Humboldt-Universität zu Berlin - Mathematisch-Naturwissenschaftliche Fakultät - Institut für Mathematik

FS Wintersemester 2005/2006

Die Vorträge finden Dienstags in der Zeit von 09.00 - 11.00 Uhr statt.

Raum: III.007, Rudower Chaussee 25



18.10.2005 Helge Joergensen (Odense, Dk)
Para-quaternionic Geometries.
25.10.2005 Richard Cleyton (HU Berlin)
Connections with parallel torsion.
01.11.2005 John Sullivan (TU Berlin)
Embedded Surfaces of Constant Mean Curvature.
08.11.2005 Richard Cleyton (HU Berlin)
Differential Gerstenhaber Algebras on 6-dimensional nilmanifolds.
15.11.2005 Hyun Seok Yang (Physik, HU Berlin)
ALE Spaces from U(1) Instantons.
22.11.2005 Kris Galicki (New Mexico)
Geometric structures on 5-manifolds.
29.11.2005 P. Somberg / V. Soucek (Prague)
Somberg: Symmetry algebras of some operators and their associated ideals in universal enveloping algebras.
Soucek: Subcomplexes in Bernstein-Gelfand-Gelfand sequences.
06.12.2005 Rares Rasdeaconu (U Southern Denmark / U Michigan
Kaehler manifolds of positive curvature.
13.12.2005 Stefan Ivanov (Sofia)
Curvature of G_2-manifolds - first applications.
03.01.2006 Klaus-Dieter Kirchberg (HU Berlin)
Integrabilitätsbedingungen für fast Kählersche 4-Mannigfaltigkeiten.
10.01.2006 Iskander Taimanov (Novosibirsk)
Surfaces in three-dimensional Lie groups.
17.01.2006 kein Seminar - Winterschule in Srni
24.01.2006 Martin Schlichenmaier (Luxemburg)
Berezin Toeplitz quantization of the moduli space of flat SU(N) connections.
31.01.2006 Ulrich Krähmer (Warschau)
Principal fibre bundles and vector bundles in noncommutative geometry.
07.02.2006 - ausgefallen, verschoben auf den 18.04.2006 Jan Plefka (AEI Potsdam / HU Physik)
Recent developments in the AdS/CFT correspondence.
14.02.2006 Michal Godlinski (Warschau)
On three-dimensional Weyl structures with reduced holonomy.
Zusatzvortrag am 27.02.2006 Peter Michor (Wien)
The geometry of the space of planar shapes - geodesics and curvature.
This is based on jont work with David Mumford and is inspired by the needs of pattern recognition and image analysis. The L2 or H0 metric on the space of smooth plane regular closed curves induces vanishing geodesic distance on the quotient Imm(S1,R2)/Diff(S1). This is a general phenomenon and holds on all full diffeomorphism groups and spaces Imm(M,N)/Diff(M) for a compact manifold M and a Riemanninan manifold N. Thus we have to consider more complicated Riemannian metrics using lenght or curvature, and we do this is a systematic Hamiltonian way, we derive geodesic equation and split them into horizontal and vertical parts, and compute all conserved quantities via the momentum mappings of several invariance groups (Reparameterizations, motions, and even scalings). The resulting equations are relatives of well known completely integrable systems (Burgers, Camassa Holm, Hunter Saxton). If time permits I shall also report on generalizations to higher dimensions of some of the forgoing results, in particular on the vanishing of the geodesic distance.


aktualisiert am 07.02.2006