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GENERIC TRANSVERSALITY FOR UNBRANCHED COVERS OF

CLOSED PSEUDOHOLOMORPHIC CURVES

CHRIS GERIG AND CHRIS WENDL

Abstract. We prove that in closed almost complex manifolds of any dimension, generic
perturbations of the almost complex structure suffice to achieve transversality for all un-
branched multiple covers of simple pseudoholomorphic curves with deformation index
zero. A corollary is that the Gromov-Witten invariants (without descendants) of sym-
plectic 4-manifolds can always be computed as a signed and weighted count of honest
J-holomorphic curves for generic tame J : in particular, each such invariant is an integer
divided by a weighting factor that depends only on the divisibility of the corresponding
homology class. The transversality proof is based on an analytic perturbation technique,
originally due to Taubes.
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1. Introduction

The Gromov-Witten invariants of closed symplectic manifolds are defined in principle
by counting J-holomorphic curves for generic tame almost complex structures J . One of
the main technical hurdles in this definition is that moduli spaces of J-holomorphic curves
are not generally manifolds of the “expected” dimension unless multiply covered curves
can be excluded; thus in practice, the definition usually requires more sophisticated tech-
niques such as virtual cycles, abstract multivalued perturbations, or stabilizing divisors,
see e.g. [FO99,LT98,Rua99,Sie,CM07, IPa,HWZ].

It is nonetheless interesting to ask under what circumstances the “classical” technique
of perturbing J generically suffices for a complete description of moduli spaces of multiply
covered curves. Results of this nature are desirable for several reasons: one is that the
resulting definition of the Gromov-Witten invariants is simpler to understand and to apply.
Another is that the relationship between simple curves and their multiple covers can
reveal nontrivial relations among Gromov-Witten invariants that cannot be seen by more
abstract techniques; one example of this phenomenon is the Gopakumar-Vafa conjecture on
symplectic Calabi-Yau 3-folds, see [GV,BP01,BP08,IPb]. While moduli spaces of multiply
covered curves cannot generally achieve regularity in the usual sense, it is sometimes
enough to show that they are as regular as possible. A simple J-holomorphic curve u with
deformation index 0 is called “super-rigid” if, roughly speaking, the set of all covers of u
is an open subset in the moduli space of all J-holomorphic curves (see §1.1 for a more
precise definition), so in particular, no sequence of curves geometrically distinct from u
can converge to any cover of u. The index relations between simple J-holomorphic curves
and their multiple covers make the following conjecture plausible:1

Conjecture 1.1. On any closed symplectic manifold (M,ω) of real dimension at least four,

there exists a Baire subset Jreg in the space of smooth ω-tame almost complex structures

such that for all J ∈ Jreg, every closed, connected and simple J-holomorphic curve with

deformation index 0 is super-rigid.

Some special cases of this conjecture have been proved previously by Lee-Parker [LP07,
LP12] and Eftekhary [Eft16]. The techniques used in the present paper are related to those
of [LP07,LP12], which also play a role in the announced solution by Ionel and Parker to
the Gopakumar-Vafa conjecture [IPb].

For an unbranched cover of a simple curve, the super-rigidity condition is equivalent to
the usual notion of Fredholm regularity, and our main result (stated as Theorem 1.3 below)
is that this can always be achieved by choosing J generically. This may be seen as an
initial step toward a proof of Conjecture 1.1 in full generality. While the result holds in all
dimensions, its consequences are especially interesting in dimension four: as we will show
in §1.2, it implies that Gromov-Witten invariants without descendants in this setting can
be computed without the aid of domain-dependent or inhomogeneous perturbations, and
they therefore satisfy integrality conditions that are not apparent from the more general
definitions; see Theorem 1.8 and Corollary 1.9.

1After this article was submitted for publication, the second author produced a preprint [Wenb] that
proves Conjecture 1.1 in all dimensions greater than four, together with a substantial generalization of
Theorem 1.3, using different techniques based on the Sard-Smale theorem and representation theory.
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Our proof is quite different from the methods that symplectic topologists typically use to
establish transversality: it does not involve the Sard-Smale theorem, but is instead based
on an analytic perturbation theory technique introduced by Taubes in his definition of the
Gromov invariants of symplectic 4-manifolds [Tau96b]. It works in the symplectic category
in all dimensions greater than two, but it does not work in the algebraic or complex
category, i.e. if we start with an integrable complex structure J , then our perturbation to
achieve regularity will always make J nonintegrable (see Remark 2.1). The method also
is not strictly limited to unbranched covers: for any given cover of a simple curve with
index 0, we will show how to perturb J such that the super-rigidity condition is achieved
for the given cover. Since spaces of unbranched covers do not have moduli, this suffices
to prove our main result, and it also lends hope that similar methods could be used to
prove Conjecture 1.1 in full generality, though at present it is not clear whether the kind
of perturbation we define can achieve super-rigidity for all branched covers at once in a
space with nontrivial moduli.2

We aim in future work to prove similar results for covers of finite-energy punctured J-
holomorphic curves in symplectic cobordisms, which should have interesting applications
in Symplectic Field Theory [EGH00] and Embedded Contact Homology [Hut14]. A few
special cases of super-rigidity in the punctured case have previously been observed by
the second author [Wen10], as well as work of Fabert [Fab13], and unpublished work
of Hutchings [Hut]; those examples were restricted to dimension four, but the methods
introduced in the present paper have no such restrictions.

1.1. The main result. Assume (M,Jfix) is an almost complex manifold of dimension
2n ≥ 4, U ⊂M is an open subset with compact closure, and

J (M ; U , Jfix)

denotes the space of smooth almost complex structures onM that match Jfix outside of U ,
with its natural C∞-topology. If M also carries a symplectic structure ω for which Jfix
is ω-tame or ω-compatible, we will denote the corresponding spaces of tame/compatible
almost complex structures matching Jfix outside U by

J tame(M,ω ; U , Jfix), J
comp(M,ω ; U , Jfix) ⊂ J (M ; U , Jfix).

Remark 1.2. The existence of a symplectic form on M is not required for any of the argu-
ments in this paper, but since it is important in applications, we will generally assume at
least that (M,ω) is symplectic and all almost complex structures under consideration are
ω-tame. Note that J tame(M,ω ; U , Jfix) is an open subset of J (M ; U , Jfix), thus all state-
ments made about J tame(M,ω ; U , Jfix) will have obvious analogues for J (M ; U , Jfix).

With Remark 1.2 in mind, from now on we fix a symplectic form ω on M and assume
Jfix is ω-tame. Given J ∈ J tame(M,ω ; U , Jfix), a closed connected Riemann surface (Σ, j)

2A preliminary version of this paper (under a different title) claimed a proof of Conjecture 1.1 using
similar techniques, but this argument had gaps that we have thus far been unable to fill. See Remark 2.7.
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and a J-holomorphic curve3 u : (Σ, j) → (M,J), the index of u is the integer

(1.1) ind(u) = (n− 3)χ(Σ) + 2c1(u),

where we abbreviate c1(u) := 〈c1(TM, J), [u]〉, [u] := u∗[Σ] ∈ H2(M). A closed and

connected J-holomorphic curve ũ : (Σ̃, ̃) → (M,J) is said to be a (d-fold) multiple

cover of u if ũ = u ◦ ϕ for some holomorphic map ϕ : (Σ̃, ̃) → (Σ, j) of degree d ≥ 2,
and u is called simple if it is nonconstant and is not a multiple cover of any other curve.

The map ϕ : Σ̃ → Σ is generally a branched cover, and we call it unbranched (and ũ an
unbranched cover of u) if it is an honest covering map, meaning its set of branch points is
empty.

We say that the curve u : Σ → M is Fredholm regular if a neighborhood of u in
the moduli space of unparametrized J-holomorphic curves is cut out transversely, see
e.g. [Wena, §4.3]. In this paper we will mainly deal with immersed curves, for which a
precise definition of regularity is easier to state: suppose u : Σ → M is immersed and
denote its complex normal bundle by Nu → Σ. The linearized Cauchy-Riemann operator
associated to u is the real-linear first-order differential operator

(1.2) Du : Γ(u∗TM) → Ω0,1(Σ, u∗TM) : η 7→ ∇η + J(u) ◦ ∇η ◦ j + (∇ηJ) ◦ Tu ◦ j,

where ∇ is any choice of symmetric connection on M . We define the normal Cauchy-

Riemann operator at u as the restriction of Du to sections of Nu, composed with the
projection πN : u∗TM → Nu, hence

DN
u = πN ◦Du|Γ(Nu) : Γ(Nu) → Ω0,1(Σ, Nu).

This is also a Cauchy-Riemann type operator, so its extension to any reasonable Banach
space completions such as

(1.3) DN
u : W k,p(Nu) →W k−1,p(HomC(TΣ, Nu))

for k ∈ N and p > 1 is a Fredholm operator, and elliptic regularity implies that its kernel
and cokernel do not depend on the choices k and p. The curve u is then Fredholm regular
if and only if the linear map (1.3) is surjective. In the present paper, we will sometimes
deal with multiple covers ũ = u ◦ ϕ for which u is immersed but ϕ may have branch
points, in which case DN

ũ can naturally be defined as a Cauchy-Riemann type operator
on Nũ := ϕ∗Nu. The curve u is then called super-rigid if it is immersed with index 0

and DN
ũ is injective for every cover ũ of u. Note that if ϕ : Σ̃ → Σ has degree d ∈ N and

Z(dϕ) ≥ 0 denotes the number of branch points of ϕ counted with multiplicities, then the
Riemann-Hurwitz formula

(1.4) − χ(Σ̃) + dχ(Σ) = Z(dϕ)

implies

ind(ũ) = d · ind(u)− (n− 3)Z(dϕ),

3When we use the word “curve” to describe u : (Σ, j) → (M,J), we mean that (Σ, j) is a smooth
(non-nodal) Riemann surface and u is a smooth map, or in some cases an equivalence class of smooth
maps up to parametrization (this will be clear from context). By default this excludes nodal curves, and
when we do mean “nodal curve” we will make this explicit. This usage is common in symplectic topology
but may differ from conventions in the algebraic geometry literature.
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hence unbranched covers of immersed index 0 curves are also immersed with index 0, and
super-rigidity for unbranched covers is therefore the same as Fredholm regularity.

Here is our main result.

Theorem 1.3. Assume (M,ω) is a symplectic manifold4 with tame almost complex struc-

ture Jfix, and U is an open subset with compact closure. Then there exists a Baire subset

Jreg ⊂ J tame(M,ω ; U , Jfix) such that for every J ∈ Jreg, all unbranched covers of simple

closed J-holomorphic curves of index 0 contained fully in U are Fredholm regular.

Moreover, if Jfix is ω-compatible, then there is a Baire subset Jreg ⊂ J comp(M,ω ; U , Jfix)
such that for every J ∈ Jreg, all unbranched covers of embedded closed J-holomorphic

curves of index 0 contained fully in U are Fredholm regular.

Remark 1.4. We do not know whether the restriction to embedded curves in the ω-
compatible case can be relaxed; the reason is explained in Remark 3.3. This is in any
case only a restriction in dimension four, since embeddedness is a generic property of
holomorphic curves in higher dimensions (see e.g. [Wena, §4.6] or [OZ09]). In the ω-tame
case, our argument works for all immersed curves with distinct transverse self-intersections,
which is a generic property even in dimension four.

The next two remarks draw attention to generalizations of Theorem 1.3 that might
naturally be expected to hold but do not follow from our arguments, and in some cases
are actually false.

Remark 1.5. The standard transversality results as in [MS04,Wena] for simple J-holo-
morphic curves have straightforward extensions to generic 1-paramater families {Jτ} of
almost complex structures, showing in essence that the space of pairs

{(τ, u) | u is simple and Jτ -holomorphic}

is a manifold of dimension ind(u) + 1. This means that all simple Jτ -holomorphic curves
are regular for almost every τ , but there may be birth-death bifurcations at a discrete
set of parameter values. The work of Taubes [Tau96a] shows that when multiple covers
are allowed, more general types of bifurcations must be considered, so e.g. the extension
of the usual results for simple curves to unbranched covers of index 0 curves is not at
all straightforward. We will not prove anything in this paper about generic 1-parameter
families of data.

Remark 1.6. The standard results for simple curves do not require the curves to be fully

contained in the perturbation domain U in order to achieve transversality; it suffices rather
that they should intersect U somewhere, the key point being that there is an injective
point mapped into U . Our methods on the other hand work only for curves that are fully
contained in U , and we do not know whether this assumption can be weakened. The
reason for this is discussed in Remark 2.1. In this sense, Theorem 1.3 seems to represent
a fundamentally different phenomenon from the usual transversality results for simple
curves.

4As indicated in Remark 1.2, the first statement in the theorem could also be stated without reference
to any symplectic structure, producing a Baire subset of J (M ; U , Jfix).
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1.2. Application to Gromov-Witten theory. In the results of this section, the words
“for generic J . . . ” should be understood to mean that there exists a Baire subset of the
appropriate space of almost complex structures for which the statement is true.

Let Mg,m(A, J) denote the moduli space of smooth unparametrized J-holomorphic
curves in M with genus g and m marked points in the homology class A ∈ H2(M); the
precise definition will be recalled in the discussion below. We denote the natural evaluation
map by

ev : Mg,m(A, J) →Mm,

and let
M∗

g,m(A, J) ⊂ Mg,m(A, J)

denote the open subset consisting of simple curves. For any integer m ≥ 0, the m-point
Gromov-Witten invariant

GW
(M,ω)
g,m,A : H∗(M)⊗m → Q

is defined morally by counting intersections of the evaluation map with cycles inMm deter-
mined by an m-tuple of cohomology classes. The standard definition of these invariants in
[RT97] for semipositive symplectic manifolds (which includes all symplectic 4-manifolds)
requires generic inhomogeneous perturbations to the nonlinear Cauchy-Riemann equation,
thus breaking the symmetry inherent in multiply covered curves. We will now show that
when dimRM = 4, these invariants can also be computed by simpler means that do not
break the symmetry. Recall from [MS04, §6.5] that for any subset M∗ ⊂ Mg,m(A, J), the
restriction ev : M∗ → Mm is said to be a pseudocycle of dimension d ≥ 0 if M∗ is a
smooth d-dimensional manifold and Mg,m(A, J)\M∗ can be covered by subsets on which
ev factors through a smooth map to Mm from a manifold of dimension at most d− 2. In
this case one can define integer-valued intersection products of ev with homology classes
in Mm. The following proposition for the case m ≥ 1 is presumably not a new result, but
we are not aware of any proof of it in the current literature; ours will require only the
standard transversality results for simple curves.

Proposition 1.7. Assume (M,ω) is a closed symplectic 4-manifold. Then for generic

ω-compatible or tame almost complex structures J and for every A ∈ H2(M) and every

pair of nonnegative integers (g,m) satisfying −(2 − 2g) + 2c1(A) > 0 and m ≥ 1, the

evaluation map ev : M∗
g,m(A, J) → Mm on the set of simple curves is a pseudocycle of

dimension −(2−2g)+2c1(A)+2m. The corresponding m-point Gromov-Witten invariant

can thus be computed as an intersection number

GW
(M,ω)
g,m,A(α1, . . . , αm) =

[
ev |M∗

g,m(A,J)

]
· (PD(α1)× . . .× PD(αm)) ,

and in particular, its values are always integers.

The picture for the 0-point invariants with g ≥ 1 is somewhat different, as it turns out
that multiply covered curves cannot be avoided in this case, but only unbranched covers
need be considered. The arguments behind Proposition 1.7 thus combine with Theorem 1.3
to give the following more novel result.

Theorem 1.8. For generic ω-tame almost complex structures J on a closed symplectic

4-manifold (M,ω), the set of index 0 curves satisfying any given bound on their genus and

area is finite, and all of them are Fredholm regular.
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We should again caution the reader that we do not know whether the generic J in
Theorem 1.8 can be chosen to be compatible with ω (see Remark 1.4), though one can
require this if one is only interested in covers of embedded curves (as in [Tau96a,Tau96b]).
Choosing J tame is in any case good enough to compute Gromov-Witten invariants.
In order to state the main corollary, we can associate to any integral homology class
A ∈ H2(M) in a symplectic manifold (M,ω) its symplectic divisibility

dω(A) ∈ N,

defined as the product of the finite set of integers k ∈ N such that A = kB for some
primitive class B ∈ H2(M) with ω(B) > 0.

Corollary 1.9. Suppose (M,ω) is a closed symplectic 4-manifold and A ∈ H2(M) and

g ∈ N satisfy −(2− 2g) + 2c1(A) = 0. Then the 0-point Gromov-Witten invariant can be

computed for generic tame almost complex structures J as a signed and weighted count of

finitely many J-holomorphic curves

GW
(M,ω)
g,0,A =

∑

u∈Mg,0(A,J)

σ(u)

|Aut(u)|
,

where for each curve u, σ(u) ∈ {−1, 1} is determined by an orientation of the determinant

line bundle, and Aut(u) denotes the automorphism group of u. In particular, the number

GW
(M,ω)
0,0,A is always an integer, while for g ≥ 1, dω(A) ·GW

(M,ω)
g,0,A is an integer.

In order to prepare for the proofs of these results, let us recall the definitions of the
relevant moduli spaces. Given integers g,m ≥ 0 and a homology class A ∈ H2(M), the
moduli space of unparametrized J-holomorphic curves Mg,m(A, J) can be defined
as the set of equivalence classes of tuples (Σ, j,Θ, u) where (Σ, j) is a closed connected
Riemann surface of genus g, Θ ⊂ Σ is an ordered set of m distinct points (the marked

points), and u : (Σ, j) → (M,J) is a J-holomorphic map satisfying [u] = A, with equiv-
alence defined by (Σ, j,Θ, u) ∼ (Σ′, ψ∗j, ψ−1(Θ), u ◦ ψ) for diffeomorphisms ψ : Σ′ → Σ.
The automorphism group Aut(u) of [(Σ, j,Θ, u)] ∈ Mg,m(A, J) is the group of biholo-
morphic diffeomorphisms ψ : (Σ, j) → (Σ, j) that fix each of the marked points and satisfy
u = u ◦ ψ; it is always finite, and is trivial whenever u is simple. The Gromov com-

pactification of Mg,m(A, J) is the space Mg,m(A, J) of (equivalence classes of) stable

nodal curves (S, j,Θ,∆, u), where now S may be disconnected, and the original data are
augmented by an unordered set of distinct points in S \Θ, arranged into unordered pairs

∆ = {{ẑ1, ž1}, . . . , {ẑr, žr}} ,

such that u(ẑi) = u(ži) for each i = 1, . . . , r. We call the pairs {ẑi, ži} nodes, and
each individual ẑi or ži ∈ S a nodal point. The curves in Mg,m(A, J) are required to
have arithmetic genus g, which means that the surface obtained from S by performing
connected sums at all matched pairs of nodal points is a closed connected surface of genus g.
The stability condition requires that any component of S \ (Θ∪∆) on which u is constant
should have negative Euler characteristic. With this condition, Mg,m(A, J) can be given a
natural topology as a metrizable Hausdorff space, and it is compact whenever J is tamed
by a symplectic form. A definition of the topology may be found e.g. in [BEH+03]; for
sequences in Mg,m(A, J), it amounts to the notion of C∞-convergence for j and u after
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a choice of parametrization for which all domains and marked point sets are identified.
Curves [(S, j,Θ,∆, u)] ∈ Mg,m(A, J) with ∆ = ∅ can equivalently be regarded as elements
of Mg,m(A, J), and are thus called smooth curves to distinguish them from nodal curves.
The evaluation map is defined by

ev : Mg,m(A, J) →M × . . .×M : [(Σ, j, (ζ1, . . . , ζm), u)] 7→ (u(ζ1), . . . , u(ζm)),

and it extends to a continuous map on Mg,m(A, J).
When there is no danger of confusion, we shall sometimes abuse notation by denoting

equivalence classes [(Σ, j,Θ, u)] ∈ Mg,m(A, J) or [(S, j,Θ,∆, u)] ∈ Mg,m(A, J) simply by

u ∈ Mg,m(A, J) or u ∈ Mg,m(A, J) respectively, and we will refer to the restriction of
a nodal curve [(S, j,Θ,∆, u)] to any connected component of its domain S as a smooth

component of u. Recall that Mg,0(A, J) has virtual dimension equal to the index of
any curve u ∈ Mg,0(A, J).

It will be useful to recall certain index relations for degenerating sequences of holo-
morphic curves. Suppose dimRM = 2n, and [(Σ, jk, uk)] ∈ Mg,0(A, J) is a sequence

converging to a stable nodal curve [(S, j∞,∆, u∞)] ∈ Mg,0(A, J) with smooth compo-
nents

{
[(Si, j

i
∞, u

i
∞)] ∈ Mgi(Ai, J)

}
i=1,...,r

.

Then if Ni := |Si ∩∆| ≥ 1 denotes the number of nodal points on Si for i = 1, . . . , r, we
have χ(Σ) =

∑
i [χ(Si)−Ni], so the index formula (1.1) gives

(1.5) ind(uk) =

r∑

i=1

[
ind(ui∞)− (n− 3)Ni

]
.

Note that by the stability condition, we have

(1.6) χ(Si)−Ni < 0 whenever Ai = 0.

If Ai 6= 0, then ui∞ = vi ◦ ϕi for some simple curve vi and holomorphic map ϕi of degree
di ≥ 1 with Z(dϕi) ≥ 0 branch points, and the Riemann-Hurwitz formula combined with
(1.1) gives

(1.7) ind(ui∞) = di · ind(v
i)− (n− 3)Z(dϕi).

Proof of Proposition 1.7. Assume J is chosen so that all somewhere injective curves are
Fredholm regular. Then M∗

g,m(A, J) is a manifold of real dimension ind(u) + 2m for any
u ∈ M∗

g,m(A, J). The index relations (1.5) and (1.7) imply that if uk ∈ M∗
g,m(A, J)

is a sequence of simple curves with ind(uk) > 0 converging to a nodal curve u∞, then
the nonconstant components of u∞ cover simple curves whose indices add up to at most
ind(uk)− 2. More concretely, if u∞ has smooth components u1∞, . . . , u

r
∞, each ui∞ having

Ni ≥ 1 nodal points, then the 4-dimensional case of (1.5) together with the stability
condition (1.6) implies

(1.8) ind(uk) ≥
∑

{i | ui
∞
6=const}

[
ind(ui∞) +Ni

]
,
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with equality if and only if u∞ has no constant (i.e. “ghost”) components. This shows in
particular that

(1.9) ind(uk) ≥ 2 +
∑

{i | ui
∞
6=const}

ind(ui∞).

Now by (1.7) in the case n = 2, we see that if ui∞ is a di-fold cover of a simple curve
vi, then ind(ui∞) ≥ di ind(v

i), with equality if and only if the cover is unbranched. Since
ind(vi) ≥ 0 by genericity, this implies that each smooth component ui∞ has index at least
two less than ind(uk). On the other hand, if u∞ = lim uk is a smooth curve that is a d-fold
cover v ◦ ϕ of some simple curve v, then (1.7) gives

ind(u∞) = d · ind(v) + Z(dϕ) ≥ d · ind(v),

and since ind(u∞) > 0 by assumption and the index is always even, we conclude ind(v) ≤
ind(u∞)− 2 unless d = 1. These relations imply the pseudocycle condition. �

Proof of Theorem 1.8 and Corollary 1.9. Applying the index relations as in the proof of
Proposition 1.7 above, we find that the worst case scenario for a degenerating sequence
of index 0 curves uk → u∞ is that u∞ is an unbranched cover of a simple index 0 curve.
For generic tame J , Theorem 1.3 implies that the latter is regular, hence all curves in
Mg,0(A, J) are smooth and regular, and therefore isolated due to the implicit function
theorem. The integrality condition in Corollary 1.9 arises from the observation that when-
ever u ∈ Mg,0(A, J) is a d-fold cover of a simple curve v ∈ Mg′,0(B, J), we necessarily
have A = dB and ω(B) > 0, and the order of the automorphism group Aut(u) is an inte-
ger dividing d. For g = 0 the integrality result is stronger, because the Riemann-Hurwitz
formula forbids the existence of unbranched covers with genus 0, hence every curve in
M0,0(A, J) is simple. �

1.3. Outline of the paper. The main steps in the proof of Theorem 1.3 will be explained
in §2, modulo three technical results concerning (1) the nonlinear problem, (2) the linear
problem, and (3) obstruction theory. The remainder of the paper will then be concerned
with these three technical results: the nonlinear result in §3, the linear result in §5 and
§6, and the obstruction theoretic result (which is only needed for the case dimRM ≥ 6)
in §4. These are followed by a brief appendix recalling the essential result from analytic
perturbation theory that is needed in §6.

A brief remark on terminology. Since many important objects in this paper do not
carry natural complex structures, our formulas for dimensions and Fredholm indices gen-
erally give the real dimension unless otherwise noted, even in cases where this number
is always even. The major exceptions are the bundles u∗TM and Nu associated to a
J-holomorphic curve u : (Σ, j) → (M,J); these are naturally complex vector bundles and
are described in terms of their complex rank.

Acknowledgements. The present paper emerged out of discussions between the two au-
thors and Michael Hutchings and Dan Cristofaro-Gardiner at the Simons Center’s Work-
shop on Moduli Spaces of Pseudo-holomorphic Curves II, June 2–6, 2014. We would
like to thank Hutchings and Cristofaro-Gardiner for contributing useful ideas and encour-
agement, Helmut Hofer, Dusa McDuff, Tim Pertuz, Cliff Taubes and Aleksey Zinger for
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enlightening conversations, Daniel Rauch for sending us a copy of his PhD thesis, and the
Simons Center for its hospitality and for providing such a stimulating environment for
collaboration. We also thank Eleny Ionel and Tom Parker for pointing out a crucial error
in our preliminary version of this paper.

2. The main argument

The goal of this section will be to reduce the proof of Theorem 1.3 to a sequence of
three technical results to be proved in later sections.

2.1. Unbranched tori in dimension four. Before diving into the details on Theo-
rem 1.3, it may be instructive to recall the argument of Taubes which has inspired the
present approach to regularity for multiple covers. The Gromov invariants were defined
in [Tau96a, Tau96b] as certain counts of holomorphic curves in symplectic 4-manifolds,
including both embedded curves and unbranched covers of embedded holomorphic tori
with index 0. In order to achieve transversality for the multiple covers, Taubes argued
in [Tau96b, §7(b)] as follows. Assume u : T2 → M is an embedded J-holomorphic torus
with index 0, ϕ : T2 → T2 is a holomorphic covering map and ũ = u ◦ϕ. Then the normal
Cauchy-Riemann operator for ũ can be identified with an operator of the form

D = ∂̄ +A : C∞(T2,C) → C∞(T2,C),

where ∂̄ = ∂s + i∂t in holomorphic coordinates s + it on T2 and A ∈ C∞(T2,EndR(C)).
Taubes shows that one can always perturb the ambient almost complex structure along u
such that D becomes

Dτη := Dη + τβη̄

for some β ∈ C∞(T2,C∗) and a small parameter τ ∈ R. This perturbation of the linear
operator is required to be complex-antilinear, and it must never vanish, but in contrast
to the standard transversality arguments as in [MS04], it is allowed to be arbitrarily
symmetric, so in particular the fact that ũ is a multiple cover poses no difficulty here. The
main challenge is now to show that this perturbed operator will always be injective for
sufficiently small τ > 0. The argument for this involves two main ingredients.

(1) Bochner-Weitzenböck technique: The following argument shows that Dτ must be
injective for all τ ≫ 0. Fix the standard real-valued L2-inner product on C∞(T2,C) and
let D∗ and D∗

τ denote the formal adjoints of D and Dτ respectively; explicitly, we have
D∗ = ∂ + A∗ and D∗

τη = D∗η + τβη̄, where ∂ = ∂s − i∂t and A∗ ∈ C∞(T2,EndR(C))
denotes the pointwise real-linear transpose of A. From these relations, one obtains a
Weitzenböck formula,

(2.1) D∗
τDτη = D∗Dη + τLη + τ2|β|2η,

where L ∈ C∞(T2,EndR(C)) is the zeroth-order real-linear operator Lη = βAη +A∗βη̄ −
(∂β)η̄. The crucial point in (2.1) is that D∗

τDτη and D∗Dη differ only by a zeroth-order
term—the complex-anti linear nature of the perturbation causes all other derivatives of η
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to cancel. For all η ∈ C∞(T2,C), we then have

‖Dτη‖
2
L2 = 〈η,D∗

τDτη〉L2 =
〈
η,D∗Dη + τLη + τ2|β|2η

〉
L2

= ‖Dη‖2L2 + τ〈η, Lη〉L2 + τ2〈η, |β|2η〉L2

≥ ‖Dη‖2L2 + (cτ2 − c′τ)‖η‖2L2

(2.2)

for some constants c, c′ > 0. Here we have used the fact that β is nowhere zero so that
〈η, |β|2η〉L2 ≥ c‖η‖2

L2 .

(2) Analytic perturbation theory : Regard Dτ as a complex-linear operatorH1(T2,C) →
L2(T2,C), or more accurately on the complexifications of these two spaces. Then Dτ

depends analytically on the parameter τ ∈ C, so the set of all τ ∈ C for which Dτ is not
an isomorphism looks locally like the zero-set of an analytic function on C, i.e. Dτ has
nontrivial kernel either for all τ or only for a discrete subset. (A proof of this fact is given
in the Appendix.) Step (1) implies that it is the latter, not the former.

Remark 2.1. The first step described above depends crucially on the following two prop-
erties of the perturbation, both of which lend a distinctive flavor to our main result:

(1) The perturbation from D to Dτ must be antilinear, otherwise the Weitzenböck
formula (2.1) does not hold. This implies that, in general, the generic almost
complex structures for which our transversality result holds can never be expected
to be integrable.

(2) The perturbation must also be nowhere zero so that ‖η‖L2 can be bounded below
via 〈η|β|2η〉L2 in (2.2). This is why our proof of Theorem 1.3 does not work for
curves that only pass through the perturbation domain rather than being fully
contained in it (see Remark 1.6).

We will see that both of these features also appear in the general case to be discussed
below.

Remark 2.2. A version of the Bochner-Weitzenböck technique described above has also
appeared in the work of Lee and Parker on Kähler surfaces with positive geometric genus,
see [LP07, Proposition 8.6]. In their more specialized setting, the terms linear in τ vanish
for geometric reasons, thus one obtains super-rigidity for all (not necessarily small) per-
turbations of the type that they consider, without any need to apply analytic perturbation
theory.

2.2. Three technical results for the general case. We now describe what is required
in order to generalize the argument of Taubes sketched above.

The first technical result we will need describes the perturbation of the normal Cauchy-
Riemann operator realized by a certain class of perturbations to the almost complex struc-
ture. Working under the assumptions of Theorem 1.3, suppose u : (Σ, j) → (M,J) is an
immersed J-holomorphic curve with image fully contained in U , choose a tangent/normal
splitting u∗TM = Tu ⊕Nu with Tu = im du, and abbreviate the complex vector bundles

E := Nu, F := HomC(TΣ, Nu) = T 0,1Σ⊗ E,

both of which have rank m := n − 1. The normal Cauchy-Riemann operator DN
u then

maps sections of E to sections of F . Suppose {Jτ ∈ J tame(M,ω ; U , Jfix)}τ∈(−ǫ,ǫ) is a
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smooth 1-parameter family of almost complex structures such that

J0 ≡ J, and Jτ |Tu ≡ J |Tu for all τ .

Then u : (Σ, j) → (M,Jτ ) is Jτ -holomorphic for all τ , though the previously chosen normal
bundle Nu ⊂ u∗TM may fail to be Jτ -invariant for τ 6= 0. Nonetheless one can always
find a smooth 1-parameter family of complex bundle isomorphisms

Φτ : (TM, J) → (TM, Jτ )

that fix Tu and satisfy Φ0 = 1, allowing us to define perturbed complex normal bundles
Nu,τ := Φτ (Nu) and normal Cauchy-Riemann operators

DN
u,τ : Γ(Nu,τ ) → Γ(HomC(TΣ, Nu,τ )),

so that a 1-parameter family of operators Γ(E) → Γ(F ) can be defined by

Φ−1
τ DN

u,τΦτ : Γ(E) → Γ(F ).

We will prove the following result in §3.

Proposition 2.3. Assume the curve u : (Σ, j) → (M,J) in the above setup is immersed

with only transverse double points, such that no point inM is in the image of more than two

distinct points of Σ. Then given any real-linear bundle map B : E → F , one can choose

the families of ω-tame almost complex structures {Jτ} and complex bundle isomorphisms

{Φτ} as above such that

Φ−1
τ DN

u,τΦτ = DN
u + τB.

In particular, for any p > 1, this defines a family of Fredholm operators W 1,p(E) → Lp(F )
that depends analytically on the parameter τ . If J is ω-compatible and u has no double

points, then one can also arrange that Jτ ∈ J comp(M,ω ; U , Jfix) for all τ .

Continuing with the above setup, assume now that ind(u) = 0. Then 0 is also the index
of DN

u , which is mχ(Σ) + 2c1(E), hence −c1(E) = mχ(Σ) + c1(E) = c1(F ), implying the
existence of a complex-antilinear bundle isomorphism B : E → F . Let 〈 , 〉 denote a
Hermitian bundle metric on E, and denote its real part by 〈 , 〉R; if J is ω-compatible,
we may assume that 〈 , 〉R matches the restriction of ω(·, J ·) to Nu. For our linear
transversality argument, it will be important to establish the following symmetry property
for B, which will be possible due to an obstruction theoretic argument explained in §4.
Note that the condition described here is vacuous when E is a line bundle, so this step
did not appear in Taubes’s argument of §2.1 and is only needed for the higher-dimensional
case.

Proposition 2.4. Every homotopy class of complex-antilinear bundle isomorphisms B :
E → HomC(TΣ, E) contains one that satisfies the following condition: for all z ∈ Σ,
X ∈ TzΣ and ξ, η ∈ Ez,

〈ξ,Bη(X)〉R = 〈Bξ(X), η〉R.

The remaining crucial ingredient will be a generalization of Taubes’s analytic perturba-
tion theory argument described in §2.1. Fix B : E → F as given by Proposition 2.4, and

assume ϕ : (Σ̃, ̃) → (Σ, j) is a holomorphic map of degree d ≥ 1. The generalized normal

bundle of ũ := u ◦ ϕ is then Ẽ := Nũ = ϕ∗E, and we define F̃ := HomC(T Σ̃, Ẽ) so that
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DN
ũ maps Γ(Ẽ) to Γ(F̃ ). If {Jτ} is a 1-parameter family of almost complex structures as

in Proposition 2.3 so that DN
u,τ for each τ is conjugate to DN

u + τB, then the resulting

perturbed normal Cauchy-Riemann operators DN
ũ,τ are conjugate to the family

DN
ũ + τBϕ, : Γ(Ẽ) → Γ(F̃ ),

where

Bϕ : ϕ∗E → HomC(T Σ̃, ϕ
∗E) : η 7→ Bη ◦ Tϕ.

We will prove the following in §6, using a Weitzenböck formula developed in §5.

Proposition 2.5. Given any B and ϕ as described above, the operator DN
ũ + τBϕ is

injective for all τ ∈ R outside of a discrete subset.

2.3. Proof of Theorem 1.3. Assuming Propositions 2.3, 2.4 and 2.5, we now prove
the main result. The following topological argument is also inspired by ideas of Taubes
(cf. [MS04, pp. 52–53] or [Wena, §4.4.2]). We shall carry out the argument first in the
setting of embedded holomorphic curves and compatible almost complex structures, and
then explain what modifications are needed for the immersed/tame case.

Fix an integer g ≥ 0, a homology class A ∈ H2(M) and a closed connected and oriented
surface Σ of genus g. Recall that the Teichmüller space T (Σ) = J (Σ)/Diff0(Σ) is a
smooth manifold diffeomorphic to CN , with N = 3g−3 for g ≥ 2 or N = g for g = 0, 1. In
particular, T (Σ) is contractible, allowing us to fix a smooth family of complex structures

{jx ∈ J (Σ)}x∈CN

for which the natural projection to T (Σ) is bijective. Fix Riemannian metrics on Σ andM ,
denoting the resulting distance functions all by dist( , ). Now for any J ∈ J (M ; U , Jfix)
and N ∈ N, define

Mg(A, J,N) ⊂ Mg,0(A, J)

to consist of every equivalence class in Mg,0(A, J) admitting a representative of the form
(Σ, jx, u) such that the following conditions are satisfied:

(1) jx is “not close to degenerating”:

|x| ≤ N

(2) u is “not close to bubbling”:

|du(z)| ≤ N for all z ∈ Σ;

(3) u is “not close to being non-embedded”:

min
z∈Σ

|du(z)| ≥
1

N
, and inf

z,ζ∈Σ, z 6=ζ

dist(u(z), u(ζ))

dist(z, ζ)
≥

1

N
;

(4) u is “not close to escaping U”:

dist (u(Σ),M \ U) ≥
1

N
.

The union of the subsets Mg(A, J,N) for all N ∈ N consists precisely of all curves in
Mg,0(A, J) that are embedded and contained in U . We claim that for any fixed N ∈ N,
Mg(A, J,N) is compact—in fact:
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Lemma 2.6. For any N ∈ N and any convergent sequence Jk → J ∈ J (M ; U , Jfix), every
sequence uk ∈ Mg(A, Jk, N) has a subsequence converging to an element of Mg(A, J,N).

Proof. By assumption, the given sequence admits representatives of the form (Σ, jxk
, uk)

that each satisfy the four conditions listed above. Condition (1) implies |xk| ≤ N for
all k, so we can take a subsequence for which the complex structures jxk

converge to
some jx with |x| ≤ N . The second condition then implies via elliptic regularity that after
passing to a further subsequence, the maps uk converge in C∞ to a pseudoholomorphic
map u : (Σ, jx) → (M,J) with |du| ≤ N everywhere. Given this convergence, (3) and (4)
are both closed conditions and are thus also satisfied by u, so (Σ, jx, u) represents an
element of Mg(A, J,N). �

Now for each N ∈ N, define

Jreg(N) ⊂ J comp(M,ω ; U , Jfix)

to consist of all J ∈ J comp(M,ω ; U , Jfix) with the property that for every index 0 curve

[(Σ, j, u)] ∈ Mg(A, J,N) and every unbranched holomorphic cover ϕ : (Σ̃, ̃) → (Σ, j) of
degree at most N , the curve ũ = u ◦ ϕ is Fredholm regular.

We claim that Jreg(N) is open. If this is not the case, then there exists a sequence Jk ∈
J comp(M,ω ; U , Jfix) converging to J ∈ Jreg(N), together with a sequence [(Σ, jk, uk)] ∈

Mg(A, Jk, N) and unbranched covers ϕk : (Σ̃k, ̃k) → (Σ, jk) with deg(ϕk) ≤ N for which
ind(uk) = 0 but uk ◦ϕk is not regular. But then [(Σ, jk, uk)] has a subsequence converging
to an element [(Σ, j, u)] ∈ Mg(A, J,N), and since each (Σ, jk) has only finitely many
unbranched covers of degree at most N up to biholomorphic equivalence, we may also
assume after reparametrization that a subsequence of ϕk converges to another unbranched

cover ϕ : (Σ̃, ̃) → (Σ, j) of degree at most N . Since J ∈ Jreg(N), u ◦ϕ is regular, but this
condition is open and thus gives a contradiction.

We claim next that Jreg(N) is dense. To see this, note first that by the standard
transversality theory as in [MS04], any J ∈ J comp(M,ω ; U , Jfix) has a perturbation J ′ ∈
J comp(M,ω ; U , Jfix) for which all curves in Mg(A, J

′, N) are Fredholm regular, as all of
them have injective points mapped into U . Since Mg(A, J

′, N) is compact, the set of
index 0 curves in Mg(A, J

′, N) is now finite. For each individual such curve [(Σ, j, u)]

and each unbranched cover ϕ : (Σ̃, ̃) → (Σ, j), the combination of Propositions 2.3, 2.4
and 2.5 provides a 1-parameter family of perturbed almost complex structures {Jτ ∈
J comp(M,ω ; U , Jfix)} with J0 = J ′ such that the normal Cauchy-Riemann operator of
u ◦ ϕ becomes injective for sufficiently small τ > 0. Note that by the implicit function
theorem, there is a natural bijective correspondence between the sets of index 0 curves
in Mg(A, J

′, N) and Mg(A, Jτ , N) for τ sufficiently small. Now since the set of covers
u ◦ ϕ with u ∈ Mg(A, J

′, N), ind(u) = 0 and deg(ϕ) ≤ N is finite up to biholomorphic
equivalence, one can repeat this procedure finitely many times to obtain an arbitrarily
small perturbation J ′′ of J ′ for which all such covers become regular, meaning J ′′ ∈
Jreg(N).

Finally, the desired Baire subset can be defined as the countable intersection of the sets
Jreg(N) for all possible N ∈ N, g ≥ 0 and A ∈ H2(M), thus concluding the proof of
Theorem 1.3 for embedded curves.
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Remark 2.7. The difficulty in using this method to prove super-rigidity for branched covers
is that for a given (Σ, j) and N ∈ N, the set of inequivalent branched covers of (Σ, j)
with degree at most N is generally uncountable, so there is no guarantee that any single
perturbation Jτ could make the normal operator injective for all of them at once. The
analytic perturbation trick unfortunately provides no obvious control over the function

ϕ 7→ sup
{
τ0 > 0 | DN

u◦ϕ defined with respect to Jτ is injective for all τ ∈ (0, τ0]
}
,

e.g. it could vary discontinuously as ϕ moves in the moduli space of branched covers.

The above argument could also be repeated verbatim to find corresponding Baire sub-
sets of J (M ; U , Jfix) and J tame(M,ω ; U , Jfix) that establish regularity for unbranched
covers of embedded curves. This means all simple curves without loss of generality if
dimRM ≥ 6, but a modified argument is needed in dimension four to handle curves with
self-intersections. If dimRM = 4, we modify the definition of Mg(A, J,N) as follows. For
any simple curve u ∈ Mg,0(A, J), define the integer d(u) ≥ 0 by

2d(u) =
∣∣ {(z, ζ) ∈ Σ× Σ | u(z) = u(ζ) and z 6= ζ}

∣∣.
Recall that by the adjunction inequality, this number satisfies

A ·A ≥ 2d(u) + c1(A)− (2− 2g),

with equality if and only if u is immersed with only transverse double points. With this
in mind, define

d(A, g) :=
1

2
(A · A− c1(A)) + 1− g,

and define Mg(A, J,N) via conditions (1), (2) and (4) above, plus the following replace-
ment of condition (3):

(3a) min
z∈Σ

|du(z)| ≥
1

N
;

(3b) There exists a point z0 ∈ Σ such that

inf
z∈Σ\{z0}

dist(u(z0), u(z))

dist(z0, z)
≥

1

N
;

(3c) M contains d := d(A, g) distinct points p1, . . . , pd ∈ M at which |u−1(pj)| > 1,
and

dist ((p1, . . . , pd),∆) ≥
1

N
,

where ∆ ⊂Md denotes the set of tuples (x1, . . . , xd) for which at least two of the
points coincide.

The adjunction inequality implies that every curve in u ∈ Mg(A, J,N) is immersed with
transverse double points, all at distinct points in the image, and

⋃
N∈NMg(A, J,N) now

consists of all curves inMg,0(A, J) that have these properties. The only other modification
needed from the embedded case is in the proof that Jreg(N) is dense. This is where we
need to allow J ∈ J tame(M,ω ; U , Jfix) instead of J comp(M,ω ; U , Jfix), as Proposition 2.3
does not provide an ω-compatible perturbation if u has double points. Note however that
after a small perturbation of any given J , we are free to assume that all simple index 0
curves are immersed with transverse double points at separate points in the image (see
e.g. [Wena, Exercise 4.65 and §4.6]), in which case Propositions 2.3 and 2.5 can be used



16 CHRIS GERIG AND CHRIS WENDL

to find an ω-tame perturbation in Jreg(N). With this established, the rest of the proof
goes through as before. �

3. Normal perturbations of almost complex structures

The purpose of this section is to prove Proposition 2.3. Fix a tame almost complex
structure J ∈ J tame(M,ω ; U , Jfix) and a closed J-holomorphic curve u : (Σ, j) → (M,J)
that has image in U and is immersed with at most finitely many double points, all trans-
verse and at distinct points in the image. Note that if dimRM ≥ 6, this assumption means
u is embedded.

Choose a complex subbundle Nu ⊂ u∗TM such that u∗TM = Tu ⊕ Nu, where Tu :=
im du. In the 4-dimensional case, our assumption about double points implies that we can
also arrange

(Tu)z = (Nu)ζ and (Tu)ζ = (Nu)z

whenever u(z) = u(ζ) with z 6= ζ. To construct a suitable perturbation of J , fix Y ∈
Γ(EndC(TM, J)) with support in U and let

Φ := 1+
1

2
JY ∈ Γ(EndR(TM)).

We shall always assume that Y is C0-small enough for Φ to be everywhere invertible, in
which case

J ′ := ΦJΦ−1

defines an almost complex structure that is close to J and therefore tame if Y is sufficiently
small. We shall make use of the splitting u∗TM = Tu ⊕ Nu and restrict Y by assuming
that along u, it takes the block form

(3.1) Y (u(z)) =

(
0 Y NT (z)
0 0

)
∈ EndC(Tu ⊕Nu) for all z ∈ Σ,

where Y NT is a (necessarily complex-antilinear) bundle map Nu → Tu. Note that if u has
any double points, then this condition requires Y to vanish at the images of those points.
Writing the tangent and normal parts of J along u as JT : Tu → Tu and JN : Nu → Nu

respectively, we now have

(3.2) Φ(u(z)) =

(
1

1
2J

T (z)Y NT (z)
0 1

)
for all z ∈ Σ,

and thus

(3.3) J ′(u(z)) =

(
JT (z) Y NT (z)

0 JN (z)

)
for all z ∈ Σ.

This shows that J ′|Tu = J |Tu , so u is also J ′-holomorpic. We can now define a J ′-invariant
normal bundle along u by

N ′
u := Φ(Nu) ⊂ u∗TM,

so Φ|Nu : (Nu, J) → (N ′
u, J

′) is a complex bundle isomorphism by construction. Let
πN ′ : u∗TM = Tu ⊕N ′

u → N ′
u denote the resulting normal projection, which gives rise to

a perturbed normal Cauchy-Riemann operator

DN ′

u = πN ′ ◦D′
u

∣∣
Γ(N ′

u)
: Γ(N ′

u) → Ω0,1(Σ, N ′
u),
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where D′
u denotes the linearized Cauchy-Riemann operator for u as a J ′-holomorphic

curve. Conjugating this with the bundle isomorphism gives an operator

Φ−1 ◦DN ′

u ◦Φ : Γ(Nu) → Ω0,1(Σ, Nu).

Lemma 3.1. There exists a smooth bundle map A : Nu → HomC(TΣ, Nu) such that

Φ−1 ◦DN ′

u ◦ Φ = DN
u +A. For any connection ∇ on TM , A is given by the formula

Aη = πN ◦ ∇ηY ◦ Tu ◦ j.

Remark 3.2. Implicit in the above statement is that the expression on the right hand
side of the formula does not depend on the choice of connection. This will follow from
a direct calculation in the proof, but the intuitive reason for it is that under the block
decomposition of ∇ηY given by the splitting u∗TM = Tu ⊕Nu, only the lower-left block
(mapping Tu to Nu) is relevant in the above expression, while the corresponding block of
Y itself has been assumed to vanish along u.

Proof of Lemma 3.1. In terms of the splitting u∗TM = Tu ⊕ Nu, the perturbed normal
projection u∗TM → N ′

u is given in block form by

πN ′ =

(
0 1

2J
TY NT

0 1

)
,

so using (3.2) to write Φ−1(u(z)) =

(
1 −1

2J
T (z)Y NT (z)

0 1

)
, we find

Φ−1 ◦ πN ′ = πN .

Recall now from [Wen10, Lemma 3.8] that Du maps sections of Tu to (0, 1)-forms valued in
u∗TM with vanishing normal component. The same applies to D′

u, hence for η ∈ Γ(Nu),
we have Φη − η ∈ Γ(Tu) and thus

(
Φ−1 ◦DN ′

u ◦Φ
)
η = (Φ−1 ◦ πN ′)D′

u(Φη) = πN (D′
uη).

To compute D′
uη, choose any smooth 1-parameter family of maps uρ : Σ → M for ρ ∈

(−ǫ, ǫ) with u0 = u and ∂ρuρ|ρ=0 = η. Then for any connection ∇ on TM and any
holomorphic local coordinate system (s, t) on some open subset in Σ, the (0, 1)-form D′

uη
is given locally by

(D′
uη)∂s = ∇ρ

(
∂suρ + J ′(uρ) ∂tuρ

)∣∣
ρ=0

= ∇ρ

(
∂suρ + J(uρ) ∂tuρ +

[
J ′(uρ)− J(uρ)

]
∂tuρ

)∣∣
ρ=0

= (Duη)∂s + ∇ρ

([
J ′(uρ)− J(uρ)

]
∂tuρ

)∣∣
ρ=0

= (Duη)∂s +
[
∇η(J

′ − J)
]
∂tu+

[
J ′(u)− J(u)

]
∇ρ∂tuρ|ρ=0 .

(3.4)

By (3.3), the image of J ′− J has vanishing normal component everywhere along u, so the
third term on the right hand side of (3.4) does not contribute to πN (D′

uη). Removing the
local coordinates, we thus obtain the global expression

(
Φ−1 ◦DN ′

u ◦ Φ
)
η = DN

u η + πN ◦ ∇η(J
′ − J) ◦ Tu ◦ j.
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To simplify the last term, observe that since J ′ = ΦJΦ−1 with Φ = 1+ 1
2JY , JY = −Y J

and J2 = −1, we have

(J ′ − J)Φ = ΦJ − JΦ =

(
1+

1

2
JY

)
J − J

(
1+

1

2
JY

)
=

1

2
JY J +

1

2
Y = Y,

hence J ′ − J = Y Φ−1, and therefore

∇η(J
′ − J) = (∇ηY )Φ−1 + Y (∇ηΦ

−1).

Composing the second of these two terms with Tu ◦ j produces a section with vanishing
normal component due to (3.1), so it does not contribute. In the remaining expression,
Φ−1 can be omitted since it acts trivially on the tangential component, and this produces
the formula that was claimed. �

Proof of Proposition 2.3. Given a bundle map B : Nu → HomC(TΣ, Nu), it will suffice to
carry out the construction in Lemma 3.1 with Φ replaced by the 1-parameter family of
bundle isomorphisms Φτ = 1 + 1

2τJY , as long as Y ∈ Γ(EndC(TM, J)) can be chosen
to match a block expression of the form (3.1) along u, with normal derivative along u
satisfying

(3.5) πN ◦ ∇ηY ◦ Tu ◦ j = Bη for all η ∈ Nu.

Since Tu ◦ j : TΣ → Tu is a complex-linear bundle isomorphism, this is clearly possible if
u is embedded, as one can then assume Y = 0 along u and choose its normal derivative
to satisfy (3.5). Note that if J is ω-compatible, then Jτ will also be ω-compatible if and
only if Y is everywhere symmetric with respect to the metric ω(·, J ·), and this can also be
achieved in the absence of double points since (3.5) only constrains the lower-left block of
∇ηY with respect to the splitting u∗TM = Tu ⊕Nu.

We must be a bit more careful if dimRM = 4 and u has double points. Assume
u(z) = u(ζ) = p, with (Tu)z = (Nu)ζ and vice versa. We can choose local coordinates
(z1, z2) ∈ C2 near p that identify p with the origin, while the images of u near z and ζ are
identified with subsets of C× {0} and {0} ×C respectively. In this neighborhood, choose
a complex local trivialization of (TM, J) identifying the normal subspaces along C × {0}
with {0} ⊕ C and those along {0} × C with C ⊕ {0}, and let ∇ be the trivial connection
with respect to this trivialization. We claim that in this trivialization near p, a suitable
Y can be written in the form

Y (z1, z2) =

(
0 Y12(z1, z2)

Y21(z1, z2) 0

)

for some functions Y12 and Y21 valued in EndC(C). Indeed, the condition (3.1) now becomes

Y21(z1, 0) = 0 for all z1,

Y12(0, z2) = 0 for all z2,

while (3.5) specifies the normal derivatives of Y21 along C × {0} and Y12 along {0} × C.
After choosing Y12 and Y21 to satisfy these conditions, we can then also arrange Y21(0, z2) =
Y12(z1, 0) = 0 for all z1, z2 ouside some small neighborhood of 0, hence Y vanishes along u
outside a neighborhood of p, and the previous argument for the embedded case can then
be used to extend Y globally. �
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Remark 3.3. If J is ω-compatible and u has double points, then the above proof fails
to provide ω-compatible perturbations Jτ : in a neighborhood of a double point, the last
step in the construction generally forces the upper-right block of (3.1) to take nonzero
values, thus violating the symmetry condition required for ω-compatibility. This is why
the statement of Theorem 1.3 in the compatible case is limited to embedded curves.

4. Symmetric bundle isomorphisms

We now state and prove a result that implies Proposition 2.4.

Proposition 4.1. Suppose E → Σ is a Hermitian vector bundle, let 〈 , 〉R denote the

real part of its bundle metric, and suppose L → Σ is a complex line bundle. Then every

homotopy class of complex-antilinear bundle isomorphisms B : E → HomC(L,E) contains
one that satisfies the condition

〈ξ,Bη(X)〉R = 〈Bξ(X), η〉R for all (X, ξ, η) ∈ L⊕ E ⊕ E.

Observe first that a choice of complex-antilinear isomorphism B : E → HomC(L,E)

is equivalent via the correspondence Bη(X) = B̂X(η) to a choice of complex-antilinear
bundle map

B̂ : L→ EndC(E)

with the property that for all nonzero X ∈ L, B̂(X) is invertible. Proposition 4.1 is

then equivalent to showing that every homotopy class of bundle maps B̂ with the above

property contains one for which B̂(X) is always symmetric. This is clearly true for the

restriction of B̂ to the 0-skeleton of Σ, since the space of antilinear isomorphisms on any
complex vector space is connected and contains one that is symmetric. Extending this to
the 1-skeleton and then the 2-skeleton of Σ is possible due to Proposition 4.2 below.

Identify Cm with R2m so that EndC(C
m) is regarded as the real subspace of EndR(R

2m) =
EndR(C

m) consisting of linear maps that commute with the standard complex structure
i ∈ GL(2m,R). We then denote

AutC(C
m) := EndC(C

m) ∩GL(2m,R),

Aut
S
C(C

m) :=
{
A ∈ AutC(C

m) | A = AT
}
,

where AT means the usual transpose of real 2m-by-2m matrices.

Proposition 4.2. We have

π1

(
AutC(C

m),Aut
S
C(C

m)
)
= π2

(
AutC(C

m),Aut
S
C(C

m)
)
= 0.

The proof of the proposition occupies the remainder of this section. Observe first that
composition with the real-linear isomorphism

Cm → Cm : v 7→ v̄

identifies AutC(C
m) with GL(m,C) ⊂ GL(2m,R) and Aut

S
C(C

m) with

GLS(m,C) :=
{
A ∈ GL(m,C) | A = AT

}
,
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where in the latter case AT denotes the transpose (not the adjoint!) of them-by-m complex

matrix A, i.e. AT = A
†
. The proposition is therefore equivalent to the computation

(4.1) π1
(
GL(m,C),GLS(m,C)

)
= π2

(
GL(m,C),GLS(m,C)

)
= 0.

We prove this in five steps.
Step 1. Consider the map

(4.2) Q : GL(m,C)/O(m,C) → GLS(m,C) : A 7→ ATA,

where O(m,C) denotes the complex orthogonal group {A ∈ GL(m,C) | ATA = 1}. We
claim that Q is a bijection. Injectivity is easy to check; surjectivity follows from the fact
that every A ∈ GLS(m,C) defines a symmetric nondegenerate complex bilinear form

(v,w) 7→ vTAw,

and all such forms are equivalent up to a choice of basis. Since GL(m,C) is connected, it
follows that GLS(m,C) is connected.

Step 2. We claim that for all m ∈ N, O(m,C) has exactly two connected components.
It is clear that there are at least two, as every A ∈ O(m,C) has detA = ±1. It suffices
therefore to prove that SO(m,C) := {A ∈ O(m,C) | detA = 1} is connected. This is true
for m = 1 since SO(1,C) is the trivial group. The claim then follows by induction using
the fibration

SO(m− 1,C) →֒ SO(m,C)
π
→ Hm−1,

where Hm−1 := {v ∈ Cm | vT v = 1} and π(A) is defined as the first column of A. The fact
that π is surjective can be proved using the same argument that is used in diagonalizing
quadratic forms: it reduces to the fact that any given v1 ∈ Hm−1 can be extended to a
complex basis v1, . . . , vm ∈ Hm−1 of Cm such that vTi vj = δij .

Step 3. We claim that π1(GL(m,C)/O(m,C)) ∼= Z is generated by the projection to
GL(m,C)/O(m,C) of the path

γ : [0, 1] → GL(m,C) : t 7→




eπit

1
. . .

1


 .

To see this, consider the long exact sequence of the fibration O(m,C)
ι
→֒ GL(m,C)

p
→

GL(m,C)/O(m,C):

. . . −→ π1(GL(m,C))
p∗
−→ π1(GL(m,C)/O(m,C))

∂
−→

π0(O(m,C)) −→ π0(GL(m,C)) = 0.

Any loop in GL(m,C)/O(m,C) can be represented as a path β : [0, 1] → GL(m,C) with
β(0) = 1 and β(1) ∈ O(m,C), and the map ∂ can then be written as

∂[β] = detβ(1) ∈ {1,−1} = π0(O(m,C)),

applying the result of Step 2. Since ker ∂ = im p∗, any such path β with detβ(1) = 1
is equivalent in π1(GL(m,C)/O(m,C)) to a loop in GL(m,C), and using the standard
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computation of π1(GL(m,C)) = π1(U(m)), any such loop is homotopic to

S1 → GL(m,C) : t 7→




e2πkit

1
. . .

1




for some k ∈ Z. Thus any such element of π1(GL(m,C)/O(m,C)) is an even power
of γ. If on the other hand det β(1) = −1, then we can concatenate β with the loop
t 7→ [β(1)γ(t)] in GL(m,C)/O(m,C), whose determinant at t = 1 is positive, implying
that β · γ ∈ π1(GL(m,C)/O(m,C)) is an even power of γ, so this proves the claim.

Step 4. We claim that the composition of the map Q in (4.2) with the inclusion
GLS(m,C) →֒ GL(m,C) induces an isomorphism

π1 (GL(m,C)/O(m,C)) = π1(GL(m,C)).

This follows by computing the action of this map on the generator of π1 (GL(m,C)/O(m,C))
as described in Step 3.

Step 5. Consider the homotopy exact sequence for (GL(m,C),O(m,C)):

. . . −→π2(GL(m,C))
α2−→ π2

(
GL(m,C),GLS(m,C)

) ∂2−→

π1
(
GLS(m,C)

) ι∗−→ π1(GL(m,C))
α1−→ π1

(
GL(m,C),GLS(m,C)

) ∂1−→

π0
(
GLS(m,C)

)
= 0.

We showed in Step 4 that ι∗ is an isomorphism, thus α1 = 0, implying that ∂1 is injective
and thus

π1
(
GL(m,C),GLS(m,C)

)
= 0.

Moreover, the injectivity of ι∗ implies ∂2 = 0, so α2 is surjective and, since π2(GL(m,C)) =
π2(U(m)) = 0,

π2
(
GL(m,C),GLS(m,C)

)
= 0.

This completes the proof of Proposition 4.2 and hence, by standard obstruction theory as
in [Ste51], Proposition 4.1.

5. A Weitzenböck formula for antilinear perturbations

In preparation for the proof of Proposition 2.5, we now explain a generalization of the
Weitzenböck formula that was derived in §2.1 for trivial bundles on the torus.

Throughout this section, we assume (Σ, j) is a closed connected Riemann surface and
(E, J) → (Σ, j) is a complex vector bundle of rank m ∈ N with Hermitian structure 〈 , 〉E .
Fix also a j-invariant Riemannian metric on Σ, which is the real part of a Hermitian
structure 〈 , 〉Σ on TΣ, and denote the induced volume form on Σ by d vol. This choice
determines a complex-linear bundle isomorphism5

(5.1) TΣ → Λ0,1T ∗Σ : X 7→ X0,1 := 〈·,X〉Σ

5We are using the convention that Hermitian bundle metrics are antilinear in the first and linear in the
second argument.
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and consequently a global trivialization

(5.2) Λ1,0T ∗Σ⊗ Λ0,1T ∗Σ → C : λ⊗X0,1 7→ λ(X).

Moreover, the rank m complex bundle

F := Λ0,1T ∗Σ⊗ E

inherits from 〈 , 〉Σ and 〈 , 〉E a Hermitian bundle metric 〈 , 〉F , and we shall define
real-valued L2-pairings for sections of E and F by

〈η, ξ〉L2(E) := Re

∫

Σ
〈η, ξ〉E d vol, for η, ξ ∈ Γ(E),

〈α, λ〉L2(F ) := Re

∫

Σ
〈α, λ〉F d vol, for α, λ ∈ Γ(F ).

Given any real-linear map D : Γ(E) → Γ(F ), the formal adjoint D∗ : Γ(F ) → Γ(E) is
defined via the relation

〈λ,Dη〉L2(F ) = 〈D∗λ, η〉L2(E) for all η ∈ Γ(E), λ ∈ Γ(F ).

Recall that D : Γ(E) → Ω0,1(Σ, E) = Γ(F ) is called a Cauchy-Riemann type operator
on E if it satisfies the Leibniz rule

D(fη) = (∂̄f)η + f Dη for all f ∈ C∞(Σ,R), η ∈ Γ(E),

where ∂̄f := df+i df ◦j. Similarly, we will say that D : E → Ω1,0(Σ, E) = Γ(Λ1,0T ∗Σ⊗E)
is an anti-Cauchy-Riemann type operator on E if it satisfies

(5.3) D(fη) = (∂f)η + f Dη for all f ∈ C∞(Σ,R), η ∈ Γ(E),

with ∂f := df − i df ◦ j. If D is of Cauchy-Riemann type, then it is well known that D∗ is
conjugate via real-linear bundle isomorphisms to another Cauchy-Riemann type operator;
more precisely, the natural complex bundle isomorphism

(5.4) Λ1,0T ∗Σ⊗ F = Λ1,0T ∗Σ⊗ Λ0,1T ∗Σ⊗ E = E

defined via (5.2) identifies −D∗ with an anti-Cauchy-Riemann type operator

−D∗ : Γ(F ) → Γ(E) = Γ(Λ1,0T ∗Σ⊗ F ) = Ω1,0(Σ, F ).

Proposition 5.1. Suppose D : Γ(E) → Γ(F ) is a real-linear Cauchy-Riemann type oper-

ator, B : E → F is a complex-antilinear bundle map satisfying the symmetry condition

(5.5) Re〈η,Bξ(X)〉E = Re〈Bη(X), ξ〉E for all (X, η, ξ) ∈ TΣ⊕ E ⊕ E,

and DB := D + B. Then the complex vector bundle6 HomC(E,F ) admits a real-linear

anti-Cauchy-Riemann type operator ∂H such that for all η ∈ Γ(E),

D∗
BDBη = D∗Dη +B∗Bη − (∂HB)η.

6We define the complex structure on HomR(E,F ) and its subbundles such as HomC(E,F ) via the
complex structure of F , i.e. B 7→ J ◦B.
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Remark 5.2. In the above formula, the product of ∂HB ∈ Ω1,0(Σ,HomC(E,F )) with
η ∈ Γ(E) is interpreted as a section of E via the product pairing

(
Λ1,0T ∗Σ⊗HomC(E,F )

)
⊗ E → Λ1,0T ∗Σ⊗ F

and the isomorphism (5.4).

The proof of Proposition 5.1 will rely mainly on a few basic observations about anti-
Cauchy-Riemann operators. Recall that a complex-valued function f on an open subset of
Σ is called antiholomorphic if it satisfies ∂f ≡ 0. The composition of a holomorphic and
an antiholomorphic function is antiholomorphic, and the product of two antiholomorphic
functions is also antiholomorphic, thus it makes sense to speak of antiholomorphic vector

bundles over Σ. Anti-Cauchy-Riemann type operators have several properties analogous
to Cauchy-Riemann type operators, notably:

(1) The difference between two anti-Cauchy-Riemann type operators on the same bun-
dle is a zeroth-order operator.

(2) The complex-linear part of any real-linear anti-Cauchy-Riemann type operator is
also an anti-Cauchy-Riemann type operator.

(3) Every antiholomorphic vector bundle carries a natural complex-linear anti-Cauchy-
Riemann operator that annihilates local antiholomorphic sections, and conversely,
every complex-linear anti-Cauchy-Riemann operator on (E, J) → (Σ, j) induces
an antiholomorphic bundle structure in this way.

The first two statements are easy consequences of the Leibniz rule (5.3). The third is non-
trivial, but is equivalent to the corresponding fact about Cauchy-Riemann type operators
and holomorphic bundles over Riemann surfaces.

Lemma 5.3. Suppose E1 and E2 are complex vector bundles over (Σ, j) endowed with

anti-Cauchy-Riemann type operators D1 and D2 respectively. Then HomC(E1, E2) admits

an anti-Cauchy-Riemann type operator D12 such that for all Φ ∈ Γ(HomC(E1, E2)) and

η ∈ Γ(E1),
D2(Φη) = (D12Φ)η +Φ(D1η).

Proof. Write D1 = DC
1 +A and D2 = DC

2 +B, where DC
1 and DC

2 are complex-linear anti-
Cauchy-Riemann type operators (e.g. the complex-linear parts of D1 andD2 respectively),
so

A : E1 → Λ1,0T ∗Σ⊗ E1 and B : E2 → Λ1,0T ∗Σ⊗ E2

are zeroth-order terms. Then DC
1 and DC

2 induce antiholomorphic bundle structures on
E1 and E2, and HomC(E1, E2) therefore inherits local trivializations with transition maps
that are products of antiholomorphic functions, giving rise to an antiholomorphic structure
and a corresponding complex-linear anti-Cauchy-Riemann operator DC

12 that satisfies

DC
2 (Φη) = (DC

12Φ)η +Φ(DC
1 η)

for all Φ ∈ Γ(HomC(E1, E2)) and η ∈ Γ(E1). The desired operator can then be defined as
D12 = DC

12 + C, where C : HomC(E1, E2) → Λ1,0T ∗Σ ⊗ HomC(E1, E2) is a bundle map
taking the form

(CΦ)η = B(Φη)− Φ(Aη) ∈ Λ1,0T ∗Σ⊗ E2

for (Φ, η) ∈ HomC(E1, E2)⊕ E1. �
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For any vector bundle (E1, J1) over Σ, let Ec

1 denote its conjugate bundle, defined
as the same real vector bundle but with complex structure −J1. The identity map gives
a natural complex-antilinear bundle isomorphism

E1 → Ec

1 : v 7→ v̄,

and if E1 carries a Hermitian bundle metric 〈 , 〉E1
, its conjugate inherits a Hermitian

structure defined by

〈v̄, w̄〉Ec

1
= 〈w, v〉E1

.

There are canonical complex-linear bundle isomorphisms

(E1⊗E2)
c = Ec

1⊗E
c

2 , HomC(E1, E2)
c = HomC(E

c

1 , E
c

2 ), HomC(E
c

1 , E2) = HomC(E1, E2),

where the third of these identifies β ∈ HomC(E
c

1 , E2) with the antilinear map

B : E1 → E2 : η 7→ βη̄.

The metric on Σ determines a complex-linear isomorphism

(TΣ)c → Λ1,0T ∗Σ : X̄ 7→ X1,0 := 〈X, ·〉Σ,

so together with (5.1), this identifies Λ1,0T ∗Σ and Λ0,1T ∗Σ with each other’s conjugate
bundles. Observe now that if D : Γ(E) → Γ(F ) is a Cauchy-Riemann type operator, then

Dcη̄ := Dη

defines an anti-Cauchy-Riemann type operator

Dc : Γ(Ec) → Γ(F c) = Γ
(
(Λ0,1T ∗Σ⊗ E)c

)
= Γ(Λ1,0T ∗Σ⊗ Ec) = Ω1,0(Σ, Ec).

Given an antilinear bundle map B : E → F , let β : Ec → F denote the corresponding
complex-linear bundle map such that

Bη = βη̄,

and let β† : F → Ec denote the adjoint of β with respect to the Hermitian structures on
Ec and F , i.e.

〈λ, βη̄〉F = 〈β†λ, η̄〉Ec for all (η̄, λ) ∈ Ec ⊕ F.

Conjugating this then gives a bundle map

β† = β̄† : F c → E.

We claim that β : Ec → F can also be regarded as a bundle map F c → E. Indeed, using
the isomorphism

F c = (Λ0,1T ∗Σ⊗ E)c = Λ1,0T ∗Σ⊗ Ec,

we obtain from β : Ec → F a bundle map

F c = Λ1,0T ∗Σ⊗ Ec
1⊗β
−→ Λ1,0T ∗Σ⊗ F,

where the target can be identified with E via (5.4).

Lemma 5.4. Fix a complex-linear bundle map β : Ec → F and let B : E → F : η 7→ βη̄.
Then B satisfies the symmetry condition (5.5) if and only if β and β̄† define identical

bundle maps F c → E.
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Proof. It will suffice to show that (5.5) holds if and only if for every z ∈ Σ, η ∈ Ez and
λ̄ ∈ F c

z ,

Re〈βλ̄, η〉E = Re〈β̄†λ̄, η〉E .

Choose any nonzero vector X ∈ TzΣ; we can then write λ = X0,1⊗ξ ∈ Λ0,1T ∗
zΣ⊗Ez = Fz

where ξ := λ(X)/|X|2Σ ∈ Ez. Similarly, βη̄ = Bη = X0,1 ⊗ θ, where θ := Bη(X)/|X|2Σ ∈
Ez. Then

〈β̄†λ̄, η〉E = 〈λ̄, β̄η〉F c = 〈βη̄, λ〉F = 〈X0,1 ⊗ θ,X0,1 ⊗ ξ〉F = 〈X,X〉Σ〈θ, ξ〉E

= 〈Bη(X), ξ〉E .

Likewise, writing βξ̄ = X0,1 ⊗ ζ for ζ := Bξ(X)/|X|2Σ ∈ Ez, we use the natural isomor-
phisms (5.2), (5.4) and

(Λ0,1T ∗Σ)c → Λ1,0T ∗Σ : X0,1 7→ X1,0

to obtain

〈βλ̄, η〉E = 〈β(X1,0 ⊗ ξ̄), η〉E = 〈X1,0 ⊗ βξ̄, η〉E = 〈X1,0 ⊗X0,1 ⊗ ζ, η〉E

=

〈
〈X,X〉Σ

1

|X|2Σ
Bξ(X), η

〉

E

= 〈Bξ(X), η〉E .

�

Proof of Proposition 5.1. Writing D∗
B = D∗ +B∗, we first expand

D∗
BDBη = (D∗ +B∗)(D+B)η = D∗Dη +B∗Bη +D∗(Bη) +B∗(Dη).

We will see that all derivatives of η cancel in the sum of the last two terms. Write
Bη = βη̄, where β ∈ Γ(HomC(E

c, F )). To understand D∗(Bη) = D∗(βη̄), we can view
−D∗ as an anti-Cauchy-Riemann type operator on F , and since Dc is likewise an anti-
Cauchy-Riemann type operator on Ec, Lemma 5.3 provides an anti-Cauchy-Riemann type
operator ∂H on HomC(E

c, F ) such that

(5.6) −D∗(βη̄) = (∂Hβ)η̄ + βDcη̄.

For the final term in the expansion, observe that for any z ∈ Σ, ξ ∈ Ez and λ ∈ Fz,

Re〈λ,Bη〉F = Re〈λ, βη̄〉F = Re〈β†λ, η̄〉Ec = Re〈η, β̄†λ̄〉E = Re〈β̄†λ̄, η〉E ,

which gives the formula B∗λ = β̄†λ̄, hence

(5.7) B∗(Dη) = β̄†Dcη̄.

Putting (5.6) and (5.7) together and applying Lemma 5.4, we have

D∗(Bη) +B∗(Dη) = −(∂Hβ)η̄ + (β̄† − β)Dcη̄ = −(∂Hβ)η̄,

and the stated formula follows by using the natural identification of HomC(E
c, F ) with

HomC(E,F ) to view ∂H as an anti-Cauchy-Riemann type operator on the latter. �

Suppose next that (Σ̃, ̃) is another closed connected Riemann surface.
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Definition 5.5. Given a nonconstant holomorphic map ϕ : (Σ̃, ̃) → (Σ, j) and a Cauchy-
Riemann type operator D on E, define ϕ∗D to be the unique Cauchy-Riemann type
operator on ϕ∗E that satisfies

(5.8) (ϕ∗D)(η ◦ ϕ) = ϕ∗(Dη) for all η ∈ Γ(E).

The uniqueness of ϕ∗D is clear from (5.8). To see that such an operator always exists,
write D = DC + A where DC is a complex-linear Cauchy-Riemann type operator and
A : E → F is a real-linear bundle map, which we can view equivalently as a (0, 1)-form
valued in EndR(E). Then DC induces a holomorphic bundle structure on E, which pulls
back to define a holomorphic structure on ϕ∗E and consequently a Cauchy-Riemann type
operator ϕ∗DC. The operator ϕ∗DC + ϕ∗A then satisfies (5.8).

Example 5.6. If u : (Σ, j) → (M,J) is an immersed J-holomorphic curve and ũ = u ◦ϕ,
then DN

ũ = ϕ∗DN
u .

The next lemma is only interesting when ϕ has branch points and is thus not needed
for the proof of Theorem 1.3, but the general case of Proposition 2.5 requires it. Given D

and B as in Proposition 5.1 and a nonconstant holomorphic map ϕ : (Σ̃, ̃) → (Σ, j), let
us abbreviate

Ẽ = ϕ∗E, F̃ = Λ0,1T ∗Σ̃⊗ Ẽ, D̃ = ϕ∗D : Γ(Ẽ) → Γ(F̃ ).

Viewing B as an EndC(E)-valued (0, 1)-form on Σ, we can then define

B̃ = ϕ∗B ∈ Ω0,1(Σ̃,EndC(Ẽ)), D̃B = D̃+ B̃ : Γ(Ẽ) → Γ(F̃ ).

Choose a Hermitian structure 〈 , 〉Σ̃ on T Σ̃, whose real part is then a ̃-invariant Rie-

mannian metric on Σ̃. The bundles Ẽ and F̃ now inherit natural Hermitian structures,

the former as the pullback of E and the latter as the tensor product Λ0,1T ∗Σ̃ ⊗ Ẽ, and

these determine formal adjoint operators D̃∗ and D̃∗
B . The symmetry assumption (5.5) on

B implies that B̃ also satisfies this condition, so that Proposition 5.1 gives a Weitzenböck

formula over Σ̃ in the form

D̃∗
BD̃Bη = D̃∗D̃η + B̃∗B̃η − (∂̃HB̃)η

for some anti-Cauchy-Riemann type operator ∂̃H on HomC(Ẽ, F̃ ).

Lemma 5.7. Assume the Riemannian metric Re〈 , 〉Σ̃ on Σ̃ is flat near all critical points

of ϕ. Then there exists a constant c > 0 such that
∣∣∂̃HB̃(z)

∣∣ ≤ c|dϕ(z)|2 for all z ∈ Σ̃.

Proof. Recall from the proof of Proposition 5.1 that after identifying HomC(Ẽ, F̃ ) with

HomC(Ẽ
c, F̃ ) by writing B̃η = β̃η̄ for β̃ ∈ Γ(HomC(Ẽ

c, F̃ )), the operator ∂̃H is determined

by the two anti-Cauchy-Riemann type operators D̃c and −D̃∗ via a Leibniz rule. It will
suffice to check that |∂̃H β̃| ≤ c|dϕ|2 holds in suitable local trivializations in a neighborhood

of each branch point z0 ∈ Σ̃. Since the metric on Σ̃ is assumed flat near z0 and induces
the same conformal structure as ̃, we can find holomorphic coordinates z = s+ it on some

neighorhood Ũ ⊂ Σ̃ of z0 in which the area form determined by the metric is ds∧dt, and the

induced bundle metric on Λ0,1T ∗Σ̃|
Ũ
satisfies |dz̄|

Σ̃
= 1. Choose holomorphic coordinates
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also on a neighborhood U ⊂ Σ of ϕ(z0) and assume without loss of generality that ϕ(Ũ) =

U . Next, fix a unitary trivialization of E|U , pull it back to define a trivialization of Ẽ|
Ũ
,

and use this together with the frame dz̄ to trivialize F̃ = Λ0,1T ∗Σ̃ ⊗ Ẽ over Ũ . These

trivializations identify D and D̃ locally with operators of the form

D = ∂̄ +A, D̃ = ∂̄ + Ã,

where ∂̄ = ∂s + i∂t, A : U → EndR(C
m) and Ã : Ũ → EndR(C

m). Using the natural

trivialization induced on Ẽc|
Ũ

for which the canonical antilinear isomorphism Ẽ → Ẽc

appears as complex conjugation, D̃c can now be written as

D̃c = ∂ + Ãc,

where Ãc : Ũ → EndR(C
m) is defined by Ãcη̄ = Ãη. Observe now that our trivializations of

Ẽ and F̃ over Ũ are both unitary, and since the area form Ũ is also standard in coordinates,

the formal adjoint of D̃ takes the form

D̃∗ = −∂ + ÃT.

From these expressions and the Leibniz rule (cf. the proof of Lemma 5.3), one derives a

function C̃ : Ũ → EndR(EndC(C
m)) such that the local formula for ∂̃H as a differential

operator on EndC(C
m)-valued functions is

(5.9) ∂̃H = ∂ + C̃ where (C̃Φ)η̄ = −ÃT(Φη̄)− Φ(Ãcη̄).

Recall now that since D̃ = ϕ∗D, A and Ã represent elements of Ω0,1(Σ,EndR(E)) and

Ω0,1(Σ̃,EndR(Ẽ)) respectively, with the latter being the pullback of the former via ϕ.
To make this explicit, the function A : U → EndR(C

m) represents a (0, 1)-form that

corresponds under our trivialization of E|U to dz̄ ⊗ A ∈ Ω0,1(EndR(C
m)), and Ã then

corresponds to the pullback ϕ∗(dz̄ ⊗ A) = dϕ̄ ⊗ (A ◦ ϕ) = dz̄ ⊗ ϕ′ · (A ◦ ϕ), giving the
relation

Ã(z) = ϕ′(z)A(ϕ(z)).

This implies an estimate of the form |Ã(z)| ≤ c|ϕ′(z)| and, by (5.9), a similar estimate for

|C̃(z)|. Finally, viewing β̃ as a (0, 1)-form valued in HomC(Ẽ
c, Ẽ), it is also the pullback

of a HomC(E
c, E)-valued (0, 1)-form and is thus similarly represented in trivializations by

a function β̃ : Ũ → EndC(C
m) that satisfies

β̃(z) = ϕ′(z)β(ϕ(z))

for some function β : U → EndC(C
m). The estimate |∂̃H β̃| = |∂β̃ + C̃β̃| ≤ c|ϕ′|2 now

follows by a short calculation: indeed, |C̃β̃| ≤ |C̃| · |β̃| ≤ c|ϕ′|2 for some c > 0, and since ϕ′

is antiholomorphic, ∂β̃ = ∂
(
ϕ′ · (β ◦ ϕ)

)
= ϕ′(∂β◦ϕ)ϕ′ similarly satisfies |∂β̃| ≤ c|ϕ′|2. �

6. Regularity for the linearized operator

We now state and prove a linear perturbation result that implies Proposition 2.5. The
result is a higher-dimensional generalization of results for complex line bundles that were
proved by Taubes [Tau96a,Tau96b], and similar results stated in [Rau04].
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Assume (Σ, j) and (Σ̃, ̃) are closed connected Riemann surfaces, ϕ : (Σ̃, ̃) → (Σ, j) is
a holomorphic map of degree d ≥ 1, (E, J) → (Σ, j) is a complex vector bundle of rank
m ≥ 1, and D : Γ(E) → Ω0,1(Σ, E) is a real-linear Cauchy-Riemann type operator. As in
the previous section, we shall abbreviate

Ẽ = ϕ∗E, D̃ = ϕ∗D,

where ϕ∗D : Γ(ϕ∗E) → Ω0,1(Σ̃, ϕ∗E) denotes the induced Cauchy-Riemann type operator
on the pullback (see Definition 5.5).

Now assume ind(D) = 0. By the Riemann-Roch formula, this means

−c1(E) = mχ(Σ) + c1(E) = c1(HomC(TΣ, E)),

so there exists a complex-antilinear bundle isomorphism

B : E → HomC(TΣ, E).

Choosing a Hermitian bundle metric 〈 , 〉E on E, we can also arrange by Proposition 2.4
that B satisfies the symmetry condition

(6.1) Re〈ξ,Bη(X)〉E = Re〈Bξ(X), η〉E for all (X, ξ, η) ∈ TΣ⊕ E ⊕ E.

This gives rise to a 1-parameter family of real-linear Cauchy-Riemann type operators on

Ẽ, defined by

D̃τ = ϕ∗(D+ τB) = D̃+ τB̃

for τ ∈ R, where we abbreviate B̃ := ϕ∗B with B regarded as an EndC(E, J)-valued
(0, 1)-form. Let Z(dϕ) ≥ 0 denote the algebraic count of branch points of ϕ, which is

−χ(Σ̃) + dχ(Σ) by the Riemann-Hurwitz formula. Then

ind(D̃τ ) = mχ(Σ̃) + 2c1(ϕ
∗E) = m [dχ(Σ)− Z(dϕ)] + 2dc1(E)

= d · ind(D) −mZ(dϕ) = −mZ(dϕ) ≤ 0.

Theorem 6.1. The operators D̃τ : Γ(Ẽ) → Ω0,1(Σ, Ẽ) defined above are injective for all

τ ∈ R outside of a discrete subset.

Remark 6.2. The proof of Theorem 1.3 only requires the special case of Theorem 6.1

for which ϕ : (Σ̃, ̃) → (Σ, j) is unbranched, and in this case the proof below becomes
somewhat simpler, e.g. it does not require Lemma 5.7. The general case of Theorem 6.1
may nonetheless be useful for proving stronger super-rigidity results.

As in §2.1, we can use analytic perturbation theory to reduce this theorem to a state-

ment for particular values of τ . We first extend D̃τ to a Fredholm operator between

Hilbert spaces H1 and L2, each regarded as real vector spaces (since D̃τ itself is real and
not complex linear), then complexify and consider the family of complex-linear Fredholm
operators

D̃τ : H1(Ẽ)⊗C → L2(HomC(T Σ̃, Ẽ))⊗ C

for τ ∈ C. This family depends holomorphically on τ . Note that for τ ∈ R, the underlying

operator D̃τ is injective whenever its complexification is injective. Thus by Proposition A.1
in the appendix, in order to prove Theorem 6.1, it suffices to establish the following:

Lemma 6.3. The operator D̃τ is injective for all sufficiently large τ > 0.
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Proof. Choose a Hermitian bundle metric on T Σ̃ that matches the standard Hermitian
inner product in some choice of local holomorphic coordinates near each of the branch

points of ϕ. This gives rise to a family of formal adjoint operators D̃∗
τ with D̃∗

0 =: D̃∗

such that by Proposition 5.1,

D̃∗
τD̃τη = D̃∗D̃η + τ2B̃∗B̃η − τ(∂̃HB̃)η,

and Lemma 5.7 also implies ∣∣∂̃HB̃
∣∣ ≤ c1|dϕ|

2

for some c1 > 0. Since B is a bundle isomorphism, we can find another constant c2 > 0,
such that |Bη| ≥ c2|η| and thus

∣∣B̃η
∣∣ ≥ c2|dϕ| · |η|.

We then find for every η ∈ Γ(Ẽ),

‖D̃τη‖
2
L2 =

〈
η, D̃∗

τ D̃τη
〉
L2

=
〈
η, D̃∗D̃η + τ2B̃∗B̃η − τ(∂̃HB̃)η

〉
L2

= ‖D̃η‖2L2 + τ2‖B̃η‖2L2 − τ
〈
η, (∂̃H B̃)η

〉
L2

≥
(
τ2c22 − τc1

) ∥∥|dϕ| · η
∥∥2
L2 ,

where the constants c1, c2 > 0 are independent of η. Since |dϕ| > 0 almost everywhere,

we conclude that D̃τ is injective whenever τ2c22 − τc1 > 0. �

Appendix A. Some analytic perturbation theory

The linear perturbation argument of §6 requires a basic ingredient from analytic per-
turbation theory in the spirit of [Kat95]. Since we were not able to find a reference for
the precise result we need, we have included a proof of it in this appendix for the sake of
completeness.

Given complex Banach spacesX and Y , denote by L(X,Y ) the Banach space of bounded
complex-linear operators X → Y , abbreviate L(X) := L(X,X), and let Fred(X,Y ) ⊂
L(X,Y ) denote the open subset consisting of Fredholm operators. Since Fred(X,Y ) carries
a natural complex structure as a subset of L(X,Y ), it makes sense to speak of holomor-
phic maps into Fred(X,Y ), i.e. maps which are Fréchet differentiable with complex-linear
derivative.

Proposition A.1. Suppose U ⊂ C is a connected open subset and U → Fred(X,Y ) : τ 7→
Tτ is a holomorphic map, and let

Z = {τ ∈ U | Tτ is not injective}.

Then either Z is a discrete subset of U , or Z = U .

Proof. Given any T0 ∈ Fred(X,Y ), there exist splittings into closed linear subspaces

X = V ⊕ kerT0, Y =W ⊕ cokerT0

such that T0|V is an isomorphism V → W . Using this splitting, we can write any other
T ∈ Fred(X,Y ) in block form as

T =

(
A B

C D

)
,
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and define O ⊂ Fred(X,Y ) to be the open neighborhood of T0 for which the block A is
invertible. We can then define a holomorphic map

Φ : O → L(kerT0, cokerT0) : T 7→ D−CA−1B.

We claim that for allT ∈ O, kerT ∼= ker Φ(T). To see this, associate to T the isomorphism

Ψ =

(
1 −A−1B

0 1

)
∈ L(V ⊕ kerT0) = L(X).

Then TΨ =

(
A 0
C Φ(T)

)
, and since A is invertible, kerTΨ = {0}⊕ker Φ(T), from which

the claim follows.
Now if U → Fred(X,Y ) : τ → Tτ is a family of operators depending holomorphically

on τ , then fixing any τ0 ∈ U and placing Tτ0 in the role of T0 above, one can define Φ on
a neighborhood of Tτ0 so that

τ 7→ Φ(Tτ )

defines a holomorphic curve mapping into the finite-dimensional complex vector space
L(kerTτ0 , cokerTτ0) for τ in a neighborhood of τ0. The set of all τ near τ0 for which Tτ

is not injective then corresponds to the intersections of this holomorphic curve with the
stratified complex subvariety of noninjective maps in L(kerTτ0 , cokerTτ0), which has pos-
itive codimension. The proposition thus follows from the standard results on intersections
of holomorphic curves with complex submanifolds. �
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