All Packages  Class Hierarchy  This Package  Previous  Next  Index

Class org.netlib.lapack.Dsysvx

java.lang.Object
   |
   +----org.netlib.lapack.Dsysvx

public class Dsysvx
extends Object
Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DSYSVX uses the diagonal pivoting factorization to compute the * solution to a real system of linear equations A * X = B, * where A is an N-by-N symmetric matrix and X and B are N-by-NRHS * matrices. * * Error bounds on the solution and a condition estimate are also * provided. * * Description * =========== * * The following steps are performed: * * 1. If FACT = 'N', the diagonal pivoting method is used to factor A. * The form of the factorization is * A = U * D * U**T, if UPLO = 'U', or * A = L * D * L**T, if UPLO = 'L', * where U (or L) is a product of permutation and unit upper (lower) * triangular matrices, and D is symmetric and block diagonal with * 1-by-1 and 2-by-2 diagonal blocks. * * 2. The factored form of A is used to estimate the condition number * of the matrix A. If the reciprocal of the condition number is * less than machine precision, steps 3 and 4 are skipped. * * 3. The system of equations is solved for X using the factored form * of A. * * 4. Iterative refinement is applied to improve the computed solution * matrix and calculate error bounds and backward error estimates * for it. * * Arguments * ========= * * FACT (input) CHARACTER*1 * Specifies whether or not the factored form of A has been * supplied on entry. * = 'F': On entry, AF and IPIV contain the factored form of * A. AF and IPIV will not be modified. * = 'N': The matrix A will be copied to AF and factored. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices B and X. NRHS >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,N) * The symmetric matrix A. If UPLO = 'U', the leading N-by-N * upper triangular part of A contains the upper triangular part * of the matrix A, and the strictly lower triangular part of A * is not referenced. If UPLO = 'L', the leading N-by-N lower * triangular part of A contains the lower triangular part of * the matrix A, and the strictly upper triangular part of A is * not referenced. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N) * If FACT = 'F', then AF is an input argument and on entry * contains the block diagonal matrix D and the multipliers used * to obtain the factor U or L from the factorization * A = U*D*U**T or A = L*D*L**T as computed by DSYTRF. * * If FACT = 'N', then AF is an output argument and on exit * returns the block diagonal matrix D and the multipliers used * to obtain the factor U or L from the factorization * A = U*D*U**T or A = L*D*L**T. * * LDAF (input) INTEGER * The leading dimension of the array AF. LDAF >= max(1,N). * * IPIV (input or output) INTEGER array, dimension (N) * If FACT = 'F', then IPIV is an input argument and on entry * contains details of the interchanges and the block structure * of D, as determined by DSYTRF. * If IPIV(k) > 0, then rows and columns k and IPIV(k) were * interchanged and D(k,k) is a 1-by-1 diagonal block. * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. * * If FACT = 'N', then IPIV is an output argument and on exit * contains details of the interchanges and the block structure * of D, as determined by DSYTRF. * * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) * The N-by-NRHS right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) * If INFO = 0, the N-by-NRHS solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * RCOND (output) DOUBLE PRECISION * The estimate of the reciprocal condition number of the matrix * A. If RCOND is less than the machine precision (in * particular, if RCOND = 0), the matrix is singular to working * precision. This condition is indicated by a return code of * INFO > 0, and the solution and error bounds are not computed. * * FERR (output) DOUBLE PRECISION array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) DOUBLE PRECISION array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The length of WORK. LWORK >= 3*N, and for best performance * LWORK >= N*NB, where NB is the optimal blocksize for * DSYTRF. * * IWORK (workspace) INTEGER array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, and i is * <= N: D(i,i) is exactly zero. The factorization has * has been completed, but the block diagonal * matrix D is exactly singular, so the solution and * error bounds could not be computed. * = N+1: the block diagonal matrix D is nonsingular, but * RCOND is less than machine precision. The * factorization has been completed, but the matrix * is singular to working precision, so the solution * and error bounds have not been computed. * * ===================================================================== * * .. Parameters ..


Constructor Index

 o Dsysvx()

Method Index

 o dsysvx(String, String, int, int, double[], int, int, double[], int, int, int[], int, double[], int, int, double[], int, int, doubleW, double[], int, double[], int, double[], int, int, int[], int, intW)

Constructors

 o Dsysvx
 public Dsysvx()

Methods

 o dsysvx
 public static void dsysvx(String fact,
                           String uplo,
                           int n,
                           int nrhs,
                           double a[],
                           int _a_offset,
                           int lda,
                           double af[],
                           int _af_offset,
                           int ldaf,
                           int ipiv[],
                           int _ipiv_offset,
                           double b[],
                           int _b_offset,
                           int ldb,
                           double x[],
                           int _x_offset,
                           int ldx,
                           doubleW rcond,
                           double ferr[],
                           int _ferr_offset,
                           double berr[],
                           int _berr_offset,
                           double work[],
                           int _work_offset,
                           int lwork,
                           int iwork[],
                           int _iwork_offset,
                           intW info)

All Packages  Class Hierarchy  This Package  Previous  Next  Index