Humboldt-Universität zu Berlin - Mathematisch-Naturwissenschaftliche Fakultät - Institut für Mathematik

Preprint 2017-08

Josua Faller, Sourav Sarkar, Mritunjay Verma


Mellin Amplitudes for Fermionic Conformal Correlators.



We define Mellin amplitudes for the fermion-scalar four point function and the fermion four point function in three dimensions. The Mellin amplitude thus defined has multiple components each associated with a tensor structure. Each component factorizes on dynamical poles onto components of the Mellin amplitudes for the corresponding three point functions. The novelty here is that for a given exchanged primary, each component of the Mellin amplitude may in general have more than one series of poles. We present a few examples of Mellin amplitudes for tree-level Witten diagrams and tree-level conformal Feynman integrals with fermionic legs, which illustrate the general properties.




Preprint series: Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976), 2017-08


50 pp.