drasys.or.opt.lp
Class DenseSimplex
java.lang.Object
|
+--drasys.or.opt.lp.DenseLPBase
|
+--drasys.or.opt.lp.DenseSimplex
- public class DenseSimplex
- extends DenseLPBase
An implementation of the simplex algorithm that is optimized for dense coefficients.
- See Also:
- Serialized Form
Fields inherited from class drasys.or.opt.lp.DenseLPBase |
_autoScale,
_cof,
_fuzz,
_maxAbsVal,
_maxIt,
_maxRange,
_maxRows,
_minAbsVal,
_minRange,
_nonZeroCnt,
_obj,
_rhs,
_sizeOfColumns,
_sizeOfRows,
_solved,
_typ |
Method Summary |
double |
getObjectiveValue()
Returns the optimized value of the objective function. |
VectorI |
getSolution()
Returns the solution vector. |
double |
maximize()
Find the solution that maximizes the objective function. |
double |
minimize()
Find the solution that minimizes the objective function. |
void |
setAutomaticScaling(boolean automaticallyScale)
Automatic scaling is not available in this implementation. |
Methods inherited from class drasys.or.opt.lp.DenseLPBase |
addConstraint,
addConstraint,
ensureCapacity,
getMaxAbsoluteValue,
getMinAbsoluteValue,
getRangeMax,
getRangeMin,
removeAllElements,
resize,
setEqualityFuzz,
setMaxIterations,
setObjective,
setRange |
Methods inherited from class java.lang.Object |
clone,
equals,
finalize,
getClass,
hashCode,
notify,
notifyAll,
toString,
wait,
wait,
wait |
DenseSimplex
public DenseSimplex()
DenseSimplex
public DenseSimplex(int rows,
int columns)
getObjectiveValue
public double getObjectiveValue()
- Returns the optimized value of the objective function.
getSolution
public VectorI getSolution()
- Returns the solution vector.
maximize
public double maximize()
throws NoSolutionException,
UnboundedException,
ConvergenceException,
ScaleException
- Find the solution that maximizes the objective function.
- Returns:
- the optimized value of the objective function.
- Throws:
- ScaleException - if a coefficient is outside the allowable range.
- UnboundedException - if the constraints allow the objective to go to infinity.
- NoSolutionException - if there is no feasible solution.
- ConvergenceException - if the algorithm doesn't converge after the maximum iterations.
minimize
public double minimize()
throws NoSolutionException,
UnboundedException,
ConvergenceException,
ScaleException
- Find the solution that minimizes the objective function.
- Returns:
- the optimized value of the objective function.
- Throws:
- ScaleException - if a coefficient is outside the allowable range.
- UnboundedException - if the constraints allow the objective to go to infinity.
- NoSolutionException - if there is no feasible solution.
- ConvergenceException - if the algorithm doesn't converge after the maximum iterations.
setAutomaticScaling
public void setAutomaticScaling(boolean automaticallyScale)
- Automatic scaling is not available in this implementation.
- Overrides:
- setAutomaticScaling in class DenseLPBase
Copyright(C)1997-2000 by DRA Systems all rights reserved. OpsResearch.com