|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--drasys.or.prob.Distribution | +--drasys.or.prob.ContinuousDistribution | +--drasys.or.prob.NormalDistribution
An implementation of the Normal probability distribution.
References:
The Art of Computer Programming: Seminumerical Algorithms (Vol 2, 3rd Ed)
Donald Ervin Knuth; Hardcover
Numerical Recipes in C : The Art of Scientific Computing
William H. Press, et al / Hardcover / Published 1993
Probability and Statistics
Morris H. Degroot / Hardcover / Published 1986
Mathematical Statistics With Applications
Dennis D. Wackerly, et al / Hardcover / Published 1996
Inner Class Summary | |
class |
NormalDistribution.Cdf
|
class |
NormalDistribution.Pdf
|
Constructor Summary | |
NormalDistribution()
Create normal distribution with mean = 0 and std = 1. |
|
NormalDistribution(double mean,
double std)
Create normal distribution with explicit mean and std. |
|
NormalDistribution(double mean,
double std,
IntegrationI integration)
The argument integration will be used to compute the cdf from the pdf. |
|
NormalDistribution(double mean,
double std,
IntegrationI integration,
EquationSolutionI solver)
The argument integration will be used to compute the cdf from the pdf. |
|
NormalDistribution(double mean,
double std,
long seed)
Create normal distribution with explicit parameters and set the random seed. |
Method Summary | |
double |
cdf(double x)
Computes the cdf by numerical integration using the pdf. |
boolean |
equals(java.lang.Object o)
|
double |
function(double x)
|
double |
getRandomScaler()
Returns a random number from the normal distribution. |
double |
inverseCdf(double probability)
Computes the inverse cdf from the cdf numerically. |
double |
mean()
Returns the mean of the distribution. |
double |
pdf(double x)
Returns the value of the probability distribution function at x; |
double |
probability(double x1,
double x2)
Computes the the probability that x will be between x1 and x2 by numerical integration using the pdf. |
void |
setParameters(double mean,
double std)
Sets the distribution parameters. |
double |
std()
Returns the standard deviation of the distribution. |
java.lang.String |
toString()
|
double |
variance()
Returns the variance of the distribution. |
Methods inherited from class drasys.or.prob.ContinuousDistribution |
probability |
Methods inherited from class drasys.or.prob.Distribution |
getRandomMatrix,
getRandomNumberGenerator,
getRandomVector,
setElements,
setElements,
setRandomNumberGenerator,
setSeed |
Methods inherited from class java.lang.Object |
clone,
finalize,
getClass,
hashCode,
notify,
notifyAll,
wait,
wait,
wait |
Constructor Detail |
public NormalDistribution()
public NormalDistribution(double mean, double std)
public NormalDistribution(double mean, double std, long seed)
public NormalDistribution(double mean, double std, IntegrationI integration)
public NormalDistribution(double mean, double std, IntegrationI integration, EquationSolutionI solver)
Method Detail |
public double function(double x)
public double cdf(double x)
public double inverseCdf(double probability)
public double probability(double x1, double x2)
public void setParameters(double mean, double std)
public double pdf(double x)
public double mean()
public double variance()
public double std()
public double getRandomScaler()
public boolean equals(java.lang.Object o)
public java.lang.String toString()
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |