Funktionalanalysis, Wintersemester 2020-21

Inhaltsbeschreibung / course description and syllabus

Moodle: https://moodle.hu-berlin.de/course/view.php?id=99581
WICHTIG: Die Lehrveranstaltung findet online per Zoom statt, und Sie müssen sich beim Moodle-Kurs anmelden, um die Zugangsdaten für die Zoom-Meetings zu erhalten. HU-Angehörige haben mit ihrem HU-Benutzernamen und Passwort automatisch Zugang zum Moodle. Nicht HU-Angehörige haben Zugang, indem sie auf den Link oben klicken und dann ein HU-Moodle-Konto erstellen mit der externen Mailadresse als Benutzername. Es gibt neuerdings einen Einschreibeschlüssel für den Moodle-Kurs; wer noch nicht eingeschrieben ist, kann mir per E-mail nach dem Einschreibeschlüssel fragen.
IMPORTANT: The course will be conducted online via Zoom, and you will need to join the moodle for the course in order to obtain the Zoom links for online lectures. HU students can access moodle using their HU username and password. Non-HU users can access it by following the above link and then setting up a HU Moodle Account with their external e-mail address as a username. There is now an enrolment key for the moodle; if you haven't joined yet, you can e-mail me to ask for the key.

Lecture notes (last update: 13.01.2021)
Except for possible minor corrections, the lecture notes are now complete, including all Sections 0 through 10. (The remainder of the course after 14.01.2021 will follow different sources.)
Note: The file behind the link above will be updated routinely during the semester, so you should press the "reload" button to make sure you have the current version.

Whiteboard notes:
Week 1: Lecture 1 (3.11.2020) Lecture 2 (5.11.2020) Problem session 1 (5.11.2020)
Week 2: Lecture 3 (10.11.2020) Lecture 4 (12.11.2020) Problem session 2 (12.11.2020)
Week 3: Lecture 5 (17.11.2020) Lecture 6 (19.11.2020) Problem session 3 (19.11.2020)
Week 4: Lecture 7 (24.11.2020) Lecture 8 (26.11.2020) Problem session 4 (26.11.2020)
Week 5: Lecture 9 (1.12.2020) Lecture 10 (3.12.2020) Problem session 5 (3.12.2020)
Week 6: Lecture 11 (8.12.2020) Lecture 12 (10.12.2020) Problem session 6 (10.12.2020)
Week 7: Lecture 13 (15.12.2020) Lecture 14 (17.12.2020) Problem session 7 (17.12.2020)
Week 8: Lecture 15 (5.01.2021) Lecture 16 (7.01.2021) Problem session 8 (7.01.2021)
Week 9: Lecture 17 (12.01.2021) Lecture 18 (14.01.2021) Problem session 9 (14.01.2021)

Ankündigungen / Announcements

  • 7.01.2020: There was a missing hypothesis in the original version of Problem 2 on Problem Set 8: the function ρ should be assumed nonnegative. (This has been corrected in the version below.)
  • 17.12.2020: The take-home midterm will be assigned on January 21 and due Feburary 4. (Regular problem sets will not be assigned in those two weeks.)
  • 17.12.2020: The two dates for the final exam in this course have now been fixed. They are:
    • Wednesday, 3.03.2021 from 9:00 to 12:00
    • Friday, 9.04.2021 from 9:00 to 12:00
    For both dates, the exam will be a take-home exam that is made available via the moodle at 9:00 sharp, with 12:30 as the deadline for uploading solutions. (The extra half-hour is added as a buffer in case of technical problems.) The exam problems will be conceived to be doable within two hours, so time pressure should not be a major factor. The deadline to register with the Prüfungsbüro is (as usual) 14 days ahead of the exam. For information on administrative matters such as how to register, here is the webpage of the Prüfungsbüro Mathematik.
  • 9.12.2020: If you downloaded Problem Set 6 within a few hours of when it first appeared (on the evening of 9.12), you may have a version that is missing an important hypothesis in Problem 4. It has been corrected in the version available below, so make sure you press the reload button to get the corrected version. (This will be irrelevant to the vast majority of you, who surely did not look at Problem Set 6 before Problem Set 5 was even due. But at least one person did.)
previous announcements (no longer relevant)

Übungsblätter / Problem sets

Problem sets will normally be posted in this spot every Thursday and can be submitted via the moodle until 15:15 on the following Thursday; solutions will then be discussed in the Übung. (See the moodle for more on the technical details of how to submit solutions.) You are welcome to work on the problems in groups, but must write up solutions (in German or English) individually -- group submissions are not accepted.

The corrected submissions are posted on the moodle about a week after the due date. Questions about the grading can be directed to the grader, Laurenz Upmeier zu Belzen (upmeibel at mathematik dot hu dash berlin dot de).

Other useful links

Chris Wendl's homepage