drasys.or.mp.lp
Class DenseSimplex
java.lang.Object
|
+--drasys.or.mp.lp.DenseLPBase
|
+--drasys.or.mp.lp.DenseSimplex
- public class DenseSimplex
- extends DenseLPBase
Simple simplex algorithm for dense coefficients.
There is a table describing the metadata used by this algorithm.
References:
Linear Programming
Vasek Chvatal / Paperback / Published 1983
Linear and Nonlinear Programming
Ariela Sofer, Stephen G. Nash / Hardcover / Published 1996
Combinatorial Optimization : Algorithms and Complexity
Christos H. Papadimitriou, Kenneth Steiglitz / Paperback / Published 1998
- See Also:
- Serialized Form
Fields inherited from class drasys.or.mp.lp.DenseLPBase |
_autoScale,
_cof,
_fuzz,
_isMaximize,
_maxAbsVal,
_maxCoefficient,
_maxIterations,
_minAbsVal,
_minCoefficient,
_name,
_nonZeroCnt,
_obj,
_problemSet,
_rhs,
_sizeOfColumns,
_sizeOfRows,
_solved,
_typ |
Methods inherited from class java.lang.Object |
clone,
equals,
finalize,
getClass,
hashCode,
notify,
notifyAll,
toString,
wait,
wait,
wait |
DenseSimplex
public DenseSimplex()
DenseSimplex
public DenseSimplex(ProblemI problem)
throws InvalidException
setProblem
public void setProblem(ProblemI problem)
throws InvalidException
- Sets the problem to solve.
- Overrides:
- setProblem in class DenseLPBase
getObjectiveValue
public double getObjectiveValue()
throws NoSolutionException
- Returns the optimized value of the objective function.
getSolution
public VectorI getSolution()
throws NoSolutionException
- Returns the solution vector.
solve
public double solve()
throws NoSolutionException,
UnboundedException,
InfeasibleException,
ConvergenceException,
ScaleException,
InvalidException
- Find the solution that optimizes the objective function.
- Returns:
- the optimized value of the objective function.
- Throws:
- ScaleException - if a coefficient is outside the allowable range.
- UnboundedException - if the constraints allow the objective to go to infinity.
- NoSolutionException - if there is no feasible solution.
- ConvergenceException - if the algorithm doesn't converge after the maximum iterations.
Copyright(C)1997-2000 by DRA Systems all rights reserved. OpsResearch.com