All Packages  Class Hierarchy  This Package  Previous  Next  Index

Class org.netlib.lapack.Dsysv

java.lang.Object
   |
   +----org.netlib.lapack.Dsysv

public class Dsysv
extends Object
Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DSYSV computes the solution to a real system of linear equations * A * X = B, * where A is an N-by-N symmetric matrix and X and B are N-by-NRHS * matrices. * * The diagonal pivoting method is used to factor A as * A = U * D * U**T, if UPLO = 'U', or * A = L * D * L**T, if UPLO = 'L', * where U (or L) is a product of permutation and unit upper (lower) * triangular matrices, and D is symmetric and block diagonal with * 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then * used to solve the system of equations A * X = B. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) * On entry, the symmetric matrix A. If UPLO = 'U', the leading * N-by-N upper triangular part of A contains the upper * triangular part of the matrix A, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading N-by-N lower triangular part of A contains the lower * triangular part of the matrix A, and the strictly upper * triangular part of A is not referenced. * * On exit, if INFO = 0, the block diagonal matrix D and the * multipliers used to obtain the factor U or L from the * factorization A = U*D*U**T or A = L*D*L**T as computed by * DSYTRF. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * IPIV (output) INTEGER array, dimension (N) * Details of the interchanges and the block structure of D, as * determined by DSYTRF. If IPIV(k) > 0, then rows and columns * k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 * diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, * then rows and columns k-1 and -IPIV(k) were interchanged and * D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and * IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and * -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 * diagonal block. * * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) * On entry, the N-by-NRHS right hand side matrix B. * On exit, if INFO = 0, the N-by-NRHS solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The length of WORK. LWORK >= 1, and for best performance * LWORK >= N*NB, where NB is the optimal blocksize for * DSYTRF. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, D(i,i) is exactly zero. The factorization * has been completed, but the block diagonal matrix D is * exactly singular, so the solution could not be computed. * * ===================================================================== * * .. External Functions ..


Constructor Index

 o Dsysv()

Method Index

 o dsysv(String, int, int, double[], int, int, int[], int, double[], int, int, double[], int, int, intW)

Constructors

 o Dsysv
 public Dsysv()

Methods

 o dsysv
 public static void dsysv(String uplo,
                          int n,
                          int nrhs,
                          double a[],
                          int _a_offset,
                          int lda,
                          int ipiv[],
                          int _ipiv_offset,
                          double b[],
                          int _b_offset,
                          int ldb,
                          double work[],
                          int _work_offset,
                          int lwork,
                          intW info)

All Packages  Class Hierarchy  This Package  Previous  Next  Index