) that cannot be deformed
to a Liouville cobordism even though w is globally exact. The issue is that one must also be
able to find a global primitive that is contact at the boundary, and this is not always possible
when there are concave boundary components.

EXERCISE 8.20. Show that there is no such thing as an “exact symplectic cap” of a
nonempty contact manifold. Hint: Stokes’ theorem.

The hierarchy of cobordism notions “exact—strong—weak” can also be extended further in
the other direction: a Liouville cobordism (W,w = d\) is called a Weinstein cobordism if
it is equipped with the additional data of a Morse function ¢ : W — W that is constant at the
boundary such that the global Liouville vector field w-dual to A is gradient-like with respect
to ¢. The point of this extra data is to produce a Morse-theoretic topological decomposition
of (W,w) into symplectic handles, corresponding to the critical points of the Morse function.
Up to deformation, Weinstein cobordisms are equivalent to the (a priori much more rigid)
notion of Stein cobordisms, which come originally from complex geometry, see |[CE12];
in particular, a contact manifold is Weinstein fillable if and only if it is Stein fillable. We
will not prove any results about Weinstein or Stein fillings in this book, but we will mention
them occasionally since they are also an active topic of current research. Except for Stein and
Weinstein, it is known that none of the above notions of symplectic fillability are equivalent:
we will see some weakly but not strongly fillable examples in §3.2, while examples that are
strongly but not exactly or exactly but not Stein fillable have been found by Ghiggini [Ghi05]
and Bowden [Bow12] respectively.

8.3. Background on punctured holomorphic curves

Gromov in his 1985 paper sketched some applications of compact pseudoholomorphic
curves to questions of symplectic fillability for certain contact manifolds (cf. Theorem
below). In order to use Floer’s ideas to attack the Weinstein conjecture, it was necessary to
develop a more general framework for holomorphic curves on noncompact domains that would
approach periodic orbits asymptotically. Such a framework was introduced by Hofer in 1993
[Hof93] and produced a proof of the Weinstein conjecture for certain contact 3-manifolds as a
corollary of the existence of finite-energy J-holomorphic planes in their symplectizations. We
shall explain the basic idea of this in §3.11 The theory of finite-energy punctured holomorphic
curves in symplectizations and “completed” symplectic cobordisms was developed further
over the course of the 1990’s by Hofer, Wysocki and Zehnder [HWZ96aHWZ95a[HWZ99,
HWZ96b], with several striking applications to dynamical questions in 3-dimensional contact
geometry (see e.g. Theorem [0.46). At the same time, Eliashberg [ELi98] and other authors
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(e.g. Chekanov [Che02]) began to develop the potential of this technology for defining Floer-
type invariants of contact manifolds. The culmination of this effort was the announcement
[EGHOQ] in 2000 of symplectic field theory (“SFT”), a general algebraic framework that
combines Gromov-Witten theory and Floer homology to define invariants of contact manifolds
and symplectic cobordisms between them by counting punctured holomorphic curves. The
analytical details of this theory are formidable due to the problem of achieving transversality
for multiply covered holomorphic curves, and this aspect of SFT remains a large project in
progress by Fish-Hofer-Wysocki-Zehnder, see [HWZb]. In spite of these complications, the
analytically well-established portions of the theory have produced many striking applications,
a few of which will be the main topics of Chapter

In preparation for the results surveyed in the next chapter, we now give a quick sketch
of the technical apparatus of holomorphic curves in symplectic cobordisms between contact
manifolds. More precise statements and proofs of everything that is left to the imagination
in this section may be found in [Wend].

8.3.1. Punctures and the finite energy condition. Since contact manifolds are odd-
dimensional, they do not admit almost complex structures, and one must first choose a related
even-dimensional setting if one wants to make use of holomorphic curves. The object that
most obviously lends itself for this purpose is the symplectization: recall from Exercise [B.1]
that if (M,€) is any contact manifold with a contact form «, then (R x M, d(ela)) is a
symplectic manifold, and up to symplectomorphism it is independent of the choice of contact
form (cf. Exercise B8). Now observe that whenever v — M is a closed orbit of the Reeb
vector field R,

R xvc (R x M,d(e'a))
is a symplectic submanifold. Moreover, the contact condition implies that dal¢ is nondegen-
erate and thus makes & — M a symplectic vector bundle. It is therefore natural to consider
almost complex structures that make the cylinders R x v into J-complex curves and restrict
to da-compatible complex structures on the bundle £ — M. We shall write J € J (M, «) and
say that J is adapted to « if it is an almost complex structure on R x M such that:

e J is invariant under the flow of the vector field ¢; in the R-direction (we say that J
is “R-invariant”);
o J (at) = Rq;
o J(§) =& and J¢ : £ — ¢ is compatible with dovle.
Observe that an adapted J is automatically compatible with the symplectic form d(e‘a), and
for any periodic solution z : R — M to @ = R, (z) with period T' > 0, the map

(8.11) uw: (Rx SYi) — (Rx M,J):(s,t) — (Ts,z(Tt))

is a J-holomorphic cylinder, where (R x S',4) again denotes the standard Riemann cylinder
C/iZ. We refer to curves of this type as trivial cylinders (or sometimes orbit cylinders).

REMARK 8.21. It is important to keep in mind that in the above construction of trivial
cylinders over Reeb orbits  : R — M with period T" > 0, there is no need to assume 7T is
the minimal period of z, i.e. in general T' = kT for some integer £ € N and the smallest
number Ty > 0 for which z(7p) = z(0). This makes the trivial cylinder over the T-periodic
orbit x a k-fold cover of the (embedded) trivial cylinder over x as a Typ-periodic orbit. We
say in this case that the Ty-periodic orbit is simply covered, while the T-periodic orbit has
covering multiplicity k. In the study of closed Reeb orbits on contact manifolds in general,
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and in particular in symplectic field theory, simply covered orbits and their multiple covers
are regarded as separate objects; note that this distinction does not arise in Hamiltonian
Floer homology, since the latter only considers orbits with a fixed period.

REMARK 8.22. One can also define a larger space J-(M, «) with the relaxed condition
that J|¢ should be tamed by (but not necessarily compatible with) da|e. While this definition
is clearly natural, the current literature does not clarify whether spaces of J-holomorphic
curves with J € J.(M, «) satisfy all the analytical properties that are needed. In particu-
lar, the standard approach to Fredholm theory for punctured holomorphic curves relies on
being able to express the linearized Cauchy-Riemann operator asymptotically in terms of self-
adjoint asymptotic operators, see [Wend| Chapters 3 and 4], [Sal99] §2.2 and §2.3, especially
Lemma 2.4], and [Sch95, Chapter 3]. These operators however are not generally symmetric
unless J € J(M,«). It is conventional to avoid this issue by always assuming J € J (M, a),
and we shall do so here as well.

EXERCISE 8.23. Show that for any given contact form o on M, J (M, «) is nonempty and
contractible.

As in our discussion of Floer homology and the Arnol'd conjecture, it is useful in SFT
to impose a dynamical nondegeneracy condition on closed Reeb orbits. Suppose v denotes a
closed orbit of R, with period T' > 0 and ¢!, : M — M denotes the time-t flow of R,. The
conditions defining R, imply

Lp,a=dg,o+tp,do=d(1)+0=0,

thus !, preserves . We then say that v is nondegenerate if for every point p in the image
of ~y, the linear map

d‘Pg(p)’ép 2&p — &p

does not have 1 as an eigenvalue. Note that if this condition holds for some particular p,
then it holds for every p in the image of v. Up to the obvious shifts in parametrization,
nondegenerate orbits are necesarily isolated, meaning that if we parametrize closed orbits by
maps S' — M, then no sequence of closed Reeb orbits with distinct images can converge
in C*(S1, M) to one that is nondegenerate. One can then use the Arzela-Ascoli theorem to
show that if M is compact and all closed orbits are nondegenerate, then for every T° > 0,
there are at most finitely many closed Reeb orbits of period less than T'. More generally, we
say that v is Morse-Bott if its image belongs to a smooth submanifold N < M foliated by
T-periodic Reeb orbits such that

T,N = ker (dgog(p) - 1)

for every p € N. This makes nondegeneracy the special case of the Morse-Bott condition in
which the submanifold NV is 1-dimensional. Conditions of this sort are essential for technical
reasons, e.g. one can show that for J € J(M, «), the trivial cylinder over a closed Reeb orbit
is a Fredholm regular J-holomorphic curve if and only if the orbit is Morse-Bott. We say that
« is a nondegenerate or Morse-Bott contact form if all closed orbits of the Reeb vector
field R, are nondegenerate or Morse-Bott respectively. By a standard perturbation result,
generic contact forms are nondegenerate (see e.g. the appendix of [ABW10]), though in
applications, it is often convenient to work with Morse-Bott contact forms, which are allowed
to have more symmetry.
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EXERCISE 8.24. Writing S! = R/Z, let us say that a smooth map 7 : S! — M is an even
parametrization of a T-periodic Reeb orbit z : R — M if v(t) = 2(T't). Prove:

(a) The period of an evenly parametrized Reeb orbit v : S1 — M is g1 7

(b) For any smooth 1-parameter family {v, : S — M},cg of evenly parametrized Reeb
orbits, all v, have the same period.

The most obvious way to adapt Floer’s formalism for contact manifolds is now to choose
J € J(M,q) and consider J-holomorphic cylinders u : (R x S',i) — (R x M, J) that behave
asymptotically like trivial cylinders as s — 400 and s — —oo. This idea is not wrong, but as
we’ll see when we discuss compactifications below, it is too simplistic: the compactification of
the space of J-holomorphic cylinders will generally need to involve noncompact curves that
are more general than cylinders. Hofer’s paper [Hof93| focused instead on J-holomorphic
planes

u: (C,i) > (R x M,J)

for which the map (s,t) — u(62”(5+“)) asymptotically approaches a trivial cylinder as s —
+00. Curves of this type arise naturally in the settings that Hofer was considering, as we will
see in §9.J1 Now observe that cylinders and planes can each be regarded as closed Riemann
surfaces with finitely many punctures: indeed, (R x S' i) and (C,4) are biholomorphically
equivalent to (S%\{0,00},4) and (S?\{c0},4) respectively, where (S2,4) denotes the standard
Riemann sphere C u {o0}. It thus becomes natural to consider J-holomorphic curves whose
domains are arbitrary closed Riemann surfaces with finitely many punctures.

Before explaining this further, note that one can also generalize the target space by
considering two closed contact manifolds (M, &) with a strong symplectic cobordism (W, w)
from (M_,&_) to (My,&+). Since W is compact, the symplectization is not a special case of

—

this, but it becomes one if we replace (W, w) with its completion (W,©) defined by
(‘//I\/,CD) = ((—0,0] x M_,d(e'a_)) un_ (W,w) unr, ([0,0) x My, d(e'ay)) .

Here the positive/negative halves of the symplectizations (R x My, d(e'ay)) are attached
smoothly to the collar neighorhoods ([83]), see Figure The symplectization of (M, &) can
now be regarded as the completion of a trivial symplectic cobordism ([0, 1] x M, d(e'«)) from
(M, §) to itself. We shall write

Je T Ww,ar,a_) o JeJWw ar,a)
for any smooth almost complex structure J on W such that J lw is in Jr(W,w) or J(W,w)
respectively, while J|_c g)xar_ and J|jo,)xar, belong to J(M+,a+). A noncompact almost
complex manifold (171\/, J) constructed in this way is said to have cylindrical ends.
EXERCISE 8.25. Show that J,(W,w, a4, a_) jf(ﬁ\/,@) and J(W,w,ay,a_) < j(ﬁ\/,@),
and both spaces are always nonempty.

Given a closed Riemann surface (X,j) and a finite subset I' < X, we then define the
punctured Riemann surface

(2,5) = (X\L',)),
choose J € J;(W,w, a;,a_) and consider punctured J-holomorphic curves
u: (,5) = (W, J).
As with Floer cylinders, an arbitrary noncompact J-holomorphic curve will not have reason-
able asymptotic behavior unless it satisfies a suitable energy bound (see Example 827 below).
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([07 OO) X M—H d(eta+))

((—€,0] x My, d(e'ar))

(W, w)

([0,€) x M_,d(eta_))

((—00,0] x M_,d(eta_))

FIGURE 8.5. The completion of a symplectic cobordism is constructed by
attaching half-symplectizations to form cylindrical ends.

The obvious condition to impose, SE u*W < oo, is however not the right one, as we can see by
looking at the trivial cylinder (8IT)): the integral of u*@ in that example is infinite. We can
fix this easily by modifying the symplectic form: let

T ={peC®R,(-1,1)) | ¢' >0 and p(t) = ¢ for all ¢ near 0},

and for any ¢ € T, define

d(e?®a_) on (—w0,0] x M_,
(8.12) Wy = w on W,
d(e*®ay)  on [0,00) x M.

EXERCISE 8.26. Show that for any ¢ € T, w, is a symplectic form and J-(W,w, a4, a_)
jT(Wawcp)v j(W/',w,a+,a_) c j(WawsO)‘

The boundedness of ¢ € 7 means that SRX g1 u*w, will now satisfy a uniform bound for
all ¢ € T whenever u is a trivial cylinder, and the same is then true for any punctured
J-holomorphic curve that behaves asymptotically like a trivial cylinder near its punctures.
Since there is clearly no canonical choice of ¢ € T, we define the energy of a punctured curve
u: (E, j) — (17[\/, J) by taking the supremum over all possible choices:

(8.13) E(u) = sup f u¥we.
peT JE
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This notion of energy is equivalentl to the one defined by Hofer in [Hof93| and is thus
sometimes called the Hofer energy. One can show that any nonconstant curve satisfying
E(u) < oo has the following property whenever the Reeb orbits are nondegenerate or Morse-
Bottfl for each puncture z € I', fix a neighborhood i/, — ¥ and a biholomorphic identification
of (U, j,z) with (D?,,0). This determines two holomorphic embeddings of half-cylinders,

by 1 [0,00) x ST — DAL0} = U\{2} <> 5 (5,1) > e 2mHiD),
bt (—00,0] x §' = D0} = U\2} > 5 : (s,8) o 27EFD),

The statement is then that if E(u) < oo, the set of punctures can be partitioned into three
subsets I' = 'Y U 't U T~ such that:

e For z € TV u admits a smooth extension over z, i.e. the puncture is removable
(cf. Theorem [2.30]).

e For z e ', wo; maps [c,0) x St into [0,00) x M, for some ¢ = 0, and up to a
fixed translatlon in the R-component, the restriction of u o ¥4 to this half-cylinder
can be made arbitrarily C*-close to a similarly restricted trivial cylinder by taking
c sufficiently large. We say that this puncture is positive.

e For 2 e ', uot_ maps (—o0, —c] x St into (—c0,0] x M_ for some ¢ > 0, and up to
a fixed translation in the R-component, the restriction of u o _ to this half-cylinder
can be made arbitrarily C*-close to a similarly restricted trivial cylinder by taking
c sufficiently large. We say that this puncture is negative.

We will assume from now on that all removable punctures are already removed, so FO ,
in which case the conditions on positive and negative punctures imply that v : Y Wisa
proper map, and at each puncture z € I't it has an asymptotic Reeb orbit v, in M ; see
Figure The neighborhoods U, of the positive/negative punctures z € I'* are called the
positive/negative cylindrical ends of (E, j). Note that the data carried by each asymptotic
orbit 7, includes not only its image in M but also its covering multiplicity, cf. Remark RB271

ExampLE 8.27. If J € J(M,«) and = : R — M is any orbit of the Reeb flow #(t) =
R, (x(t)), periodic or not, then the map

u: (Cyi) > (Rx M,J):s+ it — (Ts,z(Tt))

is a J-holomorphic curve with E(u) = co. This shows that curves with infinite energy always
exist and thus give no interesting information. By contrast, finite-energy curves guarantee
the existence of a periodic Reeb orbit and thus prove the Weinstein conjecture whenever they
exist.

While punctured holomorphic curves do not generally represent cycles in H. 2(17[\/) as in the
closed case, a finite-energy curve u : (X = X\T',j) — (171\/, J) with positive and/or negative
punctures I' = 't U '~ asymptotic to Reeb orbits {7, }.,er represents a relative homology
class, meaning the following. Let 4t — M, denote the closed 1-dimensional submanifold

5The word “equivalent” in this context does not mean that Hofer’s definition was the same, but simply
that any uniform bound on Hofer’s energy implies a uniform bound on the version defined here, and vice versa.
Thus for applications to compactness theory and asymptotics, the two notions are interchangeable.

6 general, [Hof93] proved that every finite-energy punctured holomorphic curve has positive and negative
punctures asymptotic to closed Reeb orbits, but the asymptotic approach to these orbits is much harder to
describe if the orbits are not assumed to be at least Morse-Bott. In fact, the asymptotic orbit at each puncture
may even fail to be unique up to parametrization, see [Siel7|.
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([0,0) x My, d(e'ary))

-
S\’ '
£
((=c0,0] x Mad(eta))t(
Y %

FIGURE 8.6. A finite-energy punctured holomorphic curve u : ¥\I' — W
in the completion of a strong symplectic cobordism (W, w), with genus 2, one
positive puncture I't = {z} and two negative punctures I'” = {w, }.

Vi

defined as the union over z € I't of the images of the orbits .. Fixing biholomorphic
identifications of suitable neighborhoods U, c ¥ of each puncture with [0,00) x St for z e T'F
or (—0,0] x S! for z € T~ let T denote the so-called circle compactification of ¥, that
is, the compact oriented topological surface with boundary obtained from by by appending
{£o0} x St to each of the cylindrical ends. Now let 7 : W — W denote the retraction defined
as the identity on W and 7 (r,z) = x € My < oW for (r,z) in [0,00) x M, or (—o0,0] x M_.
Then 7 owu : ¥ — W has a natural continuous extension

u:(X,08) - (Wt uq)
and thus represents a relative homology class
[u] € Ho(W, 7" v 77).

Just as closed curves in a fixed homology class satisfy a uniform energy bound, it is an easy
exercise in Stokes’ theorem to prove that any set of finite-energy curves that represent a fixed
relative homology class and have a uniformly bounded number of positive ends asymptotic to
orbits with uniformly bounded period also satisfy a uniform energy bound. If the completed
cobordism W is replaced by the symplectization R x M of a single contact manifold M, then
it is more natural to project everything to M and define

[u] € Ho(M, 4t 7).

From this point, the analytical development of the theory of punctured holomorphic curves
closely parallels the closed case. The following subsections provide a brief summary of how the
technical results in Chapter 2l need to be modified for punctured curves. For the rest of this
chapter, assume n > 2, (M4, &) are two closed contact (2n—1)-manifolds with chosen contact

forms ay for £, (W,©) is the completion of a 2n-dimensional strong symplectic cobordism
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(W,w) from (M_, &) to (M4, &) with collars near the boundary on which w = d(efa4), and
Je Tr(W,w,ay,a_). We will sometimes also refer to “the R-invariant case,” meaning that
(W, ©) is replaced by the symplectization (R x M, d(e'a)) of a closed contact (2n—1)-manifold
(M, &) with contact form «, and J € J(M, ).

Most of the nontrivial results mentioned below require closed Reeb orbits to be either
nondegenerate or Morse-Bott, so let us assume that the Morse-Bott condition always holds.

We will occasionally go further and specify nondegeneracy, though this condition can usually
be relaxed with some effort (see Remark [8.52]).

8.3.2. Simple and multiply covered curves. If ¢ : (3,5) — (¥',;') is a holomor-
phic map of degree k := deg(¢) > 2 between two closed Riemann surfaces and ' : (X' :=
YN\ 5 — (ﬁ\/, J) is a finite-energy punctured J-holomorphic curve, then one can define a
k-fold cover of v’ as a finite-energy curve

u=1uop:(3,)) = (W,J)

with domain ¥ := ¥\T for T' := ¢~ (IY). With this notion understood, Proposition
continues to hold in the punctured case: all nonconstant curves with Morse-Bott asymptotic
orbits are either multiply covered or somewhere injective, i.e. simple, and in the latter case
they have at most finitely many self-intersections and non-immersed points. This fact has
been considered standard for many years, though a complete proof of it has been difficult to
find in the literature until relatively recently, and it requires a little bit more than the local
results underlying Prop. [Z.6, i.e. the fact that self-intersections and non-immersed points of
a somewhere injective J-holomorphic curve are always isolated. It also requires asymptotic
results to prevent non-immersed points or self-intersections from accumulating near infinity.
Results of this kind are proved in [Sie08], and on this basis, complete proofs of the punctured
version of Prop. can be found in [Nell5| §3.2] or [Wend, §6.4].

EXERCISE 8.28. Suppose ¥ and ¥/ are closed, connected and oriented surfaces, ¢ : ¥ — Y/
is a branched cover of degree k € N, IV = ¥/ is a finite subset and T' = ¢~ }(I’) = . Denote

Y=\, ¥ =3I, ¢:= oly I 3 5

Use the Riemann-Hurwitz formula (Proposition L)) for ¢ to show that the algebraic count
of critical points Z(dg) = 0 of ¢ satisfies the analogous formula

(8.14) Z(dp) = —x(%) + kx(X).

EXERCISE 8.29. Recall from Remark B2l that each of the asymptotic orbits {7, }.er of a
finite-energy curve u : 3= S\I' - W also has a covering multiplicity, i.e. for each puncture z,
v, is a k,-fold cover of some simply covered orbit +., for some k, € N. Show that if all of the
positive or all of the negative asymptotic orbits of u are distinct and simply covered, then u
is simple. (The converse, by the way, is false in general.)

Proposition [2.§] is a statement explicitly about curves that represent cycles in homology
and is thus not immediately relevant to the punctured case, but the basic fact behind it
generalizes easily: a finite-energy curve is constant if and only if its energy vanishes. This is
immediate from the fact that every J € J-(W,w, o, a_) is tamed by the symplectic form w,,
defined in ([BI2) for every ¢ € T, cf. Exercise Here is a related statement that pertains
specifically to the R-invariant case, and is an easy application of Stokes’ theorem.
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PROPOSITION 8.30. Suppose J € J(M,a), and u: (3,§) — (R x M, J) is a finite-energy
punctured J-holomorphic curve with asymptotic orbits {v,},cr+, where each 7y, has period

T, > 0. Then
J_ wida = Y T.— Y T. >0,
% zel'+ zel'—
with equality if and only if u is (up to parametrization) either a trivial cylinder or a multiple
cover of one. O

8.3.3. Smoothness and dimension of the moduli space. Fix finite ordered tuples
of closed Reeb orbits v+ = (’yli, e ,’y;—;) in My for some integers si,s_ > 0; here the data
describing a Reeb orbit includes its image and its covering multiplicity (see Remark §2T]),
but we do not distinguish between two orbits that differ only by a shift in parametrization.
Fix also a relative homology class

Ae Hy(W,7" uq),

where & < M* denotes the 1-dimensional submanifold obtained from the union of the
images of all the orbits 'yf—r, e ,'y;—ﬁr. For integers g, m = 0, we then define the moduli space

Mg,m(A§ J;'7+7'7_) = {(Evjvr+7r_vuv @)}/Nv

where

(3,7) is a closed connected Riemann surface with genus g;

TF = (2f,...,25 )and '™ = (27 ,...,z; ) are disjoint finite ordered sets of distinct
points;

w: (X :=3\(Itul"),j) — (171\/, J) is a finite-energy pseudoholomorphic curve with
positive punctures z;r asymptotic to ’y;r for i =1,...,s4 and negative punctures z;
asymptotic to 7, for i =1,...,s_, and representing the relative homology class A;

O = ((1,...,Gn) is an ordered set of m distinct points in 3;

(21,51, 07, T, u1,01) and (g, jo, T3, T, ug, ©2) are defined to be equivalent if and
only if there exists a biholomorphic map ¢ : (X1, j1) — (X2, j2) taking FI—F to in and
©1 to O with all orderings preserved, and satisfying u; = us o g0|21.

The space Mg (A; J;v1,~v7) has a natural topology such that convergence of a sequence
[(Ek,jk,F;,FI;,uk,@k)] to an element [(X,7,TF,T7,u,0)] means the existence for suffi-
ciently large k of representatives

(2, TH 17wy, ©) ~ (Sky i, Ty, Ty 5 uk, O)

such that j; — j in C® on ¥ while uj, — u in C{%, on 3 and in C° up to infinity (with respect
to some R-invariant choice of metric on the cylindrical ends). As usual, we shall abbreviate
the case without marked points by

Mg(A; ;77 77) i= Mgo(A; T;v7,v7),
and we will sometimes use the shorthand notation

Mgty )= My Tyt 7).

AeHy(WA+tuy~)
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If all asymptotic orbits are nondegenerate, the index formula (24]) now generalizes to

vir-dim Mg, (A; ;v 7,77) = (n = 3)(2 = 29 — sy — s_) + 2¢] (A)

S+ S
+ > ez () = . () + 2m,
i=1 =1

(8.15)

or equivalently, for a finite-energy curve u : (X = L\(I't ™), j) — (171\/, J) with asymptotic
orbits {7, }.er+,

(8.16) ind(u) = (n = 3)x(%) + 2] (W*TW, J) + Y ulz(7:) = D pz(r2)-
zel'+ zel'~

To define the terms on the right hand sides of each of these formulas, one first needs to make
an arbitrary choice of trivialization for the bundles £, along each of the asymptotic orbits,
and this choice is denoted here by 7. In general, if £ — Y is a complex line bundle and 7
denotes a choice of trivialization for F near the punctures, then the relative first Chern
number ¢](E) € Z is defined by counting the zeroes of a generic section that is nonzero
and constant with respect to 7 near the punctures, and if £ is a higher-rank complex vector
bundle, one defines ¢](E) by requiring ¢] to be additive with respect to direct sums. The

term c (u*Tﬁ[\/, J) in (BI6) is then explained by the fact that 7' W over each cylindrical end
of W is naturally a direct sum of a trivial complex line bundle with &, or &_, hence the
trivializations 7 of £4 along each orbit naturally determine trivializations of the complex
vector bundle (u*TW,.J) — ¥ near the punctures. The number c{(u*TW, J) can then be

shown to depend only on the complex bundle T’ W — ﬁ\/, the asymptotic trivializations 7 and
the relative homology class of u, hence the same term is denoted by ¢](A) in (8.I3]).

Much could be said about the Conley-Zehnder index uf,(y) € Z, which we do not
have space for here, so we will be content to know that uf,(v) is a homotopy invariant of
nondegenerate Reeb orbits that quantifies (with respect to the trivialization 7) the rotation
of nearby (non-periodic) orbits about . For details, see [Wend, Chapter 3], or the original
sources [CZ83a] or [HWZ95al §3]. Note that changing the trivialization 7 always changes
Koy (v) by an even integer, hence the parity

p(v) = [uGz ()] € Z2

of « is well defined independently of any choices. One can show moreover that changing 7
changes the relative first Chern number by an amount that cancels the total changes to the
Conley-Zehnder indices, hence the virtual dimension is also independent of 7.

The index formula can be made to look the same in the Morse-Bott case if one first adjusts
one’s understanding of the terms ul,(7), in slightly different ways depending on the sign of
the puncture; see Remark

The discussion of Fredholm regularity and genericity in §2.1.3] generalizes to the punctured
case in a completely natural way, the only real difference being the technical details of how
to define suitable Banach manifolds of asymptotically cylindrical maps ¥ — W. In
particular, the analogue of Theorem 2.11] in this context holds with only one minor change,
which is that the smooth moduli space

MGE (A Ty v7) € Mym(A;s T ,77)

might fail to be orientable; we will come back to this delicate topic in §83.6] below (cf. Corol-
lary B38]). The analogue of Theorem 212 holds without any changes at all, as we were careful
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to state it without requiring the target symplectic manifold to be compact. The caveat here
is that while Theorem can be applied for finite-energy curves in W, it requires a choice of
a precompact “perturbation domain” U < W on which J may be perturbed generically, and
the result then holds only for somewhere injective curves that intersect U [1 A natural choice
for U is the interior of the compact cobordism W, but the theorem then stops short of the
statement we really want, which is that all somewhere injective curves in W will be regular
for generic J € J;(W,w,a4,a_). One can repair this gap by supplementing Theorem
with an analogous result that applies specifically to the R-invariant case:

THEOREM 8.31. Fiz an open subset U < M with compact closure and an R-invariant
almost complex structure Jy € J(M,«), and let

J(M, U, Jy) = {Jej(M,a) ‘ J = Jy outside R xLl}.

Then given any integers g,m, sy, s_ = 0, tuples of Reeb orbits v+ = (’yli, . ,’y;—;) m M and
a relative homology class A € Ho(M,5t U ~7), there exists a comeager subset

T"8(M,c;U, Jo) = T (M, U, Jp)

such that for all J € J*8(M, a;U, Jy), every somewhere injective curve in Mg m(A; J;y+,v7)
that intersects R x U is Fredholm regular. O

Theorem [B31] is a separate result from Theorem because the freedom to perturb J
within the class J (M, «) of R-invariant almost complex structures that differ from each other
only on the subbundle ¢ is much more  restrictive than the freedom to perturb it among all
w-tame almost complex structures on W. The result is originally due to Dragnev [Dra04],
and two more modern alternative proofs (of slightly more general results) can be found in
[Wend| Lecture 8] and [Wena|. Now if Theorem is applied in W with ¢/ defined as the
interior of W, then any somewhere injective curve failing to intersect &/ must be contained
in one of the cylindrical ends and is therefore subject to Theorem [B31], so the outcome is
exactly as desired: for generic J € J,(W,w, a;,a_), the open subset

M (A Ty 7)€ Mgm(A; T;77,77)

consisting of somewhere injective curves is a smooth manifold with dimension equal to
vir-dim Mg (A; J; v+, 7).

REMARK 8.32. The results in §2.Ilabout parametric moduli spaces and moduli spaces with
marked point constraints also generalize in straightforward ways to the punctured case. In
contrast to Remark 220, however, vir-dim Mg ,,,(A; J;y",v7) is not always an even number,
hence the generic condition ind(u) = —1 for simple curves u in 1-parametric moduli spaces
cannot generally be used to deduce the better result ind(u) > 0. There is still at least one
common situation where this trick does work and is quite useful; see the exercise below.

EXERCISE 8.33. Show that if diim W = 4 and u is a finite-energy punctured J-holomorphic
curve whose asymptotic orbits all have odd Conley-Zehnder index, then ind(u) is even.

7Requiring U to have compact closure is useful for technical reasons, as the proof of the theorem requires
defining a Banach manifold of perturbed almost complex structures, and there is usually no natural way to
put Banach space structures on spaces of maps whose domains are noncompact manifolds.
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8.3.4. SFT compactness. The compactification of the moduli space of punctured holo-
morphic curves [BEHT 03| combines the Gromov compactification with the breaking phenom-
enon of Floer homology. Assuming all closed Reeb orbits are Morse-Bott (cf. Remark R.34]
below), every sequence of punctured curves uy : 5 — W with uniformly bounded energy has
a subsequence converging to a stable J-holomorphic building

+ + - -
(’L)N+,...,Ul L V0,V] 5+ UN_ ),

where

e v} fori=1,..., N, are (possibly disconnected) punctured nodal holomorphic curves
in the R-invariant symplectization (R x M, d(e'ay)), defined up to R-translation;

e 0¥ is a (possibly disconnected or empty) punctured nodal J-holomorphic curve in

(W,);
e v; fori=1,..., N_ are (possibly disconnected) punctured nodal holomorphic curves
in the R-invariant symplectization (R x M_,d(e'a_)), defined up to R-translation.

These nodal curves are called the levels of the building, and they connect in the sense that
the negative asymptotic orbits of each level match the positive asymptotic orbits of the one
below it, so that gluing levels together along these matching orbits gives a nodal surface
with the same arithmetic genus as 3; see Figure Bl We refer to v° as the main level, the
levels v as upper levels and v; as lower levels. Note that by convention, N, or N_
can be zero, so upper and lower levels may or may not exist, while the main level always
exists but is also allowed to be empty (i.e. the domain of v° is the empty set), in which case
there must be at least one upper or lower level. Supplementing the stability condition of
Definition 2.34] by the requirement that no level can consist exclusively of a disjoint union
of trivial cylinders without marked points or nodes, the space ngm(A; J;y1,47) of stable
J-holomorphic buildings then has a natural metrizable topology as a compactification of
Mg m(A; J;vT,v7), and all its elements have finite automorphism groups. This space is
often called the SFT compactification.

A slight modification of this construction is appropriate for the R-invariant case, where we
prefer to consider the quotient Mgy, (A; J;v",v7)/R instead of Mg, (A; J;yT,~v7) itself.
This quotient has a natural compactification consisting of stable holomorphic buildings in
which all levels are (possibly disconnected but nonempty) curves in R x M, but each is now
defined only up to R-translation, and while the ordering of the levels still makes sense, there is
no longer any meaningful distinction between main, upper and lower levels. We use the same
notation Mg, (A4; J;yT,v7) for this compactification, keeping in mind that it is technically
a compactification of Mg, (A4; J;v",~v~)/R rather than Mg, (A; J;vT,~v7).

REMARK 8.34. As stated in [BEH 03], the theorem that M ,,(A; J;y*,v7) is compact
requires all contact forms concerned to be nondegenerate or Morse-Bott. The reason is that
the breaking orbits appearring between neighboring levels of a building usually cannot be
predicted in advance; the only thing we can typically predict about the curves appearing in
each level is that they have finite energy (often with a quantitative bound), so it is then
essential to know that finite energy implies reasonable asymptotic behavior, which is not
true in general without some nondegeneracy condition (see [Siel7]). There are situations in
which one can usefully relax this condition a bit, e.g. quantitative bounds on energy imply
quantitative bounds on the periods of possible breaking orbits, so sometimes it is enough to
know that all orbits up to some fixed period are nondegenerate.
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,Z/)Ir (R x M, d(e'ay))
% (W.2)
(R x M_,d(e'a_))
U1
sS=l1= S
Uy (R x M_,d(e'a_))
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vy (R x M_,d(e'a))
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FIGURE 8.7.  Degeneration of a sequence up of finite-energy punctured
holomorphic curves with genus 2, one positive end and two negative ends
in a completed symplectic cobordism. The limiting holomorphic building
(vfr , V0,07 ,Vy , U3 ) in this example has one upper level, a main level and three
lower levels, each of which is a (possibly disconnected) finite-energy punctured
nodal holomorphic curve. The building has arithmetic genus 2 and the same
numbers of positive and negative ends as uy.

A few subtle issues have been elided in the above sketch, and one of them demonstrates an
important difference between the SFT compactification and the simpler space of “broken Floer
cylinders” arising in Floer homology. Focusing on the R-invariant case, fix J € J(M, «) and
three Reeb orbits 4*,77,7% in M, and suppose (v,,v_) € Mo(J;7",77) is a holomorphic
building whose levels are cylinders vy € Mo(J;v+,9%)/R and v_ € Mo(J;~%,v~)/R. This
building can be the limit of a sequence of smooth holomorphic cylinders ug € Mo(J;v,77),
where convergence means essentially that one can find J-holomorphic parametrizations

Up = (u]llfau;cu) : (RX 5172‘) - (R X M7J)7
vy = (v, 0}) : (R x SY,4) —> (R x M, J),

satisfying the following:

(1) There exist sequences of constants cf € R with ¢f — ¢, — o such that uf =

(Ul — ¢if ,ud!) converges in CZ (R x S1) to vy.



178 8. HOLOMORPHIC CURVES IN SYMPLECTIC COBORDISMS

(2) For any sequence of constants ¢ € R that does not stay within a uniformly bounded
distance of either cl': or ¢, , the curves (u]}f — ck,ué\/[ ) converge to a trivial cylinder

over either v, 49 or v~

Now consider the obvious extensions of the maps uﬁ/f :R x S' — M to continuous maps on
the circle compactification

ﬂg/[ 2 Zy, = [—00,00] x St — M,

so that a{y restricts to {+00} x S! as parametrizations of the orbits v+ and v~. Denote the
corresponding extensions of vﬂ\_r/[ ‘R x S — M to [~o0, 0] x St by

¥ Z - M.

One consequence of the convergence described above is that the maps ﬁﬂ‘f and oM glue together
to form a continuous map

M7 =7, e Z_ — M,

where the attaching map ® sends {—o0} x S' = dZ, via the obvious bijection to {+00} x S' <
0Z _, and there exists a sequence of homeomorphisms ¢y : Z — Z such that

il o, - in CY%Z,M).

Observe now that this description of the convergence depends on the choices of parametriza-
tions ug : R x S' — R x M, so if we change them e.g. by replacing u; with ug(- + a, - + b) for
some constants a € R and b € S!, then the parametrizations of v4 will similarly be replaced by
v4 (-+a,-+b). The crucial point here is that we are not allowed to change the parametrizations
of v, and v_ independently of one another, as an arbitrary pair of reparametrizations will not
necessarily arise as the limit of any sequence of reparametrizations of ux. In other words, the
element (vy,v_) € Mo(J;~v*,7) consists of more data than just an element of the Cartesian
product Mo(J;7",7%) x Mo(J;~%,77). The extra data is called a decoration, and for a
given pair of parametrizations vy : R x S — R x M, one can characterize the decoration as
a choice of homeomorphism

07, > {—0} x S* -2 {40} x 8T« IZ_,

subject to the condition that @ﬂ\r/l and o™ must then glue together to form a continuous map
on Z; Ug Z_. Two pairs of parametrizations (v4,v_) and (v/,,v") with decorations ® and
@’ respectively are then considered to represent the same element of Mq(J;yT,~7) if and
only if there exist simultaneous reparametrizations identifying v; with ¢/, and v_ with v’
such that the decorations ® and ®’ are also identified with each other.

The reason this discussion never arises in Floer homology is that in the setting of Floer
cylinders asymptotic to 1-periodic Hamiltonian orbits, there is only ever one allowable choice
of decoration: orbits of a time-dependent Hamiltonian vector field come with a preferred
starting point, and all parametrizations of cylinders are expected to respect this. In SFT this
is no longer true, and in particular, the orbit 4 could be a k-fold cover of another Reeb orbit
for some k > 2, in which case any pair of parametrizations v+ : R x S* — R x M admits k
choices of decoration for which the maps can be glued together continuously. Some of these
choices may turn out to be equivalent under pairs of biholomorphic reparametrizations for
the two curves, but if they are not, then they represent distinct elements of Mg(J;y",77).
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8.3.5. Gluing along punctures. As with nodal curves in the Gromov compactification,
gluing theorems can be used to describe the neighborhood of a holomorphic building in
ﬂg,m(J ;v1,4 7). Historically, the Floer-theoretic version of gluing predates its use in the
theory of closed holomorphic curves (cf. §2.1.7)), as e.g. the proof that 02 = 0 in Floer homology
rests on the fact that not only does the compactification of the space of Floer cylinders contain
broken Floer cylinders as in Figure Rl but every rigid broken Floer cylinder also arises in
this way as the limit of a unique 1-parameter family of smooth Floer cylinders. Gluing will
not play a role in the applications to be discussed in Chapter [@], so the reader may prefer to
skip this section on first pass, but the basic idea needs to be understood in order to discuss
orientations in §8.3.6] below, and in any case, since the algebra of SFT depends crucially on
gluing theorems, a brief discussion is warranted.

In §83.4] above we saw that a holomorphic building cannot always be specified merely in
terms of the component smooth curves in its levels, as one must also specify decorations for
each of its “breaking” orbits, i.e. the orbits along which two neighboring levels connect. One
remedy is to enhance the moduli space Mg ,,(A4; J;y",v7) with slightly more data. Fix an
arbitrary choice of point p, € My in the image of each Reeb orbit « in M4, so if v has covering
multiplicity £ € N, then any parametrization of v passes through p, exactly k times. For a
J-holomorphic curve u : (X = L\(I'" v T7), ) — (17[\/, J) with a puncture z € I'* asymptotic
to 7, an asymptotic marker is a choice of a ray £ — T,% such that

Jim u(c(®)) = (+0,p,)

for any smooth path ¢(t) € ¥ with ¢(0) = z and 0 # ¢(0) € £. Notice that if v has covering
multiplicity £ € N, then there are exactly k choices of asymptotic markers at z, related to
each other by the action on 7,3 by the kth roots of unity. We shall denote

M (A Tyt ) = {(Z,4,T7,T7,u,0,0} / ~,

where (X,7,I'",I'",u, ©) represents an element of Mg ,,,(A; J;v,v7), £ denotes an assign-
ment of asymptotic markers to every puncture z € I't, and

(El)jlarfarfaulaglagl) ~ (22,]’2,1—‘;,1—‘5,’&2,@2,62)

means the existence of a biholomorphic map ¢ : (X1,71) — (X2, j2) which defines an equiva-
lence of (X1,41,0{,T],u1,01) with (39,752,135, T, u2,02) and satisfies p.l1 = f5. There is
a natural surjection

Mﬁ,m(A; Tyt 7)) > Mgm(A; T3yt y7)

defined by forgetting the markers, and if we restrict to curves in Mg, (A; JJ;y+,47) that
are somewhere injective and therefore have no nontrivial automorphisms, this surjection is
a covering map of finite degree given by the product of the multiplicities of the asymptotic
orbits.

Returning now to the broken cylinder example from §8.3.4] any pair

(vg,v-) € ME(T; 7,70 x ME(T54°%,77)

naturally specifies an element of Mg(.J;y+,7~) having v, and v_ as its levels; the decoration
is uniquely determined by the condition that it map the asymptotic marker of v, at —oo to
the marker of v_ at +00. In this discussion, the additional asymptotic markers at the orbits
~T and 4~ are extraneous information which we are free to discard.
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With asymptotic markers in the picture, we can now write down a concrete example of
what a gluing map in SFT looks like. The following discussion is borrowed from [Wend|
Lecture 11].

Figure B8] shows the degeneration of a sequence of curves uj in a moduli space of the
form M3 4(J; (74,75),7~) to a building ue, € M3 4(J; (y4,75),¥~) with one main level and
one upper level. The main level is a connected curve u4 belonging to M1 o(J; (71,72,73),Y"),
and the upper level consists of two connected curves

up € My 1(Jy; 74, (71,72)), uc € Mo1(J4575,73),

where J; € J(My,ay) denotes the restriction of J to the positive cylindrical end of w.
One can endow each of these curves with asymptotic markers compatible with the decoration
of uq; this is a non-unique choice, but e.g. if one chooses markers for w4 arbitrarily, then
the markers at the negative punctures of up and uc are uniquely determined. Let us assume
that all three curves are somewhere injective, and that J|w € J-(W,w) and J; € J (M4, a4 )
are generic so that all three curves can be assumed Fredholm regular. Then there are open
neighborhoods Z/Ii and U%C,

ua € Uy © M3 (5 (71,72, 73),7 ),
[(up,uc)] € Uye < (M§,1(J+;’Y4, (71,72)) x M§,1(J+;75,’Y3)) /R

which are smooth manifolds of dimensions
dlmZ/If‘ = vir-dim M1,2(‘]; (’Yla Y2, 73)) 7_))
dimUf = vir-dim My 1 (J15 94, (1, 72)) + vie-dim Mo 1 (4575, 73) — 1.

Note here that the R-translation action on R x M, is acting simultaneously on up and uc,
i.e. we view them as the connected components of a single disconnected curve on which the
translation acts. The gluing map is then a smooth embedding

(8.17) U 2[Ry, 00) x U x Uy = M5 4(J; (74,75),77),

defined for Ry » 1, such that for any u € Lli and v € U%C, U(R,u,v) converges in the SFT
topology as R — o0 to the unique building (with asymptotic markers) having main level u
and upper level v. Moreover, every sequence of smooth curves degenerating in this way is
eventually in the image of V.

In analogous ways, one can define gluing maps for buildings with a main level and a
lower level, or more than two levels, or multiple levels in a symplectization (always dividing
symplectization levels by the R-action), and one can combine this with the ideas sketched
in §2.1.7] to include nodal degenerations in the picture. It is important to notice that in all
such scenarios, the domain and target of the gluing map have the same dimension, e.g. the
dimension of both sides of (8I7) is the sum of the virtual dimensions of the three moduli
spaces concerned.

8.3.6. Coherent orientations. Since vir-dim M, ,,(4; J;y*,~7) is not always even, it
is immediately clear that the trick sketched in §2.1.8] for defining orientations on Mg, (A; J)
cannot generally be extended to the punctured case: the linearized Cauchy-Riemann operator
D,, associated to a punctured curve u is not always homotopic through Fredholm operators
to its complex-linear part DS. The problem here is that since ¥ is not compact, zeroth-order
perturbations of Cauchy-Riemann type operators over Y are not compact perturbations, hence
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there is not even any guarantee that Dg’ is also Fredholm, or if it is, that its index matches
that of D,,. These questions depend in general on the asymptotic behavior of the Cauchy-
Riemann operator; this is one of the major reasons why we always need to assume that Reeb
orbits are nondegenerate or Morse-Bott.

There is a second problem: even if we can assign orientations to all the moduli spaces
Mg m(4; J;4T,~7), the compactification Mg, (A4; J;4T,v7) contains subsets consisting of
“broken curves” built out of other components My, (B;J;71,72), which are meant to be
viewed as “boundary strata” of M ,(A;J;y+, 7). Floer-theoretic relations such as =0
and the more general algebraic properties of SF'T rely on these boundary strata being assigned
the boundary orientation, meaning the chosen orientations need to be compatible with the
gluing maps discussed above in §83.51 Talking about gluing maps means that instead of
looking at Mg (A; J;v",v7), we need to consider the space ./\/ljm(A; J;yT,~47) with the
extra data of asymptotic markers at each puncture, and the desired condition is then the
following:

DEFINITION 8.35. A system of orientations on the moduli spaces Mﬁ,m(A; J;y T, y7) ds
coherent if all gluing maps (as in (8I7])) are orientation preserving.

Note that one can make sense of this condition without assuming any transversality or
smoothness for Mi,m(A; J;yT,47), as an “orientation” of this moduli space can be inter-
preted to mean a continuously varying choice of orientations for the determinant line bundles
of the linearized Cauchy-Riemann operators associated to each curve. We saw in §2.1.8] that
this notion of orientations implies the classical one whenever we restrict our attention to
Fredholm regular curves.
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It turns out that the solution to the first problem mentioned above is to solve the second
one: by an algorithm described by Bourgeois and Mohnke [BMO04], one can always find
a system of coherent orientations on the moduli spaces /\/lgm(A; J;yT,v7). They are not
canonical, except in certain cases, e.g. one can make the necessary choices so that if a curve
u happens to have the property that D, is homotopic through Fredholm operators to its
complex-linear part, then the algorithm assigns to u the natural “complex” orientation, just
as in the closed case. The prescription is roughly as follows:

(1) For every choice of nondegenerate asymptotic data for Cauchy-Riemann type op-
erators Dy on the trivial bundle over a plane C with a positive puncture, choose
an orientation arbitrarily for the family of all operators that match the chosen data
asymptotically. This is possible because the space of Cauchy-Riemann type opera-
tors on a fixed domain with fixed asymptotic behavior is affine, hence contractible.
For compatibility with the complex-linear case, we can also arrange this choice so
that any complex-linear operator gets the complex orientation.

(2) For any Cauchy-Riemann type operator D_ with nondegenerate asymptotic data on
the trivial bundle over a plane C with a negative puncture, use a “linear gluing”
construction to glue it to another Cauchy-Riemann type operator D over a plane
with positive puncture, producing a Cauchy-Riemann type operator on some bundle
over S2. The latter is homotopic through Fredholm operators to its complex-linear
part, so it carries a natural complex orientation, and this together with the orien-
tation chosen for D in step (1) uniquely determines an orientation for D_ via the
coherence condition. '

(3) For any Cauchy-Riemann type operator D with nondegenerate asymptotic data on
a bundle over a punctured surface 2, one can use linear gluing to cap off each of the
ends of ¥ with planes having positive or negative ends, producing a Cauchy-Riemann
type operator D on some bundle over a closed surface ¥. Assigning the complex
orientation to D, the chosen orientations for operators on planes then determine an
orientation for D via the coherence condition.

The loose end in this discussion is that we are actually interested in orienting the space
Mg (A; J;4T,y7), not Mi,m(A; J;yT,~47), and this is where the story becomes especially
interesting. The ideal situation would be if all of the maps

(8.18) M (A Tyt ) > ME (A Ty, y7)

defined by rotating the asymptotic marker at some puncture by a suitable root of unity are
orientation preserving, as then the orientations would descend to Mg, (A; J; v+, ~v7), viewed
as a quotient of M;m(A; J;y",~47). But this condition is not true in general—it depends
on the Reeb orbits:

DEFINITION 8.36. A nondegenerate Reeb orbit v is called a bad orbit if it is the k-fold
cover of another orbit 7g such that k£ € N is even and pgy () — oy (70) is odd. We say « is a
good orbit if it is not bad.

In the 3-dimensional case, one can show that the bad orbits are precisely the even covers of
so-called negative hyperbolic orbits, i.e. orbits 7y for which the linearized return map restricted
to the contact bundle has two negative eigenvalues, implying that uZ (7o) is odd but g, (va%)
is even for all k € N.
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PROPOSITION 8.37 ([BMO04]). For any choice of coherent orientations, the maps (8I8])
defined by adjusting asymptotic markers are all orientation preserving if and only if all of the
Reeb orbits in the tuples ¥ and v~ are good. O

COROLLARY 8.38. The space Mg m(A; J;y+, ™) is orientable whenever all of the Reeb
orbits in the tuples v and v~ are good. O

As a matter of interest, we also mention the following result from [BMO04], which is the
reason for the “supersymmetric” nature of the algebra in SFT:

PROPOSITION 8.39. Suppose 4 is an ordered tuple of Reeb orbits obtained from v+ by
interchanging two orbits ’y;f,'ylj wn the list, and let

it MS (A Ty Ty T) > M (A ATy T)

denote the natural map defined by interchanging the corresponding pair of punctures. Then i
is orientation reversing if and only if both of the numbers

n =3+ ugz (")
fori=j,k are odd. A similar statement holds for permutations of negative punctures. O

The significance of the number n—3+ g, () is that for a suitable choice of trivialization 7,
it is the virtual dimension of a moduli space of holomorphic planes positively or negatively
asymptotic to . The proof of Proposition is based on the coherence condition together
with the fact that a Cartesian product of two such moduli spaces of planes will change its
orientation under change of order if and only if both of them have odd dimension. See
[Wend|, Lecture 11] for a more detailed sketch of the idea, and [BMO04] for the complete
proof.

8.3.7. Automatic transversality. We now specialize to the case n = 2, so dim W =
4 or dimM = 3. The generalization of Theorem [2.44] to the punctured case comes from
[Wen10al.

THEOREM 8.40. Suppose n = 2, and u : (X = X\I',j) — (171\/, J) is an immersed finite-
energy punctured J-holomorphic curve with nondegenerate asymptotic orbits {7y, }.er satisfying

ind(u) > 2g — 2 + #even,

where g is the genus of ¥ and Leven < I' © X is the set of punctures z at which g, (v.) is
even. Then u is Fredholm regular. O

COROLLARY 8.41. Ifn = 2, every immersed finite-energy punctured J-holomorphic sphere
with nonnegative index and only nondegenerate asymptotic orbits with odd Conley-Zehnder
index is Fredholm regular.

The condition on odd Conley-Zehnder indices tends to seem baffling on first glance, so
let us sketch a direct proof of Corollary B4Il The idea closely resembles the proof of The-
orem [2.46F since w is immersed, the problem can be reduced to showing that the normal
Cauchy-Riemann operator DY is surjective, where DY is defined on a suitable Sobolev space
of sections of the normal bundle N, — Y. This is a Fredholm operator, and the punctured
generalization of the Riemann-Roch formula (see [Sch95] or [Wend| Lecture 5]) gives its
Fredholm index

indDY = x() + 2] (Nu) + Y. ulz(2) — D) 1z ().

zel't zel'—
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Here 7 is the usual arbitrary choice of trivializations for £; along each Reeb orbit, and we
are using the fact that u resembles a trivial cylinder near infinity to identify IV, in this region
with the contact bundle along u and thus define the relative first Chern number ¢f(N,,) € Z.
Using the splitting WTW =TS @ N, and writing down the appropriate relative first Chern
number of TS — ¥ in terms of the Euler characteristic, we have

(8.19) TWTW, J) = x(2) + ¢](N,)

and thus
ind DY = ind(u).

We will be done if we can show that dimker DY < ind DYY. The objective is to do this by
controlling the algebraic count of zeroes for nontrivial sections 7 € ker DY < I'(N,,). Unlike
the closed case, such control will not come from topology alone: if the set of punctures is
nonempty, then the count of zeroes for generic sections n € I'(IV,) is not homotopy invariant,
as there is nothing to prevent zeroes from escaping to infinity under homotopies or emerging
from infinity under small perturbations. Put another way, Y is an open surface and thus
retracts to its 1-skeleton, so N, — ¥ is a trivial bundle and there is no apparent control
over the count of zeroes for its sections. But the elements of ker DY are not just arbitrary
sections: they satisfy a linear Cauchy-Riemann type equation, which means (by the similarity
principle) that their zeroes are isolated and positive, and crucially, there is also an asymptotic
version of this statement. )

To express it properly, suppose more generally that £ — ¥ is a complex line bundle with
a trivialization 7 defined near infinity, and n € T'(E) is a smooth section whose zeroes are
contained in a compact subset of Y. If the zero set 7n~'(0) c ¥ is finite, then each individual
zero has a well-defined order o(7, z) € Z and we will denote the algebraic count of zeroes by

Zm) = Y, oz el
zen=1(0)

Whether 771(0) is finite or not, having it confined to a compact subset means also that at
each puncture z € I't, 5 has a well-defined asymptotic winding number

wind" (n,2) € Z

with respect to 7. It is defined for z € T'" as the winding number of the loop in C\{0} defined
by expressing 1 with respect to 7 along a small circle in 3 winding once clockwise around z.
For z € I'™, the definition is the same, except that the circle around z winds counterclockwise.

EXERCISE 8.42. Show that if the section 1 € I'(E) in the above scenario has only finitely
many zeroes, then

Z(n) =cl(E)+ Z wind" (n, z) — Z wind” (1, ).
zel'+ zel'—

The following asymptotic winding result is a combination of theorems from [HWZ96a)
and [HWZ95a].

PROPOSITION 8.43. Ifn =2 and u: (¥ = £\, j) — (W, J) is an immersed finite-energy
punctured J-holomorphic curve with nondegenerate asymptotic orbits {v.}.er, then for any
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nontrivial section n € ker DY, the zero set n=1(0) < S is contained in a compact subset.

Moreover, its asymptotic winding numbers satisfy
wind™(n,2) < o’ (v,) for zelT,
wind”(n, z) = o, (y;) for =zel™,

where for any nondegenerate Reeb orbit v with parity p(y) € {0,1}, the integers oL (y) € Z
are uniquely determined by the relations

(8.20) 20 (y) + p(v) = pcz(y) = 225 (v) — p(v)-

This motivates the definition

Zyp(n) = Z [aT_ (72) — wind" (n, z)] + Z [WindT(n, z) —al (’yz)],

zel'+ zel'—

which is nonnegative for every 7 € ker DY and, by Exercise 842 satisfies

(8.21) Z) + Zo(n) = T (Nu) + Y] o7 (v2) = Y. of (7).

zel't zel'—

One can now check that the right hand side of this expression is independent of the trivial-
ization T, i.e. while each individual term is manifestly 7-dependent, the dependencies cancel
out in the sum. It follows that while Z(n) can change as n € ker DY is varied, the sum
Z(n) + Zw(n) cannot, which motivates the interpretation of Z,(n) as an algebraic count of
“hidden” zeroes of n that may emerge from infinity under small perturbations.

One can go further and replace the right hand side of ([82I)) with an expression that
depends only on the topology of the domain 3 and the relative homology class of u. Indeed,
using (819, the right hand side of (82I]) becomes

(8.22) en(u) = fW TW) = x(3) + Y, al(r:) = Y, af(v:).
zel't zel—

Note that this expression is well defined for all finite-energy curves u with nondegenerate
asymptotic orbits; there is no longer a requirement for u to be immersed. We call ¢y (u) the
normal Chern number of u. Its first interpretation comes from (82I]), which now implies
that for any immersed curve «' homotopic to u and any nontrivial section 7 in the kernel of
its normal Cauchy-Riemann operator,

(8.23) 0<Z(n) + Zo(n) = cn(u),

so in particular ¢y (u) gives an upper bound on the actual algebraic count of zeroes Z(n). We
will also see in §8.3.8 that ¢ (u) furnishes the natural replacement for the term ¢ ([u]) — x(2)
in the punctured version of the adjunction formula.

The normal Chern number is typically easiest to compute via its relation to the index:

PROPOSITION 8.44. For any curve u as in Prop. [§]3,
2¢n (u) = ind(u) — 2 + 29 + #Leven,

where g is the genus of % and Deyven € I' © 3 is the set of punctures with parity 0.
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PROOF. Denote I'yqq := I'\l'eyen. We combine the definition of ¢y (u) with the index
formula ([8I6]), set n = 2, and plug in the relations ([8.20]):

2en (u) = 2¢] (u *TW ) — 2x(2 Z 2a” () Z 207 (7z)
zel'+ zel'~
— 2] (W TW) = X(3) = (229 — #T) + Y. [nlz(72) — p(72)]
zel't

— > [uEz(v2) +p(r2)]

zel'—

=ind(u) — 2+ 29 + #I' — #T'oqq = ind(u) — 2 + 29 + #leven.
]

PROOF OF COROLLARY [8:47]. Assume u is immersed, g = 0, #even = 0 and ind(u) = 0.
Proposition 844 then gives 2cy(u) = ind(u) — 2 = ind DY — 2. Note that the condition
#Deven = 0 implies that ind(u) is even (cf. Exercise 833]), so we are free to write

ind DY =2 + 2k

with k = ¢y (u) an integer greater than or equal to —1. If k = —1, then since any nontrivial
section 7 € ker DY must satisfy Z(n) < k, the similarity principle implies that no such sections
exist, hence ker DY is trivial and, since ind DY = 0, so is coker DY¥. Now assume &k > 0, pick
any k + 1 distinct points zg,..., 2 € 3 and consider the map

®:ker DY — (N ® ... ® (Nu)sy > (7(20)s - - -, m(z1))-
Since Z(n) < k for every nontrivial i € ker DY ® is an injective map, implying
dimker DY < 2(k + 1) = ind DY,
hence coker DY is again trivial. O

There are also generalizations of Theorem B40 to allow curves with non-immersed points
and/or Morse-Bott asymptotic orbits (see Remark 852)), as well as a generalization involving
pointwise constraints as in Theorem The former is contained in the main result of
[Wen10a), while the latter is a straightforward exercise combining those arguments with the
proof of Theorem

8.3.8. Intersection theory. The above discussion of automatic transversality gives a
foretaste of the intersection theory of punctured holomorphic curves, due to Siefring [Sie08
Siell]. We shall now give a very brief overview of this theory, referring to [Wenf] for
a more detailed introduction. The version of the theory discussed here is valid whenever
all asymptotic orbits are Morse-Bott, but we should stipulate that “homotopy-invariance”
then always refers to homotopies of curves with fized asymptotic orbits, i.e. the orbits are not
allowed to move through their respective Morse-Bott families (see the discussion of constrained
vs. unconstrained punctures in Remark [852]). A more general intersection theory that relaxes
this condition is outlined in [Wenl0al §4.1].

Naively counting intersections does not give homotopy-invariant results on noncompact
domains, but as in the proof of Corollary 841l above, one can compensate by keeping track of
extra terms—analogous to Zy(n) in (823)—which count “hidden” intersections at infinity.
Instead of a homological intersection number [u] - [v], any pair of proper smooth maps u and
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v from punctured Riemann surfaces into W with asymptotic approach to Reeb orbits at their
punctures can be assigned an intersection product

[u] * [v] € Z,

which depends only on the relative homology classes of v and v and their asymptotic orbits.
If v and v have only finitely many intersection points, then this product takes the form

[u]  [v] = u- v+ e (u, v),

where u - v € Z denotes the usual signed count of isolated intersections, and the extra term
too(u,v) € Z can be expressed in terms of the difference between certain asymptotic winding
numbers and their theoretical bounds determined by the integers o7 () as in Prop. 843l If
u and v are both finite-energy punctured J-holomorphic curves with Morse-Bott asymptotic
orbits and they have non-identical images (i.e. they are not both reparametrizations or covers
of the same simple curve), then Siefring’s relative asymptotic formula [Sie08] implies that
their intersections cannot accumulate near infinity, thus the above decomposition of [u] * [v]
is well defined, and positivity of intersections implies that u-v > 0, while a corresponding as-
ymptotic statement analogous to Proposition [8.43] implies to (1, v) = 0. One should interpret
too(u,v) in this case as the algebraic count of “hidden” intersections that can emerge from
infinity under small J-holomorphic perturbations of either u or v. The homotopy-invariant
condition [u] * [v] = 0 now suffices to ensure that u and v are disjoint unless they have identi-
cal images, though in contrast to the closed case, it is also possible for v and v to be disjoint
(but admit intersecting perturbations) when [u]  [v] > 0.

The #-pairing admits a natural extension to nodal and/or multi-level objects such as
holomorphic buildings, so that homotopy-invariance generalizes to the statement that = is
continuous with respect to convergence in the SF'T compactification. Relations such as the
following formula for nodal curves are then straightforward consequences of the definition:

ProproSITION 8.45. Suppose w and v are each J-holomorphic buildings in W with no
upper or lower levels, and u',...,u"N denote the smooth components of u. Then [u] * [v] =

S [uf] + [o]. O

While we will not need it for the applications in Chapter @ we should mention that there
exists a similar but more complicated formula for intersection numbers between multi-level
buildings; see [Sielll Theorem 2.1(4)]. It involves extra contributions from what might be
called “hidden intersections at intermediate infinity,” i.e. intersections that can emerge from
breaking orbits when levels are glued together to form smooth curves. This phenomenon has
given rise to interesting applications, such as a version of contact homology counting curves
in the complement of a fixed Reeb orbit, see [Mom11,[HMS15].

In Chapter [0 we will need a criterion for proving to (u,v) = 0, and this merits a digression
into some further intersection-theoretic quantities that are meaningful only in the R-invariant
case.

Recall that if J : T(R x M) — T(R x M) belongs to J(M,«), then it preserves the
subbundles ¢ and R @ RR,,, so we can consider the fiberwise linear projection to the former
along the latter; denote this by

me : T(R x M) — €.
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A J-holomorphic curve u : by — R x M then gives rise to a smooth section of the complex
line bundle Hom¢ (7%, u*¢) — X, namely

meoTue I'(Home (TS, u*€)).

Fix trivializations on T — % over the ends, defined via nonzero vector fields that point
toward or away from the punctures, so that the relative first Chern number of T’ 3 becomes
X(2). This combines with the usual arbitrary choice of trivializations 7 for ¢ along each Reeb
orbit to define asymptotic trivializations for HomC(Ti],u*g), and denoting the latter also

by 7, we have
(8.24) of (Home (T3, u*¢)) = ¢f (w*€) — x(3) = ef (u*T(R x M)) — x(%),

where the second equality results from the decomposition of T'(R x M) into the direct sum of
¢ and the trivial complex line bundle R@RR,. One interesting consequence of the nonlinear
Cauchy-Riemann equation for u is now that in suitable local coordinates near any point,
m¢ o T'u satisfies a linear Cauchy-Riemann type equation, so by the similarity principle, its
zeroes are isolated and positive unless it vanishes identically. Moreover, if all asymptotic
orbits of u are Morse-Bott, then the asymptotic formulas of [HWZ96a,[HWZ96b| imply
controls on the behavior of m¢ o T'w near infinity in the same manner as Proposition 8.43] so
that in the nontrivial case, it has well-defined asymptotic winding numbers at each puncture
and they satisfy the same bounds in terms of the numbers o7 (7). In the notation of §83.7]
it is therefore natural to define the (necessarily finite and nonnegative) integer

windy(u) = Z(m¢ 0 Tu) > 0,
which counts zeroes of m¢ o T'u, along with the so-called asymptotic defect
defo(u) = Zy (g 0 Tu) = 0,

which measures the failure of u to achieve its extremal allowed winding numbers as it ap-
proaches each asymptotic orbit. Both of these are well defined if and only if m¢ o T'u is not
identically zero, which is equivalent to u not being a trivial cylinder or a cover of one. In
this situation, we can now combine (824]) with Exercise and the definition of the normal
Chern number ([822]) to obtain the useful formula

(8.25) wind, (u) + defor (u) = en(u).
Its first obvious application is the following:

PROPOSITION 8.46. Suppose J € J(M,a) and v = (u®,uM) : ¥ — R x M is a finite-
energy punctured J-holomorphic curve with Morse-Bott asymptotic orbits, satisfying cy(u) =
0, such that the image of u™ : S — M is not a closed Reeb orbit. Then u™ is immersed and
transverse to the Reeb vector field. U

Indeed, the set of all points at which M fails to be immersed and transverse to R, is
precisely the zero-set of m¢ o T'u. This method for finding surfaces in M transverse to R,
has produced a number of impressive applications to the dynamical study of Reeb flows, see
e.g. [HWZ98 HWZ03, HLS15,Bral5]. It is important to understand however that this
discussion only makes sense in the R-invariant case: the positivity of the zeroes of ¢ o T'u
can be understood as an infinitessimal symptom of the fact that since not only u but also its
R-translations in R x M are all J-holomorphic, they intersect each other positively.

A second application of (825]) comes from the fact that both defy (u) and to(u,v) are
defined in terms of asymptotic winding numbers:
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homotopy

FIGURE 8.9. A homotopy through asymptotically cylindrical maps for the
proof of Proposition [R.48]

PROPOSITION 8.47. For J € J(M, ), suppose u : Y - RxM is a finite-energy punctured
J-holomorphic curve whose asymptotic orbits are all Morse-Bott, v is an asymptotic orbit of u,
Uy : R x S — R x M denotes the trivial cylinder over «y, and u and U~ do not have identical
images. If defo(u) = 0, then iy (u,uy) = 0. O

Here is a corollary that will be extremely useful in Chapter [@] see e.g. the proof of Theo-
rem

PROPOSITION 8.48. For J € J(M,a), suppose u = (uf,uM) : X — R x M is a finite-
energy punctured J-holomorphic curve with only positive punctures all asymptotic orbits are
Morse-Bott, cy(u) = 0, and the image of u™ : Y — M s disjoint from that of all of its
asymptotic orbits. Assume additionally that v : Y 5> Rx M isa finite-energy punctured
J-holomorphic curve with Morse-Bott asymptotic orbits such that every positive asymptotic
orbit of v is also an asymptotic orbit of u. Then [u] = [v] = 0.

PRrROOF. We first observe that since v has no negative punctures, it cannot be a cover
of a trivial cylinder, so wind,(u) and defs(u) are well defined and cy(u) = 0 thus implies
a (825]) that both vanish. Proposition then implies that o (u,u) = 0 for the trivial
cylinder ., over every asymptotic orbit v of u. Since u™ does not intersect 7, u also does
not intersect u., hence we deduce
[u] * [uy] = u - uy + ton(u, uy) = 0.
With this understood, we now homotop v and v to new maps v’ and v’ respectively as depicted
in Figure here v’ is simply an R-translation of u whose image is contained (since there
are no negative punctures) in [0, 00) x M, while v’ is not a J-holomorphic curve, but is instead
a smooth asymptotically cylindrical map arranged so that the portion lying in [0,00) x M
precisely matches the trivial cylinders over the asymptotic orbits of v. We can now compute
[u] = [v] = [W] = [v'] as v - v + 1o (u',0"), which gives the same answer as it would if v" were
simply a disjoint union of trivial cylinders over asymptotic orbits of u/, hence 0. 0

Moving back to the general case of a completed cobordism W the adJunc‘mon formula
generalizes to somewhere injective finite-energy punctured curves u : Y= Y\ - W as

(8.26) [u] * [u] =2[0(u) + doo(u)] + en(u) + [0(u) — #I7].

Here §(u) is defined as in the closed case and is thus nonnegative, with strict inequality unless
u is embedded; the fact that it is well defined even though ¥ is not compact depends again on
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asymptotic results from [Sie08] which prevent self-intersections or non-immersed points from
accumulating at infinity. The asymptotic contribution d4(u) is also nonnegative, and it is the
count of hidden self-intersections that may emerge from infinity under small perturbations.
The extra term o(u) > #I', called the spectral covering number of u, is a measure of
covering multiplicities for certain asymptotic eigenfunctions associated with the asymptotic
orbits of u. The main thing one needs to know about these quantities for the applications
discussed in Chapter [ is the following:

PROPOSITION 8.49. If u is a simple curve whose asymptotic orbits are all distinct and
simply covered, then 0o (u) = o(u) — #I' = 0. O

To close this brief survey, we state an analogue for punctured curves of/P\’roposition 2353l
describing curves that locally foliate the target space. Suppose u : (E, j) — (W, J) satisfies the
hypotheses of Corollary B4l its genus is zero, ind(u) = 0 and all its asymptotic orbits have
odd Conley-Zehnder index. Suppose additionally that u is embedded and all its asymptotic
orbits are distinct and simply covered. The index in this case must be even, so let us write

ind(u) = 2 + 2m,

where by Proposition 44l cy(u) = m. Now d(u) = 0 since u is embedded, and Proposi-
tion 849 implies that 4 (u) and &(u) — #I" also vanish, so the adjunction formula gives

[u] * [u] = m.

Using this and the zero-counting trick outlined for the proof of Corollary R4l above, the
proof of the following statement is entirely analogous to that of Proposition 253}

PROPOSITION 8.50. Suppose dim W = 4, and u : (X =2\l j) — (17[\/, J) is an embedded
finite-energy punctured J-holomorphic sphere such that

(i) All asymptotic orbits {7.}.er are nondegenerate, simply covered, and have odd Conley-
Zehnder index
(ii) For any two punctures z,( of the same sign, the orbits v, and ~y¢ are distinct;
(111) ind(u) = 2 + 2m for some integer m = 0.
Then for any choice of pairwise distinct points pi,...,pm € u(E), u belongs to a smooth
2-parameter family of embedded J-holomorphic curves that all intersect each other trans-

versely at the points p1,...,pm and foliate an open neighborhood of u(ﬁ])\{pl,...,pm} n
W\{p1,...,pm} O

In the R-invariant setting, the m = 0 case of the above proposition has an especially nice
consequence that is worth stating separately. Write

w=(u®,uM): (2,5) = (R x M,J),

and note that for each c € R, the curve u¢ := (u® 4 ¢, u™) is also J-holomorphic, thus defining
a smooth 1-parameter family of curves. If ind(u) = 2, then uw cannot be a trivial cylinder
(these have index 0), so u® and u’ are inequivalent curves for a # b. Then if [u] * [u] = 0,
the homotopy invariance of the intersection product implies [u] * [u¢] = 0 and thus u and
u¢ are disjoint for all ¢ € R. It follows that the map u™ : Y > Mis injective. We also

8The condition in Prop. [R50 requiring asymptotic orbits to be distinct and simply covered can be relaxed
somewhat, e.g. a version of this result for embedded planes asymptotic to a multiply covered Reeb orbit is
used to give a dynamical characterization of the standard contact lens spaces in [HLS15].
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have ¢y (u) = 0 in this case, so Proposition implies that u is also immersed, and thus
embedded. One can say slightly more, because Proposition gives a smooth 2-parameter
family of nearby curves, and the R-translations only account for one parameter. Dividing the
2-parameter family by the R-action, we obtain a smooth 1-parameter family of curves whose
projections to M are all embedded and (since none may intersect any R-translation of the
others) also disjoint:

PROPOSITION 8.51. Given J € J(M,a) andu = (u®,uM) : (2,7) — (Rx M, .J) satisfying
the hypotheses of Proposition with m = 0, the projections to M of all curves near u in
its moduli space from a smooth 1-parameter family of embeddings Y <> M that are transverse
to the Reeb vector field and foliate a meighborhood of uM(E) O

REMARK 8.52. Almost every result in this section that is stated under a nondegeneracy
assumption can be generalized to allow degenerate but Morse-Bott orbits—in most cases, one
can even use all the same formulas (e.g. for the index (8I6]) and the normal Chern number
(822)) as long as one has a suitable interpretation for the Conley-Zehnder index pug, () of a
Morse-Bott orbit v and the related winding numbers o () introduced in Proposition 843l
The catch is that this interpretation is context-dependent: the same degenerate orbit can have
different effective Conley-Zehnder indices depending on whether the puncture asymptotic
to it is positive or negative, or for that matter, constrained or unconstrained. The latter
distinction means the following: in many applications, it is natural to consider a generalization
of the moduli space Mg, (A4; J; %, ) in which the objects ’yji making up the data v are
allowed to be whole Morse-Bott submanifolds of Reeb orbits instead of single orbits, so that
continuous families of curves in M, ,,(A4; J; ¥+, v7) can have continuously varying asymptotic
orbits at certain punctures. We call any puncture with this property unconstrained, and
call it constrained if the corresponding data in 4% specifies a fixed orbit (even if that
orbit belongs to a Morse-Bott family). The choice of which punctures to constrain or not
obviously has an impact on the virtual dimension of Mg, (4; J;y",~v~), but one can absorb
this dependence into the usual index formula (8I6]) by defining the effective Conley-Zehnder
indices appropriately. All results that depend on the even/odd parity of Conley-Zehnder
indices, such as the automatic transversality criterion in Theorem [B40, must then refer to
this effective index. It is defined in practice by adding a small number +e to the (degenerate)
asymptotic operator of the orbit; see [Wenl0a] for details.

There are also other reasonable approaches to the problem of defining indices for Morse-
Bott orbits, e.g. [Bou02| uses the half-integer valued Robbin-Salamon inder from [RS93],
though several of the formulas of this section then require modification for the Morse-Bott
case.






CHAPTER 9

Contact 3-Manifolds and Symplectic Fillings

In this chapter, we survey some fundamental results about contact 3-manifolds that can
be proved using the technology sketched in the previous chapter.

9.1. Fillings of S and the Weinstein conjecture

In §82we discussed the notion of a compact symplectic manifold (W,w) with convez
boundary, which induces a contact structure £ on M = W canonically up to isotopy, making
(W,w) a strong symplectic filling of (M,&). The simplest special case is Example every
star-shaped domain in (R?",wg) is an exact symplectic filling of (52771, &), and in fact, all
of them are deformation equivalent in the following sense.

DEFINITION 9.1. Two (weak or strong) symplectic fillings (W, w) and (W’ ') of contact
manifolds (M, €) and (M’,¢’) respectively are said to be (weakly or strongly) symplectically
deformation equivalent if there exists a diffecomorphism ¢ : W — W’ and smooth 1-
parameter families of symplectic structures {ws}seo,1] on W and contact structures {&s}se[o,1]
on M such that wyg = w, w1 = P*W, & = &, & = ¢*¢', and (W, w;) is a (weak or strong)
filling of (M, &) for every s € [0,1]. If additionally both fillings are exact, we say they are
Liouville deformation equivalent if the family can be chosen so that (W,ws) is an exact
filling of (M, &) for every s € [0, 1].

EXERCISE 9.2. Show that if {ws}seo,1] i @ smooth 1-parameter family of symplectic
forms on W that are each convex at dW, then there exists a neighborhood of 0W admitting
a smooth 1-parameter family of vector fields {Vg}se[m] that are all positively transverse to
the boundary and satisfy Ly, ws = ws for all s. In particular, (W,wy) and (W,w;) are then
strongly symplectically deformation equivalent. Hint: it may be easier to think in terms of
the primitives As = ws(Vs,-). Remember that for any given w, the space of Liouville vector
fields positively transverse to the boundary is convex.

EXERCISE 9.3. Show that every contact form for the standard contact structure on S27~1
can be realized as the restriction of the standard Liouville form of (Rzn,wst) to some star-
shaped hypersurface.

There is of course no constraint on the topology of a compact manifold with boundary
diffeomorphic to the sphere; just take any closed manifold, remove a ball and reverse the
orientation. The following theorem reveals that, symplectically, the situation is quite different.

THEOREM 9.4 (Gromov [Gro85] and Eliashberg [EIi90]). Weak symplectic fillings of
(83,&s) are unique up to symplectic deformation equivalence and blowup. Moreover, every
exact symplectic filling of (S3, &) is symplectomorphic to a star-shaped domain in (R*, wg).

The following dynamical result can be proved by almost the same argument, which is an
easy variation on a trick due to Hofer [Hof93]:

193
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THEOREM 9.5. Suppose (M, §) is a closed contact 3-manifold admitting a strong symplectic
cobordism (W,w) to (S3,&). Then every contact form for (M, &) admits a closed Reeb orbit.
Moreover, if the cobordism (W,w) is exact, then the Reeb orbit on (M,&) may be assumed
contractible.

In particular, this implies that (S3, &) satisfies the Weinstein conjecture, since it admits
a (trivial) exact symplectic cobordism to itself. The theorem can also be used to deduce that
every overtwisted contact 3-manifold admits contractible Reeb orbits—this was originally
proved in [Hof93] by a different argument, but it follows from the result above due to a
theorem of Etnyre and Honda [EHO2| stating that every overtwisted contact 3-manifold
admits Stein cobordisms to every other contact 3-manifold. Note that there are plenty of
contact manifolds that always admit a closed Reeb orbit but not necessarily a contractible
one; this is true for instance of the canonical contact form on the unit cotangent bundle
of any Riemannian manifold with no contractible geodesics, e.g. the standard 3-torus (see
Example B.10]).

Before sketching proofs of the theorems above, we should discuss a basic fact that lies
in the background of Theorem and all other results on the classification of fillings: given
any (weak or strong) filling (W,w) of a contact manifold (M, &), one can produce another
filling of (M, &) by blowing up (W, w) along a ball in the interior. Conversely, just as in the
setting of closed symplectic 4-manifolds, we will lose no generality by restricting attention to
the minimal case:

THEOREM 9.6. Assume (W,w) is a (weak or strong) symplectic filling of a contact 3-
manifold (M,§).

(1) If By, ..., Ex € W is a mazimal collection of pairwise disjoint exceptional spheres in

~

the interior, then the filling (W,®) obtained by blowing down (W,w) at all of these
spheres is minimal.

(2) Minimality of symplectic fillings is invariant under symplectic deformation equiva-
lence.

This can be proved by essentially the same arguments that we explained for Theorems [Bl
and [Cl in Chapter Bt it depends on the fact that for generic choices of suitable tame almost
complex structures on (W,w), each exceptional sphere has a unique J-holomorphic repre-
sentative, and these representatives deform smoothly with any generic homotopy of suitable
almost complex structures. Here we are using the word “suitable” to obscure an important
detail: in order to carry out the same argument that worked in the closed case, one must be
sure that a family of J-holomorphic spheres in the interior of (W, w) can never collide with
the boundary. It turns out that this can be guaranteed for a natural class of tame almost
complex structures on any symplectic filling. In order to state the relevant definition, observe
that any contact structure £ = ker o on a manifold M carries a canonical conformal class of
symplectic vector bundle structures, as da|¢ is nondegenerate and independent of the choice
of contact form up to scaling.

DEFINITION 9.7. For any almost complex manifold (W, J) with nonempty boundary, we
say that the boundary is J-convex (or pseudoconvex) if the maximal J-complex subbundle
E:=TOW)nJT(OW) c T(0W)
is a positive (with respect to the boundary orientation) contact structure on 0W, and its

canonical conformal symplectic structure tames J|¢.
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EXERCISE 9.8. Show that if (W, w) is a (weak or strong) symplectic filling, then it admits
an w-tame almost complex structure J that makes the boundary J-convex, and the space of
almost complex structures with this property is contractible.

Choosing J € J;(W,w) so that the boundary is J-convex has the following consequence.
Suppose f: W — (0,00) is any smooth function that has the boundary as a regular level set
with df > 0 in the outward direction. Then since Definition is an open condition, the level
sets of f sufficiently close to 0W form a smooth 1-parameter family of J-convex boundaries
of smaller domains in W. It is then not hard to show (see [CE12, Lemma 2.7]) that after
replacing f with ¢ o f for some smooth function ¢ : (0,00) — (0,00) with ¢” » 0, we can
arrange f so that the 2-form

wy = —d(df o J)
is a symplectic form taming J near the boundary. Any function with this property is said to
be a (strictly) J-convex or plurisubharmonic function. One of the fundamental properties
of J-convex functions, which also follows from a routine computation, is that if u : ¥ — W is
any J-holomorphic curve with image in the domain of f, then

—A(fou) <0,

i.e. fowuis strictly subharmonic. This implies that f o u satisfies a maximum principle (see
e.g. [Eva98)), so it can have no local maxima. In particular, u cannot touch 0W at any point
in the interior of its domain:

PROPOSITION 9.9. If (W, J) is an almost complex manifold with J-convex boundary, then
it admits no J-holomorphic curve u : (X,7) — (W, J) with u(z) € W for an interior point
z e . O

With this ingredient added, our proofs of Theorems [Bl and [Cl in Chapter Bl also prove
Theorem [0.6] as one can use J-convexity to prevent any J-holomorphic exceptional spheres
from colliding with the boundary.

EXERCISE 9.10. Adapt the proof of Theorem [Alto show that no 4-dimensional symplectic
filling can ever contain a symplectically embedded 2-sphere with nonnegative self-intersection.

EXERCISE 9.11. Extend the previous exercise in the spirit of Chapter [ to show that no
4-dimensional symplectic filling can ever contain a positively symplectically immersed sphere
S & (W,w) with ¢;([S]) = 2. Hint: use the arugments behind Lemmas [7.43 and [Z.5]], but
assuming J-convexity at the boundary.

EXERCISE 9.12. In Chapter [ we proved the theorem of McDuff [McD92] that the
minimal blowdown of a closed symplectic 4-manifold is unique unless it is rational or ruled.
Use Exercise to adapt the arguments of Corollary and show that the blowdown is
similarly unique for 4-dimensional symplectic fillings.

REMARK 9.13. The natural generalization of the weak filling condition to higher dimen-
sions turns Exercise into a definition: a compact symplectic 2n-manifold (W,w) with
boundary oW = M is called a weak filling of (M, ¢) if it admits an w-tame almost complex
structure J for which W is pseudoconvex with & = T'(0W) n JT'(6W). This condition can
also be expressed in purely symplectic terms without the auxiliary almost complex structure;
see [MN'W13\ Definition 4]. With this definition, Proposition I8 on deforming weak fillings
with exact boundary to strong ones extends to all dimensions.
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To begin the proof of Theorem [0.4 note that since H3,(5%) = 0, Corollary implies
that every weak filling of (53, &) can be deformed to a strong filling, and in light of the above
discussion, we therefore lose no generality by restricting attention to minimal strong fillings.
In the following proof, we will show that all of these are diffeomorphic to the ball, hence the
symplectic form is globally exact and Corollary RI9] gives yet another deformation, this time
to an exact filling. The main task will therefore be to show that all exact fillings of (5%, &)
are symplectomorphic to star-shaped domains. A slightly weaker version of this result was
first proved by Gromov in [Gro85], as a corollary to his version of Theorem [E] characterizing
the symplectic S? x S2. Later, Eliashberg [EIi90] sketched a proof using holomorphic disks
with a totally real boundary condition—the full details of this proof are explained in [GZ10]
and [CE12, Theorem 16.5]. The proof we shall now outline matches both of these in spirit,
but uses slightly different technology.

SKETCH OF A PROOF OF THEOREM [0.4] We begin with an observation about the stan-
dard filling (§4, wst) of (93, &4). Using the flow of the standard Liouville vector field (8] on
(R*, wyt), there is an obvious symplectomorphism of (R*,wg) to the completion of (§4,w5t).
Identifying R* with C? as usual, the standard complex structure i then belongs to the space

J (E4,wst, Qgt), 1.e. it is compatible with wg; on B* and its restriction to the cylindrical end
[0,00) x S3 =~ R* B4 belongs to J (53, ag). Note that the Reeb orbits in (S3, ag) are precisely
the fibers of the Hopf fibration S% — S3/51 = CP!, so they form a smooth 2-parameter family
foliating all of S? and thus trivially satisfy the Morse-Bott condition. Let us single out two
of these orbits, with even parametrizations (cf. Exercise B24)) v1, 72 : S' — S = C2 given by

n(t) = (e,0),  72(t) = (0,¥).

We will consider moduli spaces of holomorphic planes in the completion of (§4,w5t) with
positive punctures asymptotic to each of these orbits, meaning the puncture is constrained
in the sense of Remark 852l Fixing a global trivialization 7 for & — S%, which is possible
since ¢1(&s) = 0 € H2(S?), one can compute the effective Conley-Zehnder index

pez(vi) =3 for i =1,2.

Now observe that (C2,i) has two obvious foliations by embedded holomorphic planes,
namely those of the form
Uy : C— C?: 2 — (2,w), we C,
(9.1) )
Uy : C—>C*: 2z (w,2), we C.

All of these planes have finite energy and a positive puncture, with each u,, asymptotic to y;
and each v, asymptotic to 2. The index formula (8.I0) then gives

ind(uy) = ind(vy) = —x(C) + 3 = 2,
and they are Fredholm regular by Corollary 841l From Proposition R44] we deduce
e (Uy) = en(vy) =0,
so that Siefring’s adjunction formula (8.26]) in light of Proposition 849 gives
[tw] * [tuw] = [ve] * [ve] = 0.

Using the homotopy invariance of the intersection product, plus the observation that each wu,,
has a single transverse intersection with each v,, and approaches a different asymptotic orbit,
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we obtain the relations
[tw] * [ty ] = [vw] * [Vw] =0, [t] * [vp] =1 for all w,w’ € C.

One should think of these planes as analogous to the two families of holomorphic spheres with
zero self-intersection that appear in Gromov’s characterization of S? x S$? (Theorem [E]), and
we shall make use of them in much the same way.

If (W,w) is an arbitrary strong filling of (S2, &), it is not hard to see that its completion
(171\/, W) also contains some holomorphic planes with the same intersection properties described
above. Indeed, by assumption, a neighborhood of 0W in (W, w) admits a Liouville vector field
V and hence a primitive A := w(V; ) of w such that ker A|pw) = st under some identification
of W with S3. According to Exercise @3] this means that Al7aw) can be identified with the
restriction of the standard Liouville form Ag on (R4,wst) to some star-shaped hypersurface
¥ < R*. Using the Liouville flow, one can show that the cylindrical end (W\VV, @) is therefore
symplectomorphic to the region €2 outside of ¥ in (R*, wy;). Choose R > 0 large enough so that

the ball E; of radius R contains 2: then the cylindrical end of (W, &) contains (R*\ B}, wst),
so we can choose an @W-compatible almost complex structure J whose restriction to ]R4\Bj1% is
the standard complex structure i. Now for any w € C sufficiently close to oo, the planes (@.])
are also contained in W and are J-holomorphic; see Figure [0.1]

The rest of the proof parallels that of Theorem [EL first, perturb J to make it generic
on the compact portion of W that is not identified with R‘*\Bé. Then let M; and Mo

denote the moduli spaces of finite-energy J-holomorphic planes in W that are homotopic
to the planes wu,, and v,, respectively and approach the same fixed asymptotic orbits. All
of these curves are somewhere injective since they have only a single positive asymptotic
orbit and it is simply covered (see Exercise R29]), thus the open subsets of M; and My
consisting of curves that are not confined to the cylindrical end R‘L\Bﬁ2 (where J is not
generic) are smooth 2-dimensional manifolds. Since the curves wu,, satisfy the homotopy-
invariant conditions 0 () + 0o (ty) = [tyw] * [tw] = 0, and similarly for v,,, all curves in M,
and M also satisfy these conditions, hence all of them are embedded, and any two distinct
curves u and v that both belong to either M; or Mj satisfy [u] *[v] = [u] % [u] = 0, implying
they are disjoint. Moreover, every pair (u,v) € M; x My satisfies [u] = [v] = 1, and since
their asymptotic orbits are distinct, to(u,v) = 0, implying u - v = 1, so that v and v have
exactly one intersection point and it is transverse.

To finish the argument, we need to understand the compactness properties of My and M.
For concreteness, consider M, as the required argument for Ms will be identical. Notice
that M is obviously noncompact in a trivial way, because it contains a noncompact family
of curves u,, for w € C near co. One can parametrize this family by a half-cylinder {w €
C | lw| = r} for r > 0 sufficiently large, so it constitutes a cylindrical end in the moduli
space Mj. We claim that if (W,w) is minimal, then the complement of this cylindrical end
in M; is compact.

The claim is based on a uniqueness result for holomorphic curves in the symplectization
of (S3,&t). This symplectization can be identified with C?\{0} in the same manner that we
identified [0, 0) x S% with R*\ B* above, so in particular, the standard complex structure i on
C? restricts to C2\{0} = R x S? as an element of J(S?, ag). This makes all of the planes u,,
for w € C\{0} into holomorphic curves in the symplectization R x S, and the uniqueness result
we need states that these planes and the trivial cylinder over v; are the only i-holomorphic
curves in R x $3 with a single positive end asymptotic to 1 and arbitrary negative ends (or
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Vw

Ficure 9.1. Finding two transverse families of embedded holomorphic
planes with self-intersection 0 in the completion of any strong filling (W,w) of

(Sgafst)-

none at all). To see this, suppose v : Y — R x S is a curve with these properties but is not
one of the u,, or the trivial cylinder. Then v necessarily has an isolated intersection with one
of the curves 1y, as they foliate R x (S3\~1), so by positivity of intersections,

[v] * [uw] = v - uy > 0.

But this contradigt\s Proposition B48 Note that this also implies a uniqueness result for
certain curves in W: since J was chosen to match ¢ in the cylindrical region identified with
R?™\ B%, every J-holomorphic curve that is contained in that region and has a single end
asymptotic to ; is of the form wu,, for some w. In particular, every element of M, is either
one of these or has an injective point in the region where J is generic, so they are all Fredholm
regular and we now know that M, is globally a smooth 2-dimensional manifold.

Now to prove the compactness claim for My, suppose u; € M; is a sequence with no
subsequence converging in My, and using the SFT compactness theorem, extract a subse-
quence that converges to a holomorphic building uq. Since (W,w) has a convex boundary
component but no concave boundary, us does not have lower levels, it only has a main level
(which could be empty) and a nonnegative number of upper levels. If there are upper levels,
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then the topmost level of us contains a nontrivial i-holomorphic curve in the symplectization
R x S with only one positive end, which is asymptotic to 71, so by the uniqueness result
in the previous paragraph, this curve is one of the u,,. But these have no negative ends, so
the only way to produce a connected holomorphic building of this form is if u,, has exactly
one upper level, consisting of the curve u,,, and its main level is empty. This would imply
that as k — o0, the curves u;, have images contained in [Ry,0) x % W for some sequence
Ry — o0, so the uniqueness result in the previous paragraph implies that they are of the form
Uy, for a sequence wy, € C diverging to o0, i.e. they belong to the cylindrical end of Mj.

It remains to under/\stand the case where the limit building uo, has no upper levels, meaning
it is a nodal curve in W. The smooth components of uy must then consist of a single plane
uY, plus a finite collection of spheres ul,,...,uY  and the plane is necessarily simple since
its asymptotic orbit is simply covered. If this plane is contained in the region where J is
not generic, then it must match one of the curves u,, and is therefore regular with index 2;
otherwise, the usual generic transversality results imply that it is regular and ind(ul) > 0.
Stokes’ theorem implies that the spheres cannot be contained in the cylindrical end since the
symplectic form there is exact, thus they also touch the region where J is generic, implying
that they are at worst multiple covers of simple regular curves with nonnegative index. We
can now use the index relations in §4.2] again to rule out the possibility that they are multiply
covered: by the same index counting arguments that we used in Chapter dl uy can have
at most two smooth components, namely a simple index 0 plane uY, and a simple index 0
sphere ul,, and Proposition 844 gives

en(ul) = en(ul) = —1.
Next we use Proposition [8:45] to break up the relation [ug]# [ug]| = 0 into a sum over smooth
components, and notice that since both are simple, the adjunction formula can be applied to
both. The special asymptotic terms on the right hand side of Siefring’s formula (826l do not

appear since uJ, has only one simply covered asymptotic orbit and ul, has none at all, thus
we find

0 = [uoo] # [uoo] = ] [ugp] + [uge ] [ugp] + 2[usy ] # [ugg]
= 20(u5,) + 26(ug,) + en(ug,) + en(usy) + 2ud,] * [us,]
= 20(ud) + 28(uly) +2 (ud, - uly — 1),

where in the last step we've used the fact that ul, has no punctures and does not have
identical image to u%,, implying [ud ] [ul.] = uY -ul,. Since the existence of the node implies
uY, - ul, > 1, we conclude that 6(ul,) = d(ul) = 0 and u3, - ul, = 1, so in particular, the
index 0 J-holomorphic sphere ul, is embedded. But now applying the adjunction formula
again to ul, reveals that [ul]-[ul] = —1, so it is an exceptional sphere. Choosing r > 0
large enough so that ul, is disjoint from the cylindrical end [r, ) x S? < 17[\/, the complement
of this cylindrical end is therefore not minimal, but this enlarged domain is symplectically
deformation equivalent to the original filling (W, w), implying via Theorem that (W,w)
is not minimal. This finishes the compactness argument: the conclusion is that if (W,w)
is minimal, then each of M; and M5 is a smooth compact 2-dimensional surface with a
cylindrical end attached.

By Proposition (with Remark in mind), both moduli spaces also locally form
foliations of 171\/, and one can combine this with the compactness result above to argue exactly
as in Chapter [0 that they each globally foliate W when (W,w) is minimal. There is therefore
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a natural map
o: W — M1 x My

sending each point p € W to the unique pair of curves (u,v) € Mj x My that both pass
through p. But since every plane in M; intersects every plane in My exactly once transversely,
both moduli spaces are diffeomorphic to C, implying that ¢ is a diffeomorphism to C2.
Since we now know H2, (W) = 0, we can apply Corollary BI9] to assume after a symplectic
deformation that the filling (W, w) is exact. Having done that, a Moser isotopy argument as
in the proof of Theorem [E] can now be used to identify (W, &) symplectically with (R?*, ws)
so that the compact domain W < W is identified with a star-shaped domain in R*. ([l

REMARK 9.14. The proof above was presented in a way that generalizes well for the
classification of strong fillings of T3 and planar contact manifolds, which we will discuss in
the next two sections, but in the special case of (S3,&y), some details can be simplified.
For instance, the required uniqueness result for curves in R x S3 does not really depend on
intersection theory: it suffices rather to observe that any genus zero punctured holomorphic
curve u : ¥ — R x §% = C?\{0} with a single positive puncture can be extended over its
negative punctures to define a holomorphic map u : C — C? with a pole at infinity, thus a
polynomial, and the asymptotic approach to -1 or 7o dictates that u is affine in one coordinate
and constant in the other. This version of the argument does not work for more general contact
3-manifolds, but it does work in higher dimensions, cf. Theorem below.

The proof of Theorem [@.5] is a surprisingly easy modification of Theorem [@.4] once one
understands the SFT compactness theorem. Arguing by contradiction, suppose one has a
strong symplectic cobordism (W,w) from (M, €) to (53, &) such that (M, £) admits a contact
form « with no closed Reeb orbits. The cobordism can then be rescaled and deformed near
both boundary components by adding pieces of symplectizations so that, without loss of
generality, w has a primitive A near 0W that restricts to S as ag and M as ca for some
constant ¢ > ( sufficiently small. Note that if o admits no closed Reeb orbits, then neither
does ca, so for simplicity of notation, we can rescale o and thus assume ¢ = 1. Now choose
a compatible almost complex structure J € J (W, w, ast, ) on the completion (ﬁ\/,@) whose
restriction to the positive end matches the one we used in the proof of Theorem [3.4] above. For
this choice, there are again J-holomorphic planes of the form (@) in the positive end, and
we can define the moduli spaces M7 and My as before. Now observe that if o has no closed
Reeb orbits, then the symplectization (R x M, d(e‘a)) can have no finite-energy J-holomorphic
curves, thus the compactifications of M; and Ms cannot contain any broken holomorphic
buildings with levels in the symplectization (R x M, d(e'«)). But then the compactifications
M and My are exactly the same as what we found in the filling of (53, &), and the argument
above implies that (WW,w) is a blowup of a star-shaped domain, which is clearly untrue since
it has a concave boundary component. This contradiction implies that a must admit a closed
Reeb orbit after all. In fact, the complements of the obvious cylindrical ends in the moduli
spaces M and My must fail to be compact, and if « is nondegenerate (see Remark [0.17),
then this failure takes the form of a sequence of J-holomorphic planes in W that converge
to a broken J-holomorphic building including nontrivial lower levels, which are curves in
(R x M,d(e'a)) asymptotic to closed orbits of R,; see Figure If the cobordism (W,w) is
exact, then we can say slightly more: the building must contain at least one J-holomorphic
plane in (R x M,d(ela)), whose asymptotic orbit is therefore contractible (Figure [@.3)). This
follows from the two exercises below, and thus completes the proof of Theorem
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FIGURE 9.2. A possible degeneration of holomorphic planes in a strong
symplectic cobordism (W, w) from (M, &) to (S3,&s). This particular picture
is only possible if the cobordism is not exact, since the main level of the
building includes a holomorphic cap (cf. Exercise @.15]).
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FIGURE 9.3. Another possible degeneration as in Figure[@.2], but this one can
also occur if the cobordism is exact, and forces the existence of contractible

Reeb orbits in (M, §).

EXERCISE 9.15. Use Stokes’ theorem to show that if (W, d\) is an exact symplectic cobor-
dism with oW = (-=M_,{_ = kera_) 1 (M ,{; = keray ) and A7y, = a4, then for any
J € T (W,d\, ay, ), every nonconstant finite-energy J-holomorphic curve in W has at least
one positive end. (In other words, an exact cobordism admits no “holomorphic caps.”)

EXERCISE 9.16. Assume u is a holomorphic building with arithmetic genus 0 and exactly
one positive end, and that each of its connected components has at least one positive end.
Show then that each of its levels is a disjoint union of smooth curves without nodes, each
having exactly one positive end, and the bottom level is a disjoint union of planes.
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REMARK 9.17. The proof above for the exact case of Theorem added an extra as-
sumption at the last minute: since the SF'T compactness theorem requires a nondegeneracy
or Morse-Bott hypothesis, we assumed « to be nondegenerate. This assumption can be lifted
by a perturbation argument: given an arbitrary contact form «, one can find a sequence of
nondegenerate contact forms ay converging in C® to «, and the above argument provides
a contractible orbit for each ay. Moreover, since (W,w) is an exact cobordism and the J-
holomorphic planes in this proof are all asymptotic to an orbit in (S3, o) with fixed period,
Stokes’ theorem provides a uniform bound for the periods of the contractible orbits we obtain
in (M,ay). By the Arzela-Ascoli theorem, these then have a subsequence converging to a
contractible orbit in (M, «).

ExaMPLE 9.18. Any Darboux ball in a symplectic 4-manifold contains a Lagrangian torus,
e.g. of the form  x v c C? for any embedded loop v — C in a neighborhood of the origin. It
follows via Example BI7 that there is a strong symplectic cobordism from (ST*T?2, £can) to
(83, &), but since the flat metric on T? has no contractible geodesics, Theorem implies
that such a cobordism can never be exact. (Note that if the cobordism were exact, then
the original Lagrangian torus would be an exact Lagrangian, so the result also follows from
Gromov’s famous theorem [Gro85] on the nonexistence of exact Lagrangian submanifolds
in (Rznv wst)')

In dimensions greater than four, there is no intersection theory of holomorphic curves
and thus little hope of proving classification results as strong as Theorem The obvious
analogue of Theorem however is true in higher dimensions, and can be proved by more or
less the same argument (see Remark [0.14]). The main difference from the 4-dimensional case is
that the holomorphic planes in the cobordism need not be embedded and may intersect each
other, but one does not actually need such precise control in order to deduce the existence of
a contractible Reeb orbit[] As far as fillings of (S?"~1, &) are concerned, the classification
up to symplectomorphism is unknown, but we do have the following result, often called the
Eliashberg-Floer-McDuff theorem:

THEOREM 9.19 (Eliashberg-Floer-McDuff [McD91]). Suppose (W,w) is a strong sym-
plectic filling of (S?"71, &) with [W]|zywy = 0. Then W is diffeomorphic to a ball.

One can begin the proof of this theorem the same way as in Theorem [3.4] and carry out the
compactness argument as sketched in Remark[(.14] where the condition [w]|, ) = 0 prevents
the appearance of nodal curves by precluding the existence in (W,w) of any nonconstant
holomorphic spheres. Without having control over intersections, this argument does not
produce a geometric decomposition of W as in the 4-dimensional case, but by making use
of the evaluation map and some algebro-topological tools as in Chapter [l one can still find
enough homotopy-theoretic information about W to apply the h-cobordism theorem [Mil65]
and thus deduce its diffeomorphism type. This unfortunately tells us nothing about the
symplectic structure of the filling, and the only thing known on this subject is a result due to
Ivan Smith (see [SeiO8al §6]): if the filling is exact, then it must have vanishing symplectic
homology. The h-cobordism approach was recently extended by Barth, Geiges and Zehmisch
[BGZ] to give a classification, again up to diffeomorphism, of the symplectically aspherical

IWith a bit more care, one can also use the extra intersection-theoretic information in dimension four to
prove a stronger result: in the exact cobordism case of Theorem [B5 (M, €) admits a closed Reeb orbit that is
unknotted, i.e. it is embedded and bounds an embedded disk, see [CW]. There is no obvious analogue of this
in higher dimensions.
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strong fillings of simply connected contact manifolds that are subcritically Stein fillable, a class
in which the standard spheres are the simplest examples. Beyond these outlying cases, there
are very few known results constraining the fillings of contact manifolds in higher dimensions,
and most of them give much weaker information, e.g. computing the homology of the filling,
as in [OV12].

9.2. Fillings of the 3-torus and Giroux torsion

Here is another result in the same spirit as Theorem [@.4] but more recent. The torus T® has
a natural sequence of contact structures defined in coordinates (¢, ¢, 0) € S x S1 x §1 = R3/7Z3
by
&k = ker ay, ay, = cos(2mkt) df + sin(2wkt) dg

for k € N. Recall from Example B.16] that & is also known as the standard contact structure
&t on T2 and can be identified with the canonical contact structure of the unit cotangent
bundle ST*T?, thus it has an exact symplectic filling in the form of a unit disk bundle,

ODT*T?, wWean) = (T3, &1).

More generally, the star-shaped domains in (T*T2,wean) form a family of exact fillings of
(T3, &), all of which are Liouville deformation equivalent.

The first part of the following result was originally proved by Eliashberg in 1996, who
constructed a symplectic cobordism that essentially reduced it to Theorem The second
part is more recent and is due to the author.

THEOREM 9.20 (Eliashberg [Eli96] and Wendl [Wen10b]).

(1) (T3,&) is not strongly symplectically fillable for k = 2.

(2) Every minimal strong symplectic filling of (T2, &1) is symplectically deformation equiv-
alent to (DT*T?, wean), and every exact filling of (T3,€&1) is symplectomorphic to a
star-shaped domain in (T*T?, wean).

Since H3g(T?) is nontrivial, weak fillings of (T?,¢;) cannot always be deformed to strong
fillings (cf. Proposition B8], so Theorem consequently has nothing to say about weak
fillings. The following exercise establishes Giroux’s observation from [Gir94] that (T3, &) is
in fact weakly fillable for every k € N. It is clear that this construction can be generalized to
produce weak fillings with an enormous variety of topologies, so it seems reasonable to expect
that in contrast to strong fillings, the problem of classifying weak fillings of T? is essentially
hopeless.

EXERCISE 9.21. Let «y, denote the contact forms on T? defined above for k € N.

(a) Show that for every k € N, {ay + cdt}eer is a 1-parameter family of contact forms
on T3, hence the contact structure &, admits a smooth deformation through oriented
2-plane fields {£; < TTg}SE[OJ] such that £) = &, & is contact for every s € [0,1),
and 5,% is the integrable distribution ker dt.

(b) Show that D? x T? admits a symplectic structure w such that for every k € N,
(D? x T?,w) is a weak filling of (T?,&},) for some contact structure &}, isotopic to &.
Hint: choose w so that wl|yer ¢ > 0 at the boundary.

The uniqueness of minimal strong fillings of (T3, &1) follows by the same strategy we used
in Theorem for (S3,&), but using holomorphic cylinders instead of planes. Consider
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first the standard filling (D7T*T?, wean ), whose completion is (T%T?2, wean). The latter can be
identified naturally with

T2xR?2=6'"x S' xRxR = (R xS x (R xS,

and we can then define an wgan-compatible almost complex structurdd on T*T?2 by J =1®1,
where i is the standard complex structure on R x S = C/iZ. We then have two transverse
families of holomorphic cylinders, each with two positive ends, foliating 7*T?. One technical
difference from the proof of Theorem is that the cylinders in each of these families are not
all asymptotic to the same Reeb orbits: as can easily be checked, the closed Reeb orbits on
(T3, 1) all come in S'-parametrized Morse-Bott families that foliate 2-tori, and e.g. each of
the cylinders (R x S1) x {(s0,%9)} is asymptotic to two orbits in distinct Morse-Bott families,
with the particular orbits in these families specified by the parameter to € S'. It is therefore
natural to regard these cylinders as elements in a moduli space of curves with unconstrained
asymptotic orbits in the sense of Remark [8.52] and with this understood, each curve u satisfies

ind(u) = 2, en(u) =0, [u] * [u] =0,

where [u] # [u] here denotes the unconstrained Morse-Bott version of Siefring’s intersection
number, as outlined in [WenlOal §4.1]. Now given an arbitrary strong filling (W,w) of

—~

(T3, &), the completion (W,&) matches (T*T?, wean) outside a compact subset and thus also
contains embedded holomorphic cylinders with self-intersection 0 near infinity. Just as in the
case of (53, &), the moduli spaces of holomorphic cylinders in (171\/, @) that emerge from these
turn out to foliate W with two transverse families of smooth holomorphic cylinders if there are
no exceptional spheres, providing a diffeomorphism of W to (R x S') x (R x S') = T*T?2, and
in the exact case it can be turned into a symplectomorphism using a Moser isotopy argument
as in the proof of Theorem [El

One major detail that differs from the argument for (53, &) deserves further comment. In
the compactness argument for the two spaces of holomorphic cylinders in (171\/, W), one can use
the same intersection-theoretic argument as in Theorem to rule out nontrivial buildings
with upper levels, but for buildings with a main level only, there is now a wider range of nodal
curves that can occur. Figure shows the two possibilities: both of them have two smooth
components which are each simple index 0 curves, but in one case these consist of a cylinder
and a sphere, whereas the other case involves two planes asymptotic to two distinct orbits.
One can use the Siefring adjunction formula as in the proof of Theorem to rule out the
first scenario if (W,w) is minimal, because the spherical component must be an exceptional
sphere. The second scenario can also be ruled out, but the general argument for this requires
Lefschetz fibrations, which will appear again in the next section and we shall therefore take
this as an excuse to postpone the argument (see Remark @.49). If (W,w) happens to be
a Stein filling, then there is also a cheap trick one can apply to exclude this degeneration:
by an earlier result of Stipsicz based on Seiberg-Witten theory [Sti02], every Stein filling of
(T3, &) is homeomorphic to the unit disk bundle DT*T? =~ T2 x D?, via a homeomorphism
that identifies the closed Reeb orbits in (T3, ;) with lifts of geodesics of the flat T? to its
unit cotangent bundle. Since none of these geodesics are contractible, (T2, 1) does not have
any closed Reeb orbits that are contractible in any Stein filling, hence in the Stein case, the

20ne minor headache is that this choice of almost complex structure on the completion of (DT*T?, wean)
is not R-invariant on the cylindrical end. This problem can be dealt with easily by a minor modification of J
near infinity; see [WenlOb] for details.
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~—_

FIGURE 9.4. Two types of nodal degenerations can occur for the holomorphic
cylinders in a filling of T3. The first is possible only if the filling is not minimal,
and the seoncd only if certain Reeb orbits are contractible in the filling.

planes appearing in Figure are topologically impossible. The argument for general fillings
gives the same result without appealing to Seiberg-Witten theory—if the reader is willing to
accept this statement on faith for now and wait until Remark for a justification, then
the classification of minimal strong fillings of (T3,&;) is now complete.

The same holomorphic cylinders imply that (T2, £;) cannot be fillable if £ > 2. To see why,
consider first the family of embedded holomorphic cylinders in T*T? = (R x S!) x (R x S1)
defined by

(R x SY) x {(s0,t9)} € T*T?.
When sg > 1 or s9 < —1, these cylinders lie in the cylindrical end T*T?\DT*T? and thus
define two families of holomorphic cylinders in the symplectization of (T2,¢1), each with
positive ends asymptotic to Reeb orbits that foliate a pair of 2-tori T}, T, < T3. Composing
these holomorphic cylinders with the projection R x T3 — T3, they foliate T3\(T} U T3) by
two S'-families of embedded cylinders whose closures each have one boundary component in
T, and the other in T5.

The above picture of (T3, &;) foliated by holomorphic cylinders lifts to (T3, &) under the
obvious k-fold covering map

(T37€k) - (TBafl) : (ta ¢76) = (kta ¢a 0)7
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[0, OO) X T2

0 x T3 d(etaq))

[0’ OO) X Tl

FIGURE 9.5. The obvious foliation of T*T? =~ (R x S') x (R x S!) by
holomorphic cylinders yields a foliation of the symplectization of (T3,¢;) by
two disjoint S'-families of cylinders with positive ends.

FIGURE 9.6. The foliation of (T3, &;) by two families of holomorphic cylinders
lifts to four families under the natural double cover (T3,&5) — (T3, &).

thus there is a set of 2k pairwise disjoint 2-tori T1, ..., Ty, < T3 and a foliation of T3\ (T} U

. U Ty) by cylinders that each lift to the symplectization (R x T2, d(e’ay)) as embedded
holomorphic cylinders with positive ends. The case k = 2 is shown in Figure To prove
the first part of Theorem [I.20, one can now argue as follows: if (W,w) is a filling of (T3, &)
for k = 2, then its completion (W, W) contains 2k families of holomorphic cylinders that have
self-intersection 0. Adapting again the arguments we used in Chapter [, each of these families
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generates a moduli space of embedded J-holomorphic cylinders that foliate (W, W) except for
finitely many nodal curves, and intersection considerations (cf. Exercise below) dictate
that each of the 2k families in the cylindrical end must be part of the same foliation and
thusi)elong to the same connected component of the moduli space of holomorphic cylinders
in (W,®). But unlike the situation for (T?,¢;), the distinct families in the symplectization
of (T3,&;) each have asymptotic orbits in distinct neighboring pairs of the tori T, ..., Tog,
so they are clearly not homotopic through asymptotically cylindrical maps in . This is a
contradiction, and proves that a strong filling of (T3, &) cannot exist when k > 2.

The following exercise involving symplectic ruled surfaces can be solved by deriving a
contradiction analogous to the one we found above:

EXERCISE 9.22. Suppose (M,w) is a closed symplectic 4-manifold containing two disjoint
symplectically embedded spheres Sy, Sy © (M,w) with [S1]-[S1] = [S2] - [S2] = 0. Adapt the
proof of Theorem [Al to show that S; and Sy must then be symplectically isotopic.

The above argument proving nonfillability of (T2,&) for k > 2 can easily be adapted to
prove that a contact 3-manifold (M, ¢) is not strongly fillable whenever it contains a contact
domain of the form

([0,1] x T2, &gr) = ([0,1] x S* x ST, ker [cos(2nt) df + sin(2mt) d])

see [Wenl0b] for details. We call this a Giroux torsion domain, and any contact 3-
manifold containing one is said to have positive Giroux torsion. Notice for instance that
(T3, &) has positive Giroux torsion for every k > 2, but the obvious contact immersion of
([0,1] x T?,éqr) into (T3,&1) fails to be an embedding. The fact that Giroux torsion is an
obstruction to strong fillability was apparently first conjectured by Eliashberg in the early
1990’s (before the term “Giroux torsion” existed), but it was not proved until 2006, by David
Gay |Gay06]. Gay’s proof works by attaching a symplectic cobordism on top of a hypothetical
filling of (M, ) and then finding symplectically embedded spheres that cause a contradiction
similar to Exercise 022 Though it was not stated explicitly in his paper, Gay’s argument
also proves a result about weak fillings: if (M, ¢) has separating Giroux torsion, meaning
the Giroux torsion domain [0, 1] x T2 = M splits M into disjoint components, then (M, ¢) is
also not weakly fillable. The reason for this is that if [0, 1] x T? = M separates M and (W,w)
is a weak filling of (M, ¢), then w is necessarily exact on a neighborhood of [0,1] x T2, in
which case one can use a variant of Proposition [RI§ to deform the weak filling to something
that looks like a strong filling near the torsion domain; the cobordism of [Gay06| can then be
attached and the argument goes through as in the strong case. A different proof of this result
using Heegaard Floer homology was given by Ghiggini and Honda [GH], and a short time
later two alternative proofs using holomorphic curves appeared in [NW11]; in particular,
62 in that paper explains how to use the notion of stable Hamiltonian structures to define
symplectic completions of weak fillings that are not necessarily exact at the boundary, so that
weak filling obstructions can also be detected via punctured holomorphic curves.

Note that by Eliashberg’s flexibility theorem for overtwisted contact structures [EILi89],
every overtwisted contact 3-manifold automatically has separating Giroux torsion, as the
torsion domain is contained in the standard model of a full Lutz-twist on a solid torus, see

3This summary of the proof in [Gay06] is a slight rewriting of history: Gay appealed to Seiberg-Witten
theory in the final step of his proof, but could just as well have used holomorphic curves as in Exercise [0.22]
instead.
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e.g. [Gei08| §4.3]. One therefore obtains from this obstruction an alternative proof of the
very first result on symplectic nonfillability:

THEOREM (Gromov |Gro85| and Eliashberg [Eli90]). If (M,§) is a closed overtwisted
contact 3-manifold, then it admits no weak symplectic fillings. O

The original proofs of this result used holomorphic disks and were closely related to
Eliashberg’s proof of Theorem [9.4} a complete account of this may be found in [Zeh03]. The
notion of overtwistedness was recently extended to higher dimensions by Borman-Eliashberg-
Murphy [BEM15], and the corresponding generalization of the above nonfillability result is
due mainly to Niederkriiger [Nie06]; see also [MNW13| §3].

There is nothing analogous to the uniqueness of fillings of (T2, £1) known in higher dimen-
sions, but a higher-dimensional analogue of Giroux torsion and the nonfillability of (T3, &) for
k > 2 is explained in [MINW13]. Generalizing in a different direction, one can ask whether
the unit cotangent bundle ST*X, of a closed oriented surface ¥, of genus g ever admits fillings
other than the disk bundle D7™*¥,. For minimal strong fillings up to symplectic deformation,
the answer is “no” when g < 1; for g = 1 this is Theorem [0.20] and for g = 0 it is a result of
McDuff [McD90| and Hind [Hin00], and also a special case of Theorem @.41] below (see Exer-
cise [@38)). For g > 2 the situation is very different, as McDuff showed in [McD91] that there
exist exact fillings diffeomorphic to [—1, 1] x ST*X, such that one boundary component is the
unit cotangent bundle with its canonical contact structure. This has two somewhat troubling
implications: first, one can now produce many non-standard (and generally non-exact) strong
fillings of (ST*Xg, can) by attaching any of the symplectic caps provided by [EHO02] to the
other boundary component, and these caps come in an infinite variety of topological types,
implying that it is probably hopeless to classify the strong fillings of (ST*Xg, can). A second
piece of bad news comes from the observation that if the symplectization of (ST*Xy, {can)
contained any nice index 2 holomorphic curves with no negative ends, i.e. the type of curves
that are used in the proofs of Theorems and [0.20, then we could use them to contra-
dict the existence of the semi-fillings [—1,1] x ST*X, constructed by McDuff. Indeed, such
curves would give rise to a 2-dimensional moduli space that tries to foliate the completion of
[—1,1] x ST*X, with curves whose ends are all in the cylindrical end over a single boundary
component, eventually producing a curve that touches the other J-convex boundary compo-
nent tangentially and thus violates Proposition It therefore seems unlikely that a better
understanding of fillings of (ST*X, {can) for g = 2 will come from punctured holomorphic
curve techniques.

That is the bad news. The good news is that some very recent progress on this ques-
tion has come from the direction of Seiberg-Witten theory, in papers by T.-J. Li, Mak and
Yasui [LMY17] and Sivek and Van-Horn Morris [SV17| showing that all ezact fillings of
(ST*Xg, £can) must, at least topologically, bear a strong resemblance to DT*Y,. Even more
recently, Y. Li and Ozbager [LO] have shown that for non-orientable surfaces ¥, (ST*X, £can)
is planar and thus amenable to the holomorphic curve methods discussed in the next section.
These developments lend some plausibility to the following conjecture:

CONJECTURE 9.23. For any closed surface 3, all exact fillings of the unit cotangent bundle
(ST*X, &can) are Liouville deformation equivalent to the unit disk bundle (DT*X, wean)-

The conjecture makes sense of course in all dimensions, but any serious progress on it in
dimensions greater than four would seem to require entirely new ideas.
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9.3. Planar contact manifolds

We conclude this survey with a result on symplectic fillings that is somewhat analogous
to the construction of Lefschetz pencils in Theorem [Fl We must first discuss the relationship
between contact structures and open book decompositions. For a more detailed introduction
to this subject, especially in dimension three, see [Etn06].

Given a closed, connected and oriented manifold M, an open book decomposition
of M is a fiber bundle

7 M\K — S,

where K < M is a closed oriented submanifold with codimension 2 (the binding), which has
trivial normal bundle and admits a neighborhood N'(K) =~ K x D? ¢ M in which 7 takes the
form

Tl 2oy © K x (D°\{0}) — S*: (z,7e”™) — 6.

The fibers of m are called pages of the open book; they are each embedded hypersurfaces
that inherit from M a natural orientation, and their closures are also embedded and have
matching (oriented) boundaries

or—1(¢) = K.
We will be most interested in the case dim M = 3: then the binding is an oriented link and
the pages form an S'-family of Seifert surfaces spanning K.

The topology of an open book 7 : M\K — S! is fully determined by the topology of its
pages and its monodromy, which means the following. Fix a fiber 771(0) < M and denote
its closure by P = 7—1(0). Choose any vector field transverse to the pages whose flow !
for time ¢t maps 7~1(0) to 7—1(¢), and which takes the form !(z,7) = (z,re?™) on the
neighborhood NV (K) = K x D?. The time-1 flow is then a diffeomorphism

Y:P—>P

that equals the identity near the boundary, and the isotopy class of this diffeomorphism rel
boundary is independent of the choice of vector field. We call the resulting mapping class
on P the monodromy of the open book, and the pair (P, 1) are known as an abstract open
book. Any two open books that determine the same abstract open book up to diffeomorphism
are themselves diffeomorphic.

The following important definition is due to Giroux |Gir02].

DEFINITION 9.24. Suppose 7 : M\K — S' is an open book decomposition and « is a
contact form on M. We call a a Giroux form for 7 : M\K — S! if a|7x is a positive
contact form on K and the restriction of da to every page is a symplectic form compatible
with the page’s natural orientation. A (positive, co-oriented) contact structure £ on M is said
to be supported by the open book 7 : M\K — S if it admits a contact form « that is a
Giroux form.

EXERCISE 9.25. Show that if dimM = 3, 7 : M\K — S! is an open book and « is a
contact form on M, the following conditions are equivalent:

(1) a is a Giroux form;

(2) alrr > 0 and da defines a positive area form on every page;

(3) The Reeb vector field R, is (positively) tangent to K and (positively) transverse to
all pages.
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In order to avoid unnecessary complications, we shall restrict our attention from now on
to dimension three. In 1975, Thurston and Winkelnkemper proved [TW75| that every open
book on a 3-manifold gives rise to a contact structure—in modern terminology, we would
say that every open book supports a contact structure, and moreover, one can check that
the resulting contact structure is uniquely determined up to isotopy by the open book. A
complete proof of this may be found in [Etn06], and it is quite analogous to Theorem .33 on
the relationship between Lefschetz fibrations and symplectic structures. Also analogous to the
symplectic case, there is a much harder converse of this result: Giroux [Gir| explained in 2001
how to find a supporting open book for any given contact 3-manifold, and a corresponding
result in higher dimensions has been announced by Giroux and Mohsen (see [Gir02,/Col08]),
using similar techniques to Donaldson’s existence result for Lefschetz pencils on symplectic
manifolds.

EXAMPLE 9.26. Regarding (S%,&) as the contact-type boundary of the unit ball in
(C2,wst), &¢ < TS3 is also the maximal complex subbundle in TS with respect to the
standard complex structure i. Let K = dD? x {0} = S% = C? and define the map

z

7 SHAK — St = D% : (21, 20) — ﬁ

22
This is an open book decomposition with pages diffeomorphic the disk, and the standard
contact form agt is a Giroux form. It follows that any contact 3-manifold supported by an
open book with disk-like pages is contactomorphic to (S%,&). Note that in this case the
monodromy plays no role, as all compactly supported diffeomorphisms of the open disk are
isotopic.

ExAMPLE 9.27. Here is a second open book supporting the standard contact structure
on S3. Let K = S? denote the Hopf link (dD? x {0}) U ({0} x dD?), and define

2122

7 SHK — S = 0D? : (21, 29) —

2122

This defines an open book with pages diffeomorphic to the cylinder and monodromy isotopic
to a right-handed Dehn twist (see Proposition [0.34] and Exercise [0.37)), and it again has the
standard contact form ag as a Giroux form.

EXAMPLE 9.28. Consider S! x S? with coordinates (t, 6, ¢) where t € S! = R/Z and (0, ¢)
denote spherical polar coordinates on S2. The standard contact structure &; on S' x S? can
then be written as the kernel of

f(0)dt + g(0) do

where f, g : [0, 7] — R are suitable smooth functions such that the path § — (f(0), g(6)) € R?
traces a semicircle counterclockwise around the origin moving from (1,0) to (—1,0). Defining
K = {0 =0} u {0 = 7}, there is an open book

7 (ST x SPN\K — S (t,0,¢) — @

27

which has cylindrical pages and trivial monodromy. The contact form written above is a
Giroux form for this open book, hence every contact manifold supported by an open book
with cylindrical pages and trivial monodromy is contactomorphic to (S x S?, &y).
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ExaMPLE 9.29. For any pair of relatively prime integers p > ¢ > 1, the lens space
L(p,q) with its standard contact structure & is defined as the quotient of (S3, &) by the
finite group of contactomorphisms

on : G363 . (21, 22) — <e2m/~c/p21’ e2mk:q/pz2)

for k € Z,. One can verify that for any £ > 1, the contact manifold supported by an open
book with cylindrical pages and monodromy isotopic to the kth power of a right-handed Dehn
twist is contactomorphic to (L(k,k — 1), &s)-

As Examples and demonstrate, it is possible for two topologically different open
books to support the same contact structure: in fact, any open book can be modified by
an operation known as positive stabilization to a new one without changing the supported
contact structure (see e.g. [vK]). By a deep result known as the Girouz correspondence,
the contactomorphism classes of contact structures on any closed oriented 3-manifold are in
one-to-one correspondence with equivalence classes of open books up to positive stabilization.
Stabilization always changes the topology of the pages: it is defined by attaching a topological
1-handle to the page, so in general it increases either the genus or the number of boundary
components. This implies that for any given contact structure, there is nothing special about
having an open book with pages of high genus, as the genus can always be increased via
positive stabilization. On the other hand, the question of whether a supporting open book
with low genus can be found is quite subtle and has serious implications, as we will see below.

DEFINITION 9.30. An open book on a 3-manifold is called planar if its pages have genus
zero, i.e. they are diffeomorphic to spheres with finitely many punctures. A contact structure
is planar if it admits a supporting planar open book.

We’ve seen in the examples above that the standard contact structures on S3, S' x §2
and the lens spaces L(k, k — 1) are all planar. Etnyre [Etn04] has shown that all overtwisted
contact 3-manifolds are planar, but there are also non-planar contact 3-manifolds: the simplest
examples are the tori (T3, &;) that we considered in §0.21 As we will see below, the planar
contact structures are in some sense the “rational or ruled” objects of the 3-dimensional
contact world. The evidence for this begins with the following result regarding the Weinstein
conjecture, proved in 2005 by Abbas, Cieliebak and Hofer:

THEOREM 9.31 (Abbas-Cieliebak-Hofer [ACHOS5]). Suppose (M,¢&) is supported by a pla-
nar open book whose pages have k = 1 boundary components. Then for every contact form
for &, there exists a compact oriented surface 3, with genus zero and at least 1 but at most k
boundary components, admitting a continuous map > — M whose restriction to each compo-
nent of 0% is a closed Reeb orbit.

REMARK 9.32. The k£ = 1 case of Theorem [0.31] reproves the existence of a contractible
Reeb orbit for every contact form on (S3,&), and in fact the slightly more general Theo-
rem [9.50] below gives a second proof of Theorem

As in our discussion of (S3,&:) in §9.11 this dynamical result is closely related to a
classification result for symplectic fillings. To understand this, we must examine the intimate
relationship between open book decompositions and Lefschetz fibrations over the disk. We
will consider Lefschetz fibrations for which both the fiber and the base are compact oriented
surfaces with nonempty boundary, thus the total space is necessarily a manifold with boundary
and corners. To be precise, in the following we assume W to be a smooth, compact, oriented
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and connected 4-manifold with boundary and corners such that W is the union of two smooth
faces

oW = oW v o,W

which intersect at a corner of codimension two. The boundary of W is well defined as a
topological 3-manifold, but the corner can also be smoothed so that the boundary inherits
a smooth structure, and none of what we will say in the following depends on the choices
involved in this smoothing procedure.

DEFINITION 9.33. A bordered Lefschetz fibration of W over the disk D? is a smooth
map II: W — D? with finitely many interior critical points Wy < W and critical values
D2 . < D? such that the following conditions hold:

crit
(1) I 1(0D?) = 0,W and 1|5, : 0,W — 0D? is a smooth fiber bundle;
(2) O|o,w : oW — D? is also a smooth fiber bundle;
(3) Near each point p € Weyt, there exists a complex coordinate chart (z1,22) and a
corresponding complex coordinate z on a neighborhood of 7(p) € D? in which II
locally takes the form

(21, 22) = z% + z%;

(4) All fibers W, := II"1(2) for z € D? are connected and have nonempty boundary in
onW.

As in Chapter 3, we call W, a regular fiber if z € D*\D?,, and otherwise a singular fiber.
We say that II is allowable if all the irreducible components of its fibers have nonempty

boundary (see Figure [0.7]).

If I1: W — D? is a bordered Lefschetz fibration, then W inherits an open book decom-
position in a natural way whose pages have the same topology as the fibers of II. Indeed,
observe that II|s, w : oW — D? is a disjoint union of circle bundles over the disk and is thus
necessarily trivial, so it can be identified with the trivial bundle

M: K xD? ->D%: (z,2) — 2z

where K is the boundary of a fiber II7!(x) =~ S'11...11.9'. We can thus define an open book
7 : M\K — S! by identifying dD? in the natural way with S and setting

mlo,w = lo,w : O, W — dD? = S1

and
Tloank : K x (D2\{0}) — S : (z,7¢*™?) > ¢,

The most important topological fact about this relationship between Lefschetz fibrations
and open books is that the monodromy of the open book depends on the Lefschetz critical
points. Observe that in the special case where there are no critical points, the fibration
IT: W — D? is necessarily trivial, hence so is the monodromy of the open book. When there
are critical points, we obtain the following statement; see [6804&1] for a more precise version
and further discussion.

PROPOSITION 9.34. Suppose I : W — D? is an allowable bordered Lefschetz fibration
and ™ : OW\K — S' is the induced open book on the boundary. Then the monodromy of
7 : OW\K — S is a composition of right-handed Dehn twists, one for each Lefschetz critical
point in I1: W — D2, O
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FIGURE 9.7. A bordered Lefschetz fibration over the disk, with fibers having
genus 2 and two boundary components. The fibration is not allowable due to
the singular fiber at the right, which has a closed irreducible component.

The following notion is now the symplectic analogue of a supported contact structure
for an open book. The conditions are mostly the same as in the case of a closed Lefschetz
fibration or pencil (see Definition [3:32]), but we need to specify more about its behavior near
the boundary.

DEFINITION 9.35. Given a bordered Lefschetz fibration II : W — D?, we will say that a
symplectic structure w on W is compatible with IT if:

(1) The smooth part of every fiber W,\Wey; for z € D? is a symplectic submanifold;

(2) For any almost complex structure J defined near W, that restricts to a smooth
positively oriented complex structure on the smooth parts of all fibers W,\Wei, J
is tamed by w at Wepit;

(3) Near dW, w can be written as d\ where A is a smooth 1-form whose restrictions to
0,W and 0pW are each contact forms, and the resulting Reeb vector field on oW
is positively tangent to the fibers.

It is not hard to show that whenever IT : W — D? is a bordered Lefschetz fibration with
a compatible symplectic structure w and A is the primitive defined near 6W as in the above
definition, the corner 0W can be smoothed and A modified slightly so that its restriction to
the smoothed boundary defines a Giroux form for the induced open book. Moreover, the fact
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that A is contact on both smooth faces of 6W means that its w-dual Liouville vector field
is outwardly transverse to both faces, and thus remains transverse to any smoothing of the
boundary. It follows that after smoothing the boundary, (W, w) becomes a strong symplectic
filling of the contact manifold (M, &) supported by the induced open book at the boundary.
We call IT : W — D? in this case a symplectic bordered Lefschetz fibration of (W,w)
over D2,

To find concrete examples of bordered Lefschetz fibrations in nature, it is often convenient
to start with Lefschetz fibrations whose fibers and base are each noncompact, and then restrict
to suitable compact subdomains with boundary and corners.

EXAMPLE 9.36. The map II : C? — C : (z1,22) — 2o is trivially a Lefschetz fibration,
with no singular fibers, and its restriction to the polydisk W := D? x D? < C? is then a
bordered Lefschetz fibration W — D? compatible with the standard symplectic structure ws;.
It has vertical boundary D? x ¢D? and horizontal boundary dD? x D?, and the induced open
book on 0W = S3 is equivalent to the one in Example .26 thus the strong symplectic filling
determined by this construction is deformation equivalent to the standard filling of (5%, &)
by a ball.

EXERCISE 9.37. Find a compact subdomain W < C? with boundary and corners such
that the Lefschetz fibration C2 — C : (21, 29) = 2122 (cf. Exercise B.2])) restricts to W as a
bordered Lefschetz fibration inducing an open book equivalent to Example @.27] at oW .

EXERCISE 9.38. Fixing the standard Euclidean metric ( , ) on R""! one can identify
T*S™ with the submanifold

TS" — {(q,p) c R*H « Rt | lg| =1 and {p,q) = O},

and using coordinates q = (qo,...,qn) and p = (po,...,Pn), the standard Liouville form
Aean Of T*S™ under this identification becomes the restriction to 7.S" < Rt x R of
>_oPpj dg;. Consider the smooth affine variety

Vz{(zo,...,zn)eC"H | 2(2]+...+272L:1}.
(a) Show that
OV >T*S":x +iy — (%,—\X\y)

defines a diffeomorphism such that using coordinates x = (xg,...,z,) and y =
(Y0, - - -, yn) for x +iy € C*L &* Ny = —2i—oyjdr;. In particular, ® is a sym-
plectomorphism (V,wst) — (T*S™, wean)-

(b) Show that for n = 2, the map 7 : V' — C : (20, 21, 22) — 2o is a Lefschetz fibration
with exactly two critical points, at (£1,0,0).

(c) Find a suitable compact subdomain W < V' with boundary and corners so that the
map in part (b) restricts to W as an allowable bordered Lefschetz fibration over D?
with two singular fibers, and regular fibers that are annuli.

By Proposition[Z.34, one deduces from this exercise that (ST*S?, £can) is supported by a planar
open book with cylindrical fibers and monodromy isotopic to the square of a right-handed
Dehn twist. It is therefore contactomorphic to the lens space (L(2,1),&s) that appeared in
Example[9.29, also known as the standard contact structure on RP3 = §3 /Zs.

REMARK 9.39. The smooth variety V' < C"*! in the above exercise is an example of a
Brieskorn variety. These furnish many interesting examples of contact manifolds with exact
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fillings on which one can explicitly see Lefschetz fibrations and open books; see [KvK16] for
a survey.

We have the following analogue of Theorem [B.33] (see [LVW] for details).

THEOREM 9.40. Given a bordered Lefschetz fibration I1 : W — D?, the space of compat-
ible symplectic structures is nonempty and connected. In particular, any bordered Lefschetz
fibration determines (uniquely up to symplectic deformation equivalence) a strong symplectic
filling (W,w) of the contact manifold supported by its induced open book at the boundary.
Moreover, if the Lefschetz fibration is allowable, then the compatible symplectic structure can
be arranged_to make (W,w) an exact filling, and its Liouville deformation class is uniquely
determined O

Note that the allowability condition in the last statement is clearly necessary, as sym-
plectic bordered Lefschetz fibrations that are not allowable contain singular fibers with closed
symplectic submanifolds as irreducible components, contradicting exactness. The result is not
especially hard to prove—the methods involved are the same as in our proof of Theorem [3.33]
What’s more surprising is that for planar contact manifolds, there is a converse.

THEOREM 9.41 (Wendl [Wenl0b] and Niederkriiger-Wendl [NW11]). Suppose (W,w)
is a weak symplectic filling of (M,&) and & is supported by a planar open book 7 : M\K —
St. Then (W,w) admits a symplectic bordered Lefschetz fibration in which each singular
fiber has only one critical point, and which restricts to the given open book at the boundary.
Moreover, the Lefschetz fibration is allowable if and only if (W,w) is minimal, and it is
uniquely determined up to isotopy by the symplectic deformation class of w.

The combination of these two theorems implies that the weak symplectic fillings of a
contact manifold with a given planar open book can be classified up to deformation equivalence
if one understands topologically all the possible bordered Lefschetz fibrations that can restrict
to that open book at the boundary. This is sometimes easy and sometimes very hard, but it is
in any case a purely topological question; it has nothing intrinsically to do with symplectic or
contact geometry. The relationship between minimality and allowability is easy to understand:
if IT : W — D? is a bordered Lefschetz fibration with genus zero fibers and only one critical
point in every singular fiber, then Proposition implies that it is allowable if and only if
none of its singular fibers contain exceptional spheres. Any non-allowable Lefschetz fibration
with genus 0 fibers can thus be blown down to produce one that is allowable, and this changes
nothing near the boundary, so we obtain:

COROLLARY 9.42. If (M,¢&) is planar and weakly symplectically fillable, then it is also
exactly fillable, and Liouwville deformation classes of exact fillings are in bijective correspon-
dence to weak symplectic deformation classes of minimal weak fillings. Moreover, all of its
weak fillings are deformation equivalent to blowups of exact fillings. O

Recall that by Proposition [0.34] an open book is not the boundary of any Lefschetz
fibration unless its monodromy is a composition of right-handed Dehn twists, thus:

A stronger statement is actually true: as shown in [BV15[[LVW], allowable Lefschetz fibrations admit
Stein structures. In fact, every statement following Theorem that involves exact fillings or Liouville
deformation is also true for Stein fillings and Stein deformation; see [LVW]. Conversely, Loi-Piergallini [LPO01]
and Akbulut-Ozbage [A(”)Clla7 AéOlb] proved that every Stein filling in dimension four admits an allowable
Lefschetz fibration, and more recently, Giroux and Pardon [GP17] extended Donaldson’s methods [Don99]
to establish this result in all dimensions.
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COROLLARY 9.43. If (M,§) is supported by a planar open book whose monodromy is not
isotopic to a composition of right-handed Dehn twists, then (M, &) is not weakly symplectically
fillable. O

It is not always easy to judge whether a given mapping class on a surface is a product of
right-handed Dehn twists, but some progress on this was made by Plamenevskaya and Van
Horn-Morris [PV10], who used the above corollary to deduce some new examples of tight
but non-fillable contact manifolds. Theorem has also been applied by Wand [Wan12]
to define new obstructions to planarity of contact structures.

The simplest open books to which one can apply Theorem are those with cylindrical
pages (Examples @.27], and 0:29] also Exercise [0.38]): every compactly supported diffeo-
morphism of the cylinder is isotopic to §* for some k € Z, where § is a right-handed Dehn
twist. It follows that the corresponding contact manifold is fillable if and only if £ > 0, and in
this case the number of critical points of any allowable Lefschetz fibration that fills it must be
precisely k, thus that Lefschetz fibration is uniquely determined up to diffeomorphism, and
all others filling the same open book are blowups of it. This implies:

COROLLARY 9.44. The manifolds S, S* x S? and L(k,k — 1) with their standard contact
structures each have unique weak fillings up to symplectic deformation and blowup. O

As we saw in 011 the classification of fillings of S is actually a much older result, and
the corresponding result for S' x S? can be derived from it using an equally old result of
Eliashberg [Eli90] about fillings of connected sums. The fillings of lens spaces were classified
up to diffeomorphism by Lisca [Lis08], so the above classification up to symplectic deforma-
tion is a slight improvement on this. By Exercise 038 the special case of L(k,k — 1) with
k = 2 gives the uniqueness of fillings of (ST*S?,&can): up to diffeomorphism this classifica-
tion was originally established by McDuff as a corollary of her characterization of rational
and ruled surfaces [McD90], and it was later improved to a classification up to Stein defor-
mation equivalence by Hind [Hin00], using punctured holomorphic curve techniques. Some
newer applications of Theorem to prove uniqueness of symplectic fillings are explained
in [PV10].

REMARK 9.45. Theorem was originally proved for strong fillings in [Wen10b], and
the extension to weak fillings was carried out in [NW11] using stable Hamiltonian structures
to define suitable cylindrical ends over fillings with non-exact boundary. Unlike the special
case of (53, &), this is not simply a matter of applying Proposition 8IS to deform from weak
to strong, as every closed oriented 3-manifold admits a planar contact structure, so they
are not all rational homology spheres. There is nonetheless a fundamentally cohomological
reason why Theorem [@41] unlike the classification of fillings of T2 in the previous section,
is not limited to strong fillings: given any weak filling (W,w) of a contact 3-manifold (M, ¢)
supported by an open book m : M\K — S!, w is necessarily exact near the binding K,
and can thus be deformed to look like a strong filling on a neighborhood of K. In [LVW],
Theorem is extended to so-called spinal open books, in which the solid tori S* x D? that
form neighborhoods of the binding in an open book are replaced by more general domains
of the form S' x ¥ for compact oriented surfaces ¥ with boundary; the spine of a contact
3-manifold supported by a spinal open book is then a disjoint union of domains of this form
such that the circles S' x {const} = S! x X are closed Reeb orbits for a suitable choice of
contact form. In general, it turns out that any weak filling that is exact on the spine of a
supporting planar spinal open book can be deformed to a strong filling, and it can further be



9.3. PLANAR CONTACT MANIFOLDS 217

deformed to an exact or Stein filling if it is minimal. In the case of (T3,&;) for each k € N, one
can find a planar spinal open book that supports the contact structure, but its spine consists
of domains of the form [a,b] x S! x S = T3, which have nontrivial cohomology. Note that
all of the weak fillings of (T3,&;) constructed in Exercise are non-exact on domains of
this form: this is why they cannot be deformed to strong fillings.

We conclude by sketching the proofs of Theorems and [0.47], focusing on the strong
filling case of the latter result. The connection between holomorphic curves and planar open
books that underlies both theorems can be traced back at least as far as a series of papers
by Hofer, Wysocki and Zehnder in the mid-1990’s, exploring applications of the newly devel-
oped theory of finite-energy pseudoholomorphic curves in symplectizations. One particularly
compelling application was a 3-dimensional contact analogue of McDuff’s characterization of
symplectic ruled surfaces:

THEOREM 9.46 (Hofer-Wysoki-Zehnder [HWZ95b]). Suppose (M, &) is a closed contact
3-manifold with a contact form a that admits a contractible, simply covered, nondegenerate
Reeb orbit v ¢ M with the following properties:

(1) 7 has the smallest period among all orbits of Ry;
(2) v bounds an embedded disk D < M such that do|, .z > 0;
(8) The Conley-Zehnder index of v with respect to a trivialization of £|p is 3.

Then (M, €) is contactomorphic to (S3,&).

The idea behind this result is roughly that D gives rise to an embedded finite-energy
J-holomorphic plane in R x M with index 2 and self-intersection 0, so that combining Propo-
sition BRG]l with a compactness argument, this plane generates a 2-dimensional moduli space of
embedded curves in R x M whose projections to M form an S'-family of open disks transverse
to the Reeb vector field, foliating M\7y. These planes projected into M thus form the pages of
an open book decomposition 7 : M\y — S!, with « as a Giroux form, and this decomposition
identifies (M, &) with the picture of (53, &) that we explained in Example[@.26. Variations on
this argument have been used in other contexts to characterize particular contact manifolds
via generalizations of open books [HT09,HLS15], or to produce global surfaces of section
for Reeb flows [HWZ98|HS11,/[CHPJ.

The above result is a very special case involving the simplest possible open book, but
after the Giroux correspondence arose in 2001, it became natural to ask whether all open
books supporting contact structures can similarly be realized as S'-families of holomorphic
curves. One possible statement along these lines is the following result from [Wen10Oc]; for
an alternative version, see [Abb11].

THEOREM 9.47. Suppose m : M\K — S' is an open book with pages of genus g, supporting
a contact structure £&. Then there exists a Giroux form a and an R-invariant almost complex
structure J on R x M such that every connected component of K is a Reeb orbit with odd
Conley-Zehnder index, and every page 7~ 1(¢) is the image under the projection R x M — M
of an embedded J-holomorphic curve in R x M with only positive ends and index 2 —2g. [

The proof of this theorem in [WenlOc| requires no special technology; it is a more or
less explicit constructionfl Note that the moduli space of J-holomorphic curves obtained

SWe are simplifying the discussion slightly, because the statement of Theorem [0.47] did not say that J
belongs to J (M, ), and in fact this only becomes true after a perturbation; in the general construction, J is
adapted to a stable Hamiltonian structure rather than a contact form. Perturbing to contact data and making
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in this statement is actually two-dimensional, because one obtains not only an S'-family
corresponding to the pages but also all the R-translations of these curves. On the other hand,
the virtual dimension of this moduli space is 2 — 2¢g, by a computation very similar to what
we saw in the example of S? x ¥4 (see Remark [5.2]). It follows that the holomorphic pages
are well behaved if they have genus zero—in fact in this case they satisfy the requirements
for automatic transversality in §8.3.7] and a nice implicit function theorem (Prop.R5I)—but
for g > 0 they are unstable and do not carry any information beyond the very specific setup
of (R x M, J). This is the reason why Theorems and require the open book to be
planar. It remains unclear whether holomorphic curves can be used to prove the Weinstein
conjecture for non-planar contact 3-manifolds, and the analogue of Theorem on fillings
in the non-planar case is false, as shown by Wand [Wan15].

REMARK 9.48. Hofer proposed in [Hof00| a possible solution to the problem with the
indices of higher genus embedded holomorphic curves: the idea was to generalize the equation
for holomorphic curves in symplectizations by introducing an extra parameter that varies in
the 2¢g-dimensional space H dR( g)- When regarded as solutions to this more general prob-
lem, the curves in Theorem [0.47] have index 2 regardless of their genus and are stable under
perturbations—this is the motivating idea in Abbas’s version of the holomorphic open book
[Abb11]. On the other hand, the compactness theory of Hofer’s generalized equation is
still not well understood, and there is no good candidate for a definition of the equation in
non-R-invariant settings, so it remains unclear whether this approach will have interesting ap-
plications. Taubes’s solution [Tau07] to the Weinstein conjecture in 2006 made this question
seem a great deal less urgent.

With Theorem [0.47 in mind, the reader may now be able to guess the outline of the proofs
of Theorems and For the strong filling case of Theorem [0.41] we assume (W, w)
is a given strong filling of (M,€), and start by extending (W,w) to its completion (W,&})
This can be done so that & near inﬁnity takes the form d(efa), with a chosen to be the
Giroux form coming from Theorem [9.47] Then after an R-translation, the holomorphic pages
of Theorem [0.47] can be regarded as embedded J-holomorphic curves of index 2 fohatlng a
neighborhood of infinity in (W @), and this foliation extends to a Lefschetz fibration of W in
much the same way that an embedded J-holomorphic sphere of index 2 in a closed symplectic
4-manifold generates the fibers of a blown-up ruled surface. More precisely, let M denote
the compactified moduli space of curves in w arising from the holomorphic pages. Since the
asymptotic orbits of these curves are all simply covered, none of them are bad orbits in the
sense of Definition B30l so Corollary gives the smooth portion of this moduli space M
an orientation, making M into a compact oriented surface with one boundary component
(corresponding to the S'-family of holomorphic pages). Index counting arguments as in
Chapter @ prove that M contains at most finitely many nodal curves, and one then uses
the adjunction formula to show that they look like Lefschetz singular fibers (see Figure [0.8))
and fit together with the smooth curves to form a foliation of 17[\/, with the nodes as isolated
singular points. The natural projection

H:WHM

the J-holomorphic pages survive this perturbation does require some technology, namely the implicit function
theorem, and it only works in the g = 0 case since that is the only case in which the dimension of the moduli
space equals its virtual dimension. See [Wen10c| for details.
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FIGURE 9.8. Two examples of possible nodal degenerations for holomor-
phic curves arising from a planar open book with three binding components.
Both scenarios produce Lefschetz singular fibers; the second produces a non-
allowable Lefschetz fibration and is only possible if the filling is not minimal.

sending every point to the unique (possibly nodal) curve that passes through it can then be
viewed as the “completion” of a bordered Lefschetz fibration, which is allowable if (W,w)
is minimal since the nodal curves then can never have any spherical components. Now one
uses the structure of the open book to show that M must be diffeomorphic to the disk: in
particular, its boundary is contractible. To see this, one can choose a loop v : S' — M
forming a meridian on the boundary of a small neighborhood of a binding component. This
loop\ passes exactly once through every page, thus if we regard M as the “ideal boundary”
of W at infinity, Il oy : S' — M parametrizes M. But v, while not contractible in M\K,
is clearly contractible in W: after moving it down into the interior of the cylindrical end, we
can fill it with a disk in the region foliated by holomorphic curves, and the image of this disk
under II thus forms a contraction of M in M, implying M =~ D?.

Finally, one needs to show that if the filling is modified by a symplectic deformation
{ws}se[o,1], then the Lefschetz fibration constructed above extends to a family of isotopic
ws-symplectic Lefschetz fibrations for all s € [0,1]. This essentially just requires choosing a
generic smooth homotopy {Js}se[o,1] consisting of w,-compatible almost complex structures
and replacing the moduli space above by a parametric moduli space dependent on s. The key
technical points are as follows:
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(1) Since all asymptotic Reeb orbits have odd Conley-Zehnder index and we are only
considering curves of genus 0, all curves in the parametric moduli space, including
the smooth components of nodal curves, satisfy automatic transversality (Corol-
lary [R.A4T]).

(2) Another consequence of the fact that all asymptotic Reeb orbits have odd Conley-
Zehnder index is that all conceivable curves arising in the compactfication of the
parametric moduli space have even index (Exercise [R33]). Hence the bound ind(u) >
—1 for simple Js-holomorphic curves at nongeneric parameter values is improved to
ind(u) > 0, and for this reason, compactness works out the same as in the generic
case.

As a consequence, the construction of the Jg-holomorphic Lefschetz fibration works for every
parameter s € [0, 1] and depends smoothly on the parameter. This completes our sketch of
the proof of Theorem [9.4]]

REMARK 9.49. Returning to the proof of Theorem on fillings of (T3,¢;), here is the
missing argument to rule out the second nodal degeneration shown in Figure Let M
denote either of the two compactified faril\ilies of holomorphic cylinders that we considered
in a (completed) minimal strong filling (W,®) of the torus. Then a priori, M can contain
a finite set of nodal curves, but by the same argument sketched above for Theorem [@.41],
they fit together with the smooth curves in M to foliate W and form the completion of a
bordered Lefschetz fibration II : W — M. In contrast to Theorem @41, M does not have
the topology of the disk; in fact, M has two boundary components, corresponding to the
two S'-families of holomorphic cylinders whose projections to T3 foliate the complement of
a pair of Morse-Bott 2-tori. A variation on the argument used above to prove M =~ D? then
shows in this case that M =~ [—1,1] x S!, so we have a bordered Lefschetz fibration of the
filling (W,w) over the annulus. Instead of an open book, the restriction of such a Lefschetz
fibration to the boundary defines a more general decomposition, consisting in this case of
two trivial cylinder-fibrations over S, which we should think of as the pages of a generalized
open bookld Just as singular fibers in a Lefschetz fibration over D? contribute Dehn twists
to the monodromy of the open book at the boundary, the composition of the monodromies
of these two cylinder-fibrations must be isotopic to a product of right-handed Dehn twists,
again one for every singular fiber of the Lefschetz fibration over [—1,1] x S'. But the fibers
are cylinders and the composition of monodromies is trivial, so the only way to produce this
as a product of right-handed Dehn twists is if there are no singular fibers at all, hence no
nodal degenerations in the moduli space.

Theorem is a slightly easier variation on the above argument, just as Theorems
and on fillings and Reeb orbits for (53, &) follow by variations on the same argument.
The existence of nodal degenerations which form the singular fibers of the Lefschetz fibration
in Theorem plays no role in Theorem the crucial fact is that since only finitely
many such degenerations are possible, there still must be a family of smooth curves that reach
to —oo in any cobordism with a negative end, thus breaking off to produce a building with

6This type of decomposition of (T?, ;) is called a summed open book in [Wenl13], as it can be viewed as
the result of attaching two open books together via contact fiber sums along binding components. It is also a
special case of a spinal open book as defined in [LV'W]. These notions make it possible to apply the technology
of punctured holomorphic spheres to many contact 3-manifolds that are not planar.
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lower levels asymptotic to Reeb orbits in the concave boundary. One could just as well have
stated Theorem [9.31]in a slightly more general way, and we’ll conclude with this statement:

THEOREM 9.50 (Easy exercise based on [ACHOS5]). Suppose (M,&) is supported by a
planar open book whose pages have k = 1 boundary components, and (M’ ') is another
contact manifold admitting an exact symplectic cobordism to (M,§). Then for every contact
form for £, there exists a compact oriented surface X, with genus zero and at least 1 but at
most k boundary components, admitting a continuous map ¥ — M’ whose restriction to each
component of 0% is a closed Reeb orbit. U






APPENDIX A

Generic nodes = Lefschetz critical points

The purpose of this appendix is to sketch a proof of the folk theorem that a J-holomorphic
foliation with an isolated transverse nodal singularity can be identified locally with the neigh-
borhood of a critical point in a Lefschetz fibration. The proof outlined here uses the com-
pactness theory of punctured holomorphic curves in the asymptotically cylindrical setting,
see 834 and |[BEH'03,Baol5|. It is based on conversations with Sam Lisi related to our
joint work with Jeremy Van Horn-Morris [LVW].

Assume in the following that (M, w) is a closed symplectic 4-manifold with a tame almost
complex structure J. This is geared toward application to the theorems in Chapter [l though
the statement has a straightforward generalization in the context of SFT compactness, allow-
ing (M, w) to be e.g. the completion of a compact symplectic manifold with convex boundary,
as needed for Theorem Recall from Exercise B.2]] that critical points of Lefschetz fibra-
tions in dimension four can be modeled in complex coordinates by the map m(z1, 22) = z122.

PROPOSITION A.1. Suppose Mf c ﬂg(J) is a subset of the space of stable nodal holo-
morphic curves in (M, J) with the following properties:
(i) Mf 1s homeomorphic to a 2-dimensional disk;

(ii) Mf contains a nodal curve ug in its interior, which is embedded except at its nodes,
all of which are transverse double points;

(iii) M7 := Mf\{uo} is a smooth 2-dimensional family of smoothly embedded curves;

(iv) There exists a point p € M, which is the image of a node of uy, such that a neigh-
borhood of p in M has a smooth 2-dimensional foliation F, with p as an isolated

singularity, where the leaves of F are pieces of curves in Mf.
Then there exists a smooth coordinate chart ¢ : U — C? on a neighborhood U < M of p,
sending p to 0, such that
(pr)sF = Fo in  Cp(C?) ast — oo,
where () := tp(x) € C? for t > 0, and Fo denotes the singular foliation on C? tangent to
the fibers of the map (z1,22) — z122.

To prove this, we first construct a coordinate chart ¢ : i — C? near p with a few special
properties. We will require in the first place that ¢(p) = 0 and (¢«J)(0) = i. Using local
existence of holomorphic disks through p, one can also arrange so that ¢ gives

(M, J) = (M\{p}, J)
the structure of an almost complex manifold with an asymptotically cylindrical negative end

at p, ¢f. [BEH"03, Example 3.1(2)]. More precisely, this means that if we rescale the
coordinates so as to assume @() contains the unit ball B4 = C? and define

®:(—0,0] x $% > M : (r,z) — ¢ ' (e 2),

223
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then the family of almost complex structures J* := (f%)*®*J on (—o0,0] x S3 defined via
R-translation f*(r,x) := (r — s,z) for s > 0 satisfies

e J50, = Ry for all s = 0;

o J*— J¥ e J(S3 ag) as s — o0,

where ag denotes the standard contact form on S% = 8?4 with its induced Reeb vector
field Ryt whose orbits are the fibers of the Hopf fibration, and J* is the standard complex
structure ¢ under the identification

(A.1) R x §3 — C2\{0} : (r,x) — ¥z

The first condition permits a natural definition of energy in the asymptotically cylindrical
context so that families of curves in (M, J) with uniformly bounded energy also automatically
have bounded energy as curves in (M , J ), possibly with extra punctures approaching the
negative end at p. Moreover, the convergence J* — J® is exponentially fast, so that Bao’s
extension [Baol5| of the standard asymptotic and compactness results from [BEHT03] is
valid in this setting. There is one more useful condition on ¢ : & — C? that we are free to
impose: the nodal curve ug is assumed to have two components uar and u, passing through
U that intersect transversely at p, and we can choose ¢ so that these two components, when
viewed in coordinates, are tangent at p to C x {0} and {0} x C respectively.

Now using ® to identify a punctured neighborhood of p with (—o0,0] x S3, the curves ug
and v, appear in (—o0,0]xS? as J-holomorphic half-cylinders with negative ends approaching
the Reeb orbits

V() = (270), () = (0, ¢2)
in S3. To prove the proposition, pick any sequence (ry, z) € (—00, 0] x S3 such that r, — —o0,
x1, converges to some point ., € S3 outside the images of y* and 7~, and (ry, x)) for every
k is not in the image of uj or uy. This determines a sequence uy, € M7 of curves through
(rk, zg). The next lemma implies Proposition [A.]]

LEMMA A.2. The sequence uy of J-holomorphic curves in M converges in the sense of
IBEH 03| to a holomorphic building whose main level is the nodal curve uy (regarded as a
possibly disconnected curve in M with two negative ends approaching p), and it has exactly

one lower level, consisting of an embedded J®-holomorphic cylinder whose image under the
identification of R x S3 with C*\{0} via (A1) is a fiber of the map C? — C : (21, 20) — 2120.

PRrROOF. It suffices to show that every subsequence of u; has a further subsequence con-
verging to a specific building of the stated form. By [BEHT03,[Baol5], we can start by
extracting a subsequence that converges to some building us. Its main level clearly fits
the stated description since the nodal curve wug is necessarily the limit of any sequence of
curves in M7 that pass through a sequence of points approaching p. The lower levels form a
J®-holomorphic building in R x S3 of arithmetic genus zero with exactly two positive ends,
asymptotic to the orbits v+ and v~. Under the identification R x 3 = C2\{0}, it is not
difficult to classify all curves in R x S3 that have precisely two positive ends asymptotic to
these particular orbits: up to parametrization, they appear in C? as pairs of meromorphic
functions of the form

u(z) = (az +b,1/z +¢)
for some constants a, b, c € C with a # 0. Here the parametrization has been chosen so that
the curve has positive punctures at 0 and oo asymptotic to v~ and 7' respectively. It has a
negative puncture at any point zo € C\{0} such that azy + b = 1/z9 + ¢ = 0, which means
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29 = —1/c = —b/a, so there can be at most one such puncture, existing only if bc = a, and it

is asymptotic to the orbit ‘ ‘
’YO(t) _ (A627rzt’BeZ7rzt)

where (A, B) := lgzi e §% = dB'. Note that since bc = a # 0, A and B are both

2
nonzero, so g is differen)t‘ from both v and v~ and is therefore nontrivially linked with both
in S3. It also has the smallest possible period for closed orbits of Ry, hence there must be
exactly one additional lower level, which is a plane asymptotic to g, and the nontrivial linking
implies that this plane intersects the trivial cylinders over v+ and «~. But by local positivity
of intersections, an intersection of this type implies intersections of uy with uar and ug for
sufficiently large k; this follows from the fact that ua—r have ends end negatively asymptotic

to v£. This contradicts the assumption that the curves in Mf form a foliation near p, so
we conclude that the curve u(z) = (az + b, 1/z + ¢) cannot have a negative puncture, and uq
therefore has only one lower level.

Similarly, u intersects the trivial cylinder over either v* or 4~ if there is any 2z € C\{0}
with az+b = 0 or 1/z+ ¢ = 0; note that we have already ruled out the scenario in which both
vanish at the same time. This again leads to a contradiction by positivity of intersections, so
we conclude b = ¢ = 0 and thus u(z) = (az,1/z). Note finally that a curve u of this form is
uniquely determined up to R-translation by the fact it must pass through R x {z}. O

COROLLARY A.3. Under the assumptions of Proposition[A.1, a neighborhood of the nodal
singularity p admits complex coordinates in which the leaves of F are the fibers of the map
(21,22) = 2122

PRrROOF. It suffices to show that this is true for the rescaled foliation F; := (¢;)«F on
B* c C? if t > 0 is sufficiently large. One can first choose a parametrization of the leaves
of Fy via their transverse intersections with a suitable fixed 2-disk, and use the same disk to
parametrize the leaves of F; for large t. An ambient isotopy taking Fy to F; for t large can
then be constructed by perturbing each leaf of Fy in the orthogonal direction to produce the
corresponding leaf of F;. O
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on the compactified moduli space, 33 levels, [I76]

transversality, 27H32] holomorphic curve,
asymptotic defect of, [I88]

asymptotic Reeb orbits of, [[70]
automorphism group of, 23]

even parametrization of a Reeb orbit, [[68]
exact Lagrangian submanifold, [63]
exceptional divisor

complex, energy of, [38] 169
symplectic, (6] index of, 211 0741

multi-level, [76HITS

exceptional section of a Lefschetz pencil,
multiply covered, [[9] 72

exceptional sphere

complex, 54 nodal,
symplectic, Bl BT non-nodal, 3§
normal Chern number of, [I87]
fiberwise symplectic structure, punctured, [[T68HI70]

first Chern class, [I0] relative homology class of, [70HITI]



simple, 19 20
smooth, see also holomorphic curve, non-nodal
smooth components of,
spectral covering number of,
stable, 37
universal,
unparametrized,
with asymptotic markers,
holomorphic jet,
horizontal boundary,

implicit function theorem, 22H23] @1 (O
index

Conley-Zehnder, [T74]

constrained,

of a Fredholm operator,

of a holomorphic curve, 211 [I'74]
injective point,
intersection form, see also intersection product
intersection number, see also intersection product
intersection product

for pseudocycles, [II8]

homological, [I]

positivity,
irreducible components of a Lefschetz singular

fiber,

J-convex function, see also plurisubharmonic
function
J-convexity, see also pseudoconvexity
J-holomorphic curve, see also holomorphic curve
jet
holomorphic,
smooth,

Kahler form, [3]

Lagrangian neighborhood theorem,
Lagrangian submanifold, I63]
exact, 163
Lefschetz fibration,
achiral,
allowable,
bordered,
critical point of,
irreducible components of a singular fiber,
regular fiber of,
singular fiber of,
symplectic,
Lefschetz pencil,
base point of,
exceptional section of,
symplectic,
light cone lemma,
Liouville cobordism, see also symplectic
cobordism, exact
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Liouville deformation equivalence, [T93]
Liouville filling, see also symplectic filling, exact
Liouville form
on R?" 5] 153
on cotangent bundles,
Liouville vector field,
on R?", 55]

manifold with boundary and corners,
marked points,
meager,
minimal period of a Reeb orbit,
minimal symplectic 4-manifold,
moduli space
of holomorphic curves with constrained
punctures, [[97]
of punctured holomorphic curves, 73]
of punctured holomorphic curves with
asymptotic markers,
of smooth holomorphic curves,
of stable holomorphic buildings,
of stable nodal holomorphic curves,
of stable nodal Riemann surfaces, [11]
orientation of, [A2H45] A7)
parametric,
monodromy of an open book, 209
Morse-Bott condition for a contact form,
Morse-Bott condition for Reeb orbits,
multiply covered holomorphic curve, [[9]
multiply covered Reeb orbit,

negative punctures of a holomorphic curve, I70]
nodal holomorphic curve,
nodal points,
nodal Riemann surface
moduli space, [T]]
stabilization,
nodes,
non-immersed point, [I9]
nondegeneracy
of a 1-periodic Hamiltonian orbit,
of a Reeb orbit,
nondegeneracy of a contact form,
nonlinear Cauchy-Riemann equation,
normal Chern number of a holomorphic curve,

w-limit set, IT7

open book decomposition,
abstract,
binding of,
monodromy of, 209}
pages of, 209 217]
planar, 2T71]

orbit cylinder, see also trivial cylinder

pages of an open book decomposition, 209] 2TT]



238 INDEX

parametric moduli space, homological, see also self-intersection number
parity of a nondegenerate Reeb orbit, [I74] of a holomorphic curve,
planar contact structure, 2T1] tangential, [34]
planar open book decomposition, 2111 triple,
plurisubharmonic function, self-intersection number, [I]
Pontrjagin classes, Serre fibration, [7 [47]
positive punctures of a holomorphic curve, [I70] SFT compactification,
positive symplectic immersion, SFT compactness theorem,
positivity of intersections, signature of a manifold,
pre-gluing map, similarity principle, 46} {7, [[84] [136]
pseudoconvexity, simple holomorphic curve, [[9 20,
pseudocycle, TTTHIZT] simply covered Reeb orbit,
bordism, [I17] singular fiber of a Lefschetz fibration, [G1]
intersection product, [IT8] smooth components of a nodal curve,
transversality, [T18] smooth holomorphic curve, see also holomorphic
pseudoholomorphic curve, see also holomorphic curve, non-nodal
curve somewhere injective, [[9) 20}
spectral covering number,
rational surface, [ B split symplectic structure, [T
in algebraic geometry, [8] stability
symplectic, Bl [07] of a holomorphic building,
Reeb orbit of a nodal holomorphic curve, [37]
asymptotic, of a nodal Riemann surface, [[T]]
bad, stabilization of a nodal Riemann surface,
breaking, 176} 79 stable nodal curve, [37]
covering multiplicity of, standard contact form
evenly parametrized, on T3, 63
good, on S*"~1 [B6
minimal period of, on unit cotangent bundles, 163
Morse-Bott, standard contact structure
multiply covered, on T3, 163
nondegenerate, on S* x 2,
parity of, 74 on S~ B0
simply covered, on lens spaces, 211]
Reeb vector field, standard Liouville form
regular, see also Fredholm regularity on R?" 55 (53]
regular fiber of a Lefschetz fibration, [G1] on contangent bundles,
relative first Chern number, [I74] standard Liouville vector field on R?", B3]
relative homology class of a punctured standard symplectic form
holomorphic curve, [70HI7T] on CP",
removal of singularities, 39 [I70] on R?",
Riemann sphere, [I7] on T?", [[53]
Riemann surface, [T on cotangent bundles,
Riemann-Hurwitz formula, [§4] star-shaped domain
ruled surface, 21 [7] in a cotangent bundle,
blown-up, in R?",
in algebraic geometry, [7] star-shaped hypersurface,
irrational, Stein cobordism,
rational, submanifold
symplectic, exact Lagrangian, [1G3]
topological classification, [6HT] Lagrangian,
positively symplectically immersed,
second category, symplectically embedded, [Tl
Seiberg-Witten theory, [TOHI2], symplectic bordered Lefschetz fibration, 214]

self-intersection symplectic cap, 160} 163l



symplectic cobordism
completion of,
exact,
Stein,
strong,
trivial,
weak, [[63]
Weinstein,
symplectic completion, see also completion of a
symplectic cobordism
symplectic deformation equivalence
for closed symplectic manifolds,
for symplectic fillings, [93]
Liouville, 193]
symplectic dilation,
symplectic fibration,
symplectic field theory,
symplectic filling,
exact,
weak, [[63]
symplectic Lefschetz fibration,
bordered, 2141
symplectic Lefschetz pencil,
symplectic neighborhood theorem,
symplectic rational surface, Bl [IQ07]
symplectic ruled surface,
symplectic structure
compatible with a bordered Lefschetz fibration,
13
compatible with a Lefschetz fibration/pencil,
fiberwise,
minimal,

on CP", 3l

on R Bl

on T?" 153

on cotangent bundles,
split, [

symplectic submanifold, [
symplectically aspherical, [53]
symplectization of a contact manifold,
symplectomorphism

group,

Hamiltonian,

Hamiltonian subgroup,

tangential self-intersection, [34]
Thurston trick, [[THT3]
transversality
automatic, E5HAT]
for holomorphic curves, see also Fredholm
regularity
for pseudocycles, [II8]
triple self-intersection,
trivial cylinder,
trivial symplectic cobordism,
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uniformization theorem, [I'7]

uniruled
in complex algebraic geometry, [[13]
symplectically, [05] II3HIT4]

unit cotangent bundle,

universal J-holomorphic curve,

vertical boundary, 212l
virtual dimension, 2]]

Wankel rotary engine, [I83]
weak symplectic filling

in dimension four, [I63]

in higher dimensions,
weight of a symplectic blowup,
Weinstein cobordism,
Weinstein conjecture,
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