Direkt zum InhaltDirekt zur SucheDirekt zur Navigation
▼ Zielgruppen ▼

Humboldt-Universität zu Berlin - Mathematisch-Naturwissenschaftliche Fakultät - Institut für Mathematik

Preprint 2018-07

Johannes Broedel, Claude Duhr, Falko Dulat, Brenda Penante and Lorenzo Tancredi

 

From modular forms to differential equations for Feynman integrals.

 

Abstract: In these proceedings we discuss a representation for modular forms that is more suitable for their application to the calculation of Feynman integrals in the context of iterated integrals and the differential equation method. In particular, we show that for every modular form we can find a representation in terms of powers of complete elliptic integrals of the first kind multiplied by algebraic functions. We illustrate this result on several examples. In particular, we show how to explicitly rewrite elliptic multiple zeta values as iterated integrals over powers of complete elliptic integrals and rational functions, and we discuss how to use our results in the context of the system of differential equations satisfied by the sunrise and kite integrals.

 

Preprint series: Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976), 2018-07

 

24 pp.